JPH0531492A - Treatment of waste water - Google Patents
Treatment of waste waterInfo
- Publication number
- JPH0531492A JPH0531492A JP19036391A JP19036391A JPH0531492A JP H0531492 A JPH0531492 A JP H0531492A JP 19036391 A JP19036391 A JP 19036391A JP 19036391 A JP19036391 A JP 19036391A JP H0531492 A JPH0531492 A JP H0531492A
- Authority
- JP
- Japan
- Prior art keywords
- waste water
- reaction tank
- methane
- light
- methane fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Physical Water Treatments (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、メタン発酵菌による廃
水の処理方法に関し、詳しくは工場や家庭から排出され
る廃水や下水を処理する過程でメタン発酵を効率的に行
う廃水の処理方法に係わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater with methane-fermenting bacteria, and more particularly to a method for treating wastewater that efficiently performs methane fermentation in the process of treating wastewater and sewage discharged from factories and households. Involve
【0002】[0002]
【従来の技術】微生物を利用した水処理方法は、高濃度
バイオリアクターにより下水、し尿、産業廃水を従来技
術に比べて安価なコストで処理し、廃水を再利用するこ
とを可能とするため、様々な技術が開発されている。そ
の中でも、嫌気性微生物を利用したメタン発酵法は曝気
動力が不要であり、汚泥生成量が少なく、メタンガスと
してエネルギーの回収が可能であるため、活性汚泥法等
の好気処理に比べて省エネルギー的な廃水処理法として
評価されている。2. Description of the Related Art A water treatment method using microorganisms treats sewage, human waste, and industrial wastewater at a lower cost than conventional technology by a high-concentration bioreactor, and makes it possible to reuse the wastewater. Various technologies have been developed. Among them, the methane fermentation method using anaerobic microorganisms does not require aeration power, produces a small amount of sludge, and can recover energy as methane gas, so it is more energy-saving than aerobic treatment such as the activated sludge method. It is evaluated as an effective wastewater treatment method.
【0003】しかしながら、従来のメタン発酵法は中温
(37℃付近)から高温(60℃付近)で行われてお
り、冬季に廃水の温度が下がりメタン発酵が低下するの
を防ぐために加温する必要がある。したがって、加温の
ための大きなエネルギーの損失を招く。However, the conventional methane fermentation method is carried out at a medium temperature (around 37 ° C.) to a high temperature (around 60 ° C.), and it is necessary to heat the methane fermentation method in order to prevent the temperature of the waste water from decreasing and the methane fermentation to decrease in the winter. There is. Therefore, a large amount of energy is lost due to heating.
【0004】また、メタン発酵菌のような嫌気性微生物
は好気性微生物と比較すると、基質当たりの菌体収率が
著しく小さく、かつ増殖速度も遅いため、連続的な廃水
処理を行う場合にはメタン発酵が停止することがある。Further, compared with aerobic microorganisms, anaerobic microorganisms such as methane-fermenting bacteria have a remarkably small cell yield per substrate and a slow growth rate. Methane fermentation may stop.
【0005】このような問題を解決するために低温でも
活性なメタン発酵菌を模索すること、メタン発酵菌を担
体に付着させたり、自己造粒させるなどの方法でメタン
発酵菌の濃度を見掛け上高めること、バイオリアクター
等のハード面での化学工学的な改良を加えること、等の
試みがなされている。しかしながら、いずれの方法も満
足する結果が得られていないのが現状である。In order to solve these problems, the concentration of methane-fermenting bacteria can be apparently sought by methods such as searching for methane-fermenting bacteria that are active even at low temperatures, attaching the methane-fermenting bacteria to a carrier, or allowing them to self-granulate. Attempts have been made to increase the number, to improve chemical engineering in terms of hardware such as a bioreactor, and the like. However, the present situation is that none of the methods have obtained satisfactory results.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記従来の
問題点を解決するためになされたもので、下水、し尿、
産業廃水などをメタン発酵菌を用いて効率的にかつ経済
的に処理する方法を提供しようとするものである。DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and includes sewage, human waste,
It is intended to provide a method for efficiently and economically treating industrial wastewater and the like by using methane-fermenting bacteria.
【0007】[0007]
【課題を解決するための手段】本発明は、メタン発酵菌
を用いた廃水の処理方法において、前記メタン発酵菌を
混在させた廃水に光を照射することを特徴とする廃水の
処理方法である。前記廃水としては、例えば都市下水、
生活排液、工場廃液、農林畜産廃液などの有機物含有廃
水を挙げることができる。The present invention is a method for treating wastewater using methane-fermenting bacteria, which comprises irradiating the wastewater containing the methane-fermenting bacteria with light. .. Examples of the waste water include urban sewage,
Examples include wastewater containing organic substances such as domestic effluent, factory effluent, and agriculture, forestry and livestock effluent.
【0008】前記メタン発酵菌に係わる微生物として
は、例えば廃水中の高分子有機化合物を低分子化するま
での過程に関与するClostidiumu属、Bac
illus属、Staphylococcus属等の炭
水化物分解菌、またPlectridium spum
arum属、Caduceus cellosaehy
dogenicus属等の繊維素分解菌;Clostr
idiumu属、Proteus属、Bacteriu
m属、Bacillus属等の蛋白質分解菌;Clos
tridium Kluyveri属等の脂肪分解菌、
等が酸生成過程の微生物として挙げられる。低分子化さ
れた有機化合物をガス化する過程で関与する微生物とし
ては、Methanococcus属のmazei,d
eltae,vannielii,voltae、Me
thanosarcina属のmethanica,b
arkeri,acetivorans、Methan
obacterium属のfomicicum,ome
lianskii,propionicum,sohn
genii,subboxydans、Methano
genium属のcaraci,marinsnigr
i、Methanobrevibacter属のarb
oriphilicus,smithinなどのメタン
生成菌が挙げられる。また、前記メタン発酵菌と共生関
係にある微生物としてDesulfovibrio属、
Desulfomonas属、Desullfococ
cus属、Desulfobacter属、Desul
fobulbus属、Desulfosarcina
属、Desulfonema属、Desulfomac
ulum属等の硫酸還元菌が挙げられる。Examples of the microorganisms related to the methane-fermenting bacteria include Clostidium genus and Bac, which are involved in the process of lowering the molecular weight of high molecular weight organic compounds in wastewater.
illus genus, Staphylococcus genus, and other carbohydrate-degrading bacteria, also Plectridium spum
genus arum, Caduceus cellosaehy
Clostr, a fibrinolytic bacterium of the genus Dogenicus, etc.
genus idium, genus Proteus, bacterium
Proteolytic bacteria such as m genus and Bacillus genus; Clos
lipolytic bacteria such as tridium Kluyveri genus,
Etc. are mentioned as microorganisms in the process of acid production. Examples of microorganisms involved in the process of gasifying low molecular weight organic compounds include Mazei, d of the genus Methanococcus
eltae, vannielie, voltae, Me
methanoica, b of the genus Tanosarcina
arkeri, acetivorans, Methan
fomimicum, ome of the genus Obacterium
lianskii, propionicum, sohn
genii, subboxydans, Methano
genus caraci, marinsnigr
i, arb of the genus Methanobrevibacterium
Examples include methanogens such as oriphylicus and smithin. In addition, as a microorganism having a symbiotic relationship with the methane-fermenting bacterium, the genus Desulfovrio,
Desulfomonas sp., Desulfococ
cus genus, Desulfobacter genus, Desul
genus fobulbus, Desulfosarcina
Genus, Desulfonema, Desulfomac
Sulfur-reducing bacteria such as Ulum.
【0009】前記光照射のための光源は、可視または紫
外領域の光を発するものであればよく、例えば水銀灯、
水素放電管、ハロゲン放電管、キセノン放電管、ライマ
ン放電管などを用いることができる。これらの光源は、
単独でも、2つ以上組み合わせて用いてもよい。なお、
光源であるランプは前記メタン発酵菌を収納する反応槽
の外部に設置してもよいし、前記反応槽の内部に設置し
てもよい。また、光照射は連続的、断続的または必要に
応じて一定持間照射するなど種々の方法を採用すること
ができる。また、本発明に係わる処理方法は前記メタン
発酵菌を混在させ、さらに光半導体を介在させた廃水に
光を照射することを許容する。The light source for irradiating the light may be any one that emits light in the visible or ultraviolet region, for example, a mercury lamp,
A hydrogen discharge tube, a halogen discharge tube, a xenon discharge tube, a Lyman discharge tube, or the like can be used. These light sources
You may use individually or in combination of 2 or more. In addition,
The lamp, which is a light source, may be installed outside the reaction tank containing the methane-fermenting bacterium, or may be installed inside the reaction tank. In addition, various methods such as continuous, intermittent, or fixed period irradiation may be adopted for the light irradiation. In addition, the treatment method according to the present invention permits irradiation of the wastewater in which the methane-fermenting bacteria are mixed and the photo-semiconductor is interposed, with light.
【0010】前記光半導体は、微生物による物質の分解
・変換経路を光照射によって効果的に促進ものであれば
いずれでもよく、特に限定されるものではない。前記光
半導体の材料としては、例えばSi、Geなどの単体;
InP、GaP、Zn3 P2などの金属リン化物;Al
As、GaAsなどの金属砒素化物;CdS、ZnS、
Cu2 Sなどの金属硫化物;CdSe、ZnSeなどの
金属セレン化物;CdTe、ZnTeなどの金属テルル
化物;TiO、ZnO、SrTiO3 などの金属酸化
物;およびこれらの半導体からなる3元もしくは4元混
晶、例えばGaAlAs、InGaAs、ZnSSe、
InGaAsP、GaAl−AsP、CuInS2 、C
uInSe2 などを挙げることができる。これらの材料
は、単独もしくは2種以上組み合わせて用いてもよい。
前記光半導体は、粒子の状態で用いてもよく、または経
済的な面を考慮して担体や反応槽の壁面に薄膜状に固定
化させて用いてもよい。前記光半導体を粒子状で用いる
場合、その使用量は流入廃水に対して0.001〜10
%、より好ましくは0.01〜1%の範囲にすることが
望ましい。The optical semiconductor is not particularly limited as long as it can effectively accelerate the decomposition / conversion pathway of a substance by microorganisms by light irradiation. As the material of the optical semiconductor, for example, a simple substance such as Si or Ge;
InP, GaP, Zn 3 P 2 and other metal phosphide; Al
Metal arsenides such as As and GaAs; CdS, ZnS,
Metal sulfides such as Cu 2 S; metal selenides such as CdSe and ZnSe; metal tellurides such as CdTe and ZnTe; metal oxides such as TiO, ZnO and SrTiO 3 ; and ternary or quaternary elements made of these semiconductors. Mixed crystals such as GaAlAs, InGaAs, ZnSSe,
InGaAsP, GaAl-AsP, CuInS 2 , C
Examples thereof include uInSe 2 . You may use these materials individually or in combination of 2 or more types.
The optical semiconductor may be used in the form of particles, or may be used in the form of a thin film immobilized on the wall surface of a carrier or a reaction tank in consideration of economical aspect. When the optical semiconductor is used in the form of particles, the amount used is 0.001 to 10 relative to the inflowing wastewater
%, More preferably 0.01 to 1%.
【0011】前記光半導体薄膜層は、真空蒸着法、スパ
ッタ法、CVD法により形成される。前記薄膜層の厚さ
は、500〜10000オングストローム程度にするこ
とが望ましい。前記光半導体が水溶液中で不安定である
場合には、前記薄膜層の表面に保護膜を被覆してもよ
い。かかる保護膜としては、例えば金属薄膜、ポリピロ
ールなどの導電性高分子膜を用いることが望ましい。The optical semiconductor thin film layer is formed by a vacuum vapor deposition method, a sputtering method or a CVD method. The thickness of the thin film layer is preferably about 500 to 10,000 angstroms. When the optical semiconductor is unstable in an aqueous solution, the surface of the thin film layer may be covered with a protective film. As the protective film, it is desirable to use, for example, a metal thin film or a conductive polymer film such as polypyrrole.
【0012】[0012]
【作用】本発明によれば、メタン発酵菌を混在させた廃
水に光を照射することによって、前記メタン発酵菌の代
謝系である酵素反応、水素伝達、電子キャリア等の経路
が刺激され、全体的にメタン発酵の反応過程が促進され
る。その結果、下水、し尿、産業廃水などを低温域にお
いても効率的にかつ経済的に処理することが可能とな
る。According to the present invention, by irradiating the wastewater containing methane-fermenting bacteria with light, the pathways such as the enzymatic reaction, hydrogen transfer and electron carrier, which are the metabolic systems of the methane-fermenting bacteria, are stimulated, The reaction process of methane fermentation is accelerated. As a result, it becomes possible to treat sewage, night soil, industrial wastewater, etc. efficiently and economically even in a low temperature range.
【0013】また、メタン発酵菌を混在させ、さらに光
半導体を介在させた廃水に光を照射することによって、
前記酵素反応のみで供給されたプロトンやキャリアを前
記光半導体からも得られるため、安定したメタン発酵を
行うことが可能となる。Further, by mixing the methane-fermenting bacteria and irradiating the wastewater containing the photo-semiconductor with light,
Since the protons and carriers supplied only by the enzymatic reaction can be obtained from the optical semiconductor, stable methane fermentation can be performed.
【0014】[0014]
【実施例】以下、本発明の実施例を図1に示す廃水処理
装置を参照して説明する。 実施例1Embodiments of the present invention will be described below with reference to the wastewater treatment apparatus shown in FIG. Example 1
【0015】図1に示すように有機性の廃水物を含む被
処理水1は、被処理水入口2からメタン発酵菌3および
光半導体4が存在する容量5リットルのガラス製の反応
槽5に導入され、前記反応槽5の外側に設置された光源
6からの光が照射されながら処理される。前記反応槽5
で消化された処理水7は、処理水出口8から排出される
と共に、生成したガスはガス出口9を通して回収または
廃棄される。かかる処理工程において、前記反応槽5の
被処理水入口2部分および処理水出口8部分に設けた細
孔の大きさ20〜30μmのフィルタ10により、前記
メタン発酵菌3および光半導体4の流出を防止してい
る。前記反応槽5内は撹拌装置11のポリテトラフルオ
ロエチレン製撹拌棒によって撹拌されている。As shown in FIG. 1, treated water 1 containing organic wastewater is introduced from a treated water inlet 2 into a glass reaction tank 5 having a capacity of 5 liters in which methane-fermenting bacteria 3 and optical semiconductors 4 are present. It is introduced and processed while being irradiated with light from a light source 6 installed outside the reaction tank 5. The reaction tank 5
The treated water 7 digested in step 1 is discharged from the treated water outlet 8, and the generated gas is recovered or discarded through the gas outlet 9. In such a treatment step, the outflow of the methane-fermenting bacteria 3 and the optical semiconductor 4 is performed by the filter 10 having a pore size of 20 to 30 μm provided in the treated water inlet 2 portion and the treated water outlet 8 portion of the reaction tank 5. To prevent. The inside of the reaction tank 5 is stirred by a stirring rod made of polytetrafluoroethylene of a stirring device 11.
【0016】具体的には、前記メタン発酵菌3としては
嫌気グローブボックス内で仕込んだものを用いて前記反
応槽5内に約4.5リットル収容し、前記光半導体4と
しては325メッシュパスの二酸化チタン粉末を前記反
応槽5内に25g収納した。このような条件下におい
て、槽12内の下記表1に示す組成の処理水である合成
基質13をローラポンプ14により暗室、20℃に置か
れた前記反応槽5内に供給した後、前記撹拌装置11で
前記反応槽5内を60rpmの条件で撹拌しながら、光
源6(ハロゲンランプ;照度10万ルックス)を連続点
灯した。75時間後の生成ガス中のメタンガス量および
二酸化炭素量を測定した。その結果を下記表2に示し
た。なお、表2にはハロゲンランプを点灯しない時の各
々のガス量を併記した。Specifically, as the methane-fermenting bacterium 3, one prepared in an anaerobic glove box is used to store about 4.5 liters in the reaction tank 5, and the optical semiconductor 4 has a 325 mesh pass. 25 g of titanium dioxide powder was stored in the reaction tank 5. Under such conditions, the synthetic substrate 13, which is the treated water having the composition shown in Table 1 below, in the tank 12 was supplied by the roller pump 14 into the reaction tank 5 placed at 20 ° C. in a dark room, and then the stirring was performed. The light source 6 (halogen lamp; illuminance 100,000 lux) was continuously turned on while stirring the inside of the reaction tank 5 with the apparatus 11 under the condition of 60 rpm. The amount of methane gas and the amount of carbon dioxide in the produced gas after 75 hours were measured. The results are shown in Table 2 below. In addition, Table 2 also shows each gas amount when the halogen lamp is not turned on.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【表2】 実施例2[Table 2] Example 2
【0019】図1に示す構成の処理装置において、光半
導体を用いず、かつ光源6として写真撮影用のストロボ
(ガイドナンバー45)を用い、30秒に1回の間隔で
発光するように設定し、前記表1に示す組成の処理水で
ある合成基質13をローラポンプ14により暗室、20
℃に置かれた反応槽5内に0.005ml/minの流
量で7日間に亘って連続供給した。この時の生成ガス中
のメタンガス量および二酸化炭素量の変化を下記表3に
示した。なお、表3にはストロボによる発光を全く行わ
なかった時の各々のガス量を併記した。In the processing apparatus having the configuration shown in FIG. 1, a photoflash (guide number 45) is used as the light source 6 without using an optical semiconductor, and is set to emit light once every 30 seconds. The synthetic substrate 13 which is the treated water having the composition shown in Table 1 was darkened by a roller pump 14 in a dark room, 20
It was continuously supplied into the reaction tank 5 kept at 0 ° C. for 7 days at a flow rate of 0.005 ml / min. The changes in the amount of methane gas and the amount of carbon dioxide in the produced gas at this time are shown in Table 3 below. In addition, Table 3 also shows the respective gas amounts when no light emission by strobe was performed.
【0020】[0020]
【表3】 [Table 3]
【0021】[0021]
【発明の効果】以上詳述したごとく、本発明に係わる廃
水の処理方法よれば家庭廃水や産業廃水を浄化する嫌気
性発酵処理において、メタン発酵菌を混在させた廃水に
光を照射するするか、メタン発酵菌を混在させ、さらに
光半導体を介在させた廃水に光を照射することによって
廃水の処理効率を向上して発酵処理時間の短縮、処理設
備の小形化を達成できる等顕著な効果を奏する。As described above in detail, according to the wastewater treatment method of the present invention, in the anaerobic fermentation treatment for purifying domestic wastewater or industrial wastewater, is it possible to irradiate the wastewater mixed with methane-fermenting bacteria with light? By mixing the methane-fermenting bacteria and irradiating the wastewater with the optical semiconductor interposed between them, the wastewater can be treated more efficiently, the fermentation treatment time can be shortened, and the treatment equipment can be downsized. Play.
【図1】本発明の実施例で用いた廃水処理装置を示す概
略図。FIG. 1 is a schematic view showing a wastewater treatment device used in an example of the present invention.
1…処理水、3…メタン発酵菌、4…光半導体、5…反
応槽、6…光源、11…撹拌装置、13…合成基質。1 ... Treated water, 3 ... Methane fermenting bacteria, 4 ... Photo semiconductor, 5 ... Reaction tank, 6 ... Light source, 11 ... Stirrer, 13 ... Synthetic substrate.
Claims (1)
おいて、前記メタン発酵菌を混在させた廃水に光を照射
することを特徴とする廃水の処理方法。What is claimed is: 1. A method for treating wastewater using methane-fermenting bacteria, which comprises irradiating the wastewater containing the methane-fermenting bacteria with light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19036391A JPH0531492A (en) | 1991-07-30 | 1991-07-30 | Treatment of waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19036391A JPH0531492A (en) | 1991-07-30 | 1991-07-30 | Treatment of waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0531492A true JPH0531492A (en) | 1993-02-09 |
Family
ID=16256941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19036391A Pending JPH0531492A (en) | 1991-07-30 | 1991-07-30 | Treatment of waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0531492A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005095770A (en) * | 2003-09-25 | 2005-04-14 | National Institute Of Advanced Industrial & Technology | Treating method for organic waste |
JP2006212467A (en) * | 2005-02-01 | 2006-08-17 | National Institute Of Advanced Industrial & Technology | Organic waste treatment method |
JP2007125490A (en) * | 2005-11-02 | 2007-05-24 | National Institute Of Advanced Industrial & Technology | Anaerobic ammonia treatment method |
CN102381759A (en) * | 2011-09-21 | 2012-03-21 | 山东省农业科学院农业资源与环境研究所 | Anaerobic reactor |
-
1991
- 1991-07-30 JP JP19036391A patent/JPH0531492A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005095770A (en) * | 2003-09-25 | 2005-04-14 | National Institute Of Advanced Industrial & Technology | Treating method for organic waste |
JP2006212467A (en) * | 2005-02-01 | 2006-08-17 | National Institute Of Advanced Industrial & Technology | Organic waste treatment method |
JP2007125490A (en) * | 2005-11-02 | 2007-05-24 | National Institute Of Advanced Industrial & Technology | Anaerobic ammonia treatment method |
CN102381759A (en) * | 2011-09-21 | 2012-03-21 | 山东省农业科学院农业资源与环境研究所 | Anaerobic reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor | |
US4284508A (en) | Methane production by attached film | |
JP2010201423A (en) | High-concentration culture method of denitrifying bacterium contained in activated sludge | |
KR100460214B1 (en) | Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms | |
JP3048889B2 (en) | Activated sludge treatment method and activated sludge treatment apparatus therefor | |
JP4681576B2 (en) | Advanced sewage treatment equipment | |
JPH0970598A (en) | Ultrapure water producing device | |
CN1079449A (en) | Remove the method for sulfocompound in anhydrating | |
JPH0531492A (en) | Treatment of waste water | |
CN108658224A (en) | A method of based on the processing of specific electromagnetic wave technique alcohol enterprise high ammonia-nitrogen wastewater | |
US20050242024A1 (en) | Water purification by means of catalytic surfaces and microorganisms | |
KR100391137B1 (en) | Bacteria group of bacillus spp in the aerobic reacting device and method for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater | |
JP3614515B2 (en) | Anaerobic digestion treatment method of high concentration organic wastewater and treatment apparatus therefor | |
JP3409728B2 (en) | Organic waste treatment method | |
JPH0425079B2 (en) | ||
JP2001232388A (en) | Method and apparatus for treating waste liquor | |
JPH04126594A (en) | Treatment of waste water | |
JP3784686B2 (en) | Bioreactor | |
KR200172809Y1 (en) | Bacteria group of bacillus spp in the aerobic reacting device for treating nihgtsoil, stackbreeding waste water, leachate and industrial organic wastewater | |
CN103848536A (en) | Method for processing house refuse leachate | |
CN108264125A (en) | A kind of advanced treatment method for sewage water | |
KR101756266B1 (en) | Wastewater treatment system for simultaneous removal of color, phosphates and e. coli, and processing method thereof | |
JP2007125490A (en) | Anaerobic ammonia treatment method | |
JP3188372B2 (en) | Sludge solubilization method | |
CN116924584A (en) | Multi-optical-parameter flora light inhibition and elimination method and application thereof |