JPH04126594A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH04126594A
JPH04126594A JP2243827A JP24382790A JPH04126594A JP H04126594 A JPH04126594 A JP H04126594A JP 2243827 A JP2243827 A JP 2243827A JP 24382790 A JP24382790 A JP 24382790A JP H04126594 A JPH04126594 A JP H04126594A
Authority
JP
Japan
Prior art keywords
reactor
bacteria
waste water
wastewater
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2243827A
Other languages
Japanese (ja)
Other versions
JPH0796118B2 (en
Inventor
Masaaki Okada
正明 岡田
Naoaki Uchiyama
内山 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2243827A priority Critical patent/JPH0796118B2/en
Publication of JPH04126594A publication Critical patent/JPH04126594A/en
Publication of JPH0796118B2 publication Critical patent/JPH0796118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To improve the efficiency of the high-degree treatment of org. waste water by fixing photosynthesis bacteria and methane forming bacteria to a reactor consisting of a transparent material and the carriers packed in the reactor, supplying the waste water to the reactor and passing the waste water through a microorganism immobilized carrier packed bed. CONSTITUTION:The photosynthesis bacteria and methane forming bacteria are fixed to the reactor 1 consisting of the transparent material in the whole or a part of its side walls and the carriers 3 packed in the reactor 1. An anaerobic state is maintained in the reactor 1 and while the reactor is illuminated from the circumference of the transparent side walls, the waste water is supplied to the reactor 1 and is passed through the microorganism immobilized carrier packed bed. The removal of both of a carbon compd., such as org. acid and nitrogen compd. with the single device is possible in this way and the high- degree treatment of the org. waste water is efficiently executed if the reactor 1 is installed in a place where the solar light shines.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光合成細菌およびメタン生成細菌を利用して
有機性廃水を処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating organic wastewater using photosynthetic bacteria and methanogenic bacteria.

〔従来の技術〕[Conventional technology]

食品工場廃水、都市下水等、有機性廃水の浄化処理にお
いて、廃水から炭素化合物を除去することは好気的機、
生物処理やそれと嫌気性微生物処理(いわゆるメタン醗
酵処理)との組み合わせによってかなりの程度まで可能
であるが、それに比べると窒素化合物の除去は困難であ
って、有効かつ実際的な方法はまだ確立されていない。
In the purification of organic wastewater, such as food factory wastewater and urban sewage, carbon compounds are removed from the wastewater using an aerobic mechanism.
Although this is possible to a considerable extent through biological treatment or its combination with anaerobic microbial treatment (so-called methane fermentation), the removal of nitrogen compounds is more difficult and no effective and practical method has yet been established. Not yet.

すなわち、浄化処理に通常利用される好気性微生物や嫌
気性微生物は、炭素化合物を分解または同化する能力に
は優れているが、窒素化合物はあまり利用しないから、
従来、被処理廃水中の窒素化合物のかなりの部分は除去
されることなく放流水中に残り、河川や湖沼の富栄養化
の原因になっていた。
In other words, aerobic microorganisms and anaerobic microorganisms, which are commonly used in purification processes, have excellent ability to decompose or assimilate carbon compounds, but do not utilize nitrogen compounds very well.
Conventionally, a considerable portion of nitrogen compounds in treated wastewater remained in the effluent without being removed, causing eutrophication of rivers and lakes.

窒素化合物の除去に有効な手段の一つとして、光合成細
菌を利用する浄化処理法が知られている。この処理法は
、嫌気的条件下で非酸素発生型の光合成を行う光合成細
菌の、他の嫌気性微生物よりは顕著に優れた窒素吸収能
力を利用するものであって、特に、BODが1000p
p鳳以上という濃厚有機性廃水の処理にも適用可能であ
るという特長がある。しかしながら、光合成細菌は光合
成反応により空気中の二酸化炭素を取り込んで炭素源と
するため、廃水中の炭素化合物を除去する能力はない。
A purification method using photosynthetic bacteria is known as one of the effective means for removing nitrogen compounds. This treatment method utilizes the nitrogen absorption ability of photosynthetic bacteria that performs non-oxygenic photosynthesis under anaerobic conditions, which is significantly superior to other anaerobic microorganisms.
It has the advantage that it can be applied to the treatment of concentrated organic wastewater with a concentration of P or higher. However, photosynthetic bacteria do not have the ability to remove carbon compounds from wastewater because they take in carbon dioxide from the air and use it as a carbon source through photosynthetic reactions.

そこで、光合成細菌を利用する浄化処理法と他の浄化処
理法とを組み合わせて行うことにより次素化合物と窒素
化合物の両方を高率で除去しようとする廃水処理法か検
討された。しかしながら、適当な撹拌機付き培養槽に被
処理廃水を供給し、照明下に光合成細菌を増殖させて窒
素、リン等を吸収させる従来の光合成細菌処理は、供給
する廃水中の栄養分濃度の変動や菌体の流出が原因で、
槽内細菌数が著しく低い水準まで低下してしまい、処理
目的を達成できなくなることがある。そのような場合は
別に培養した菌体を補充するか、培養槽を洗浄して装置
の立ち上げをやり直す必要が生じる。また、光合成細菌
処理と他の微生物処理とを別々の処理槽で行うことによ
り設備費、電力費、管理費等がかさむという問題点もあ
った。
Therefore, a wastewater treatment method that attempts to remove both subatomic compounds and nitrogen compounds at a high rate by combining a purification treatment method that uses photosynthetic bacteria with other purification treatment methods was investigated. However, conventional photosynthetic bacteria treatment, in which wastewater to be treated is supplied to a culture tank equipped with an appropriate agitator and photosynthetic bacteria are grown under lighting to absorb nitrogen, phosphorus, etc. Due to bacterial outflow,
The number of bacteria in the tank may drop to an extremely low level, making it impossible to achieve the treatment objective. In such a case, it will be necessary to replenish the cultured bacteria, or to clean the culture tank and restart the apparatus. Furthermore, there is also the problem that equipment costs, power costs, management costs, etc. are increased by performing photosynthetic bacteria treatment and other microbial treatment in separate treatment tanks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明の目的は、炭素化合物分解能の優れた微生
物と窒素化合物吸収能の優れた光合成細菌とを単一のり
アクタ−で安定的に増殖させながら廃水を処理すること
により従来よりも簡単に炭素化合物と窒素化合物を除去
する手段を提供することにある。
Therefore, the purpose of the present invention is to treat wastewater more easily than before by treating wastewater while stably growing microorganisms with excellent ability to decompose carbon compounds and photosynthetic bacteria with excellent ability to absorb nitrogen compounds in a single glue actor. The object of the present invention is to provide a means for removing compounds and nitrogen compounds.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明が採択した手段は、側壁
の全部または一部が透明な材料からなるリアクターおよ
び該リアクターに充填した担体に光合成細菌およびメタ
ン生成細菌を固定し、リアクター内を嫌気状態に保ち且
つ透明な側壁の周囲から照明しながら廃水をリアクター
に供給して上記微生物固定化担体充填層を通過させるこ
とからなる。
The means adopted by the present invention to achieve the above object is to fix photosynthetic bacteria and methanogenic bacteria to a reactor whose side wall is entirely or partially made of a transparent material, and to a carrier filled in the reactor, and to maintain the inside of the reactor in an anaerobic state. The method consists of supplying wastewater to the reactor and passing it through the microorganism-immobilized carrier packed bed while maintaining the temperature and illuminating from around the transparent side wall.

以下、本発明実施のためのりアクタ−の概略を示す図面
を参照しながら本発明を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings that schematically show a glue actor for carrying out the present invention.

リアクター1は、本体2(縦長円筒状の塔状部分)とそ
の中に充填された担体3からなる。本体2はその側壁部
分の全部または一部が透明なガラス、プラスチック等か
らできていて、光を透過させることができる。
The reactor 1 consists of a main body 2 (a vertically long cylindrical tower-like part) and a carrier 3 filled therein. The main body 2 has a side wall portion made entirely or partially of transparent glass, plastic, etc., and is capable of transmitting light.

担体3としては、多孔質のセラミックス、合成樹脂など
からなる円筒形、サドル形、球形のものなど、微生物固
定に適したものが使われる。
As the carrier 3, one suitable for immobilizing microorganisms, such as a cylindrical, saddle-shaped, or spherical carrier made of porous ceramics or synthetic resin, is used.

本体2は、底部に被処理廃水供給口4、側壁の頂部に近
い部分に処理済み廃水流出口5、頂部にガス排出口6を
持つ。
The main body 2 has a treated wastewater inlet 4 at the bottom, a treated wastewater outlet 5 at the side wall near the top, and a gas outlet 6 at the top.

このリアクターlを用いて廃水浄化処理を行うには、最
初に担体3に対する微生物固定を行う。そのためには、
まず任意の嫌気性消化槽から排出された消化汚泥を本体
2内に満たし、嫌気状態にして約37°Cの温度を保つ
。これにより、担体3表面にメタン生成細菌が固定され
る。その後、または上記と並行して、本体側壁の透明部
分を人工光または太陽光で照射し、照射された側壁の内
面とその付近の担体3表面に光合成細菌を着生させる。
To carry out wastewater purification using this reactor 1, microorganisms are first immobilized on the carrier 3. for that purpose,
First, the main body 2 is filled with digested sludge discharged from any anaerobic digestion tank, and maintained at a temperature of about 37°C in an anaerobic state. As a result, the methanogenic bacteria are immobilized on the surface of the carrier 3. After that, or in parallel with the above, the transparent portion of the side wall of the main body is irradiated with artificial light or sunlight, and photosynthetic bacteria are allowed to grow on the inner surface of the irradiated side wall and the surface of the carrier 3 in the vicinity thereof.

光合成細菌は、それを優先種化させた菌懸濁液をあらか
じめ別の培養槽で調製して本体lに供給すると、菌固定
を短時間で行うことができる。この場合に用いる光合成
細菌としては、紅色非硫黄細菌などが適当である。
For photosynthetic bacteria, if a bacterial suspension containing preferential species is prepared in advance in a separate culture tank and supplied to the main body 1, the bacteria can be immobilized in a short time. As the photosynthetic bacteria used in this case, purple non-sulfur bacteria are suitable.

この後、光照射を続は且つリアクター1内を約37℃に
保温しながら、被処理廃水を供給口4から連続的に供給
する。供給速度は、HRT (滞留日数)が2〜5日程
度になるように選ぶ。
Thereafter, the wastewater to be treated is continuously supplied from the supply port 4 while continuing light irradiation and keeping the inside of the reactor 1 at about 37°C. The feed rate is selected so that the HRT (retention days) is approximately 2 to 5 days.

メタン生成細菌は絶対嫌気性菌であって0.lppm程
度の酸素濃度でも死滅するが、リアクター内に共存する
光合成細菌が酸素を消費する反応を行うため、またリア
クター底部の担体3には強い還元反応を行う細菌も付着
するので、廃水中の酸素濃度はりアクタ−1内を上方に
流れるに従って急速に減少し、メタン生成細菌に必要な
高度の嫌気状態が形成される。その結果、リアクター1
内では光合成細菌による窒素化合物の摂取とメタン生成
細菌による炭素化合物の分解反応とか並行して生起し、
窒素化合物濃度と炭素化合物濃度とが低下した廃水は最
後に廃水流出口5から装置外に排出される。メタン生成
細菌の作用により炭素化合物から生成したメタンガスは
、担体3間の隙間を通ってリアクターl内を上昇し、最
後にガス排出口6から装置外に排出される。以上により
、単一の処理装置による高度の浄化処理が達成される。
Methane-producing bacteria are obligate anaerobic bacteria, with 0. They will die even at an oxygen concentration of about lppm, but the photosynthetic bacteria that coexist in the reactor perform a reaction that consumes oxygen, and bacteria that perform a strong reduction reaction also adhere to the carrier 3 at the bottom of the reactor, so the oxygen in the wastewater is reduced. The concentration rapidly decreases as it flows upward in the Actor 1, creating a highly anaerobic condition necessary for methanogenic bacteria. As a result, reactor 1
Inside, the intake of nitrogen compounds by photosynthetic bacteria and the decomposition reaction of carbon compounds by methanogenic bacteria occur in parallel.
The wastewater whose nitrogen compound concentration and carbon compound concentration have been reduced is finally discharged from the apparatus through the wastewater outlet 5. Methane gas generated from carbon compounds by the action of methanogenic bacteria passes through the gaps between the carriers 3 and rises within the reactor 1, and is finally discharged from the gas outlet 6 to the outside of the apparatus. As described above, a high degree of purification treatment can be achieved using a single treatment device.

処理中に増殖した微生物は、少しずつ担体3や本体2側
壁から離れて廃水中に入り、処理済み廃水とともに装置
外に排出されるが、一部は担体3上や担体3間に過剰に
蓄積され、それにより被処理廃水の流通抵抗を増加させ
る。この過剰の菌体は、リアクターl内に水道水を数回
流すことにより排除することができる。
Microorganisms that proliferate during the treatment gradually separate from the carrier 3 and the side wall of the main body 2 and enter the wastewater, and are discharged from the device together with the treated wastewater, but some of them accumulate excessively on and between the carriers 3. This increases the flow resistance of the wastewater to be treated. This excess bacterial cells can be removed by flowing tap water into the reactor I several times.

〔実施例〕〔Example〕

以下、実施例を示して本発明を説明する。 Hereinafter, the present invention will be explained with reference to Examples.

実施例1 前述のものと同様のりアクタ−による人口下水の処理実
験を行なった。リアクターlとしては透明アクリル樹脂
製で容量3011の本体2の内部にサドル形の多孔質セ
ラミックス製担体3を充填したものを用いた。
Example 1 An experiment for treating artificial sewage using a glue actor similar to that described above was conducted. As the reactor 1, a body 2 made of transparent acrylic resin and having a capacity of 3011 cm was filled with a saddle-shaped porous ceramic carrier 3 filled inside.

このリアクターに、都市下水処理場の嫌気性消化槽から
排出された消化汚泥を満たし、嫌気状態にして、37℃
で3日間静置した。その後、被処理廃水供給口から人工
下水(酢酸4.000+u/4、ペプトン1,500t
ag/11. ’yユニーロース1 、OOOH/1)
をHRTa日の流速で供給し、約2週間で、消化汚泥由
来のメタン生成細菌が担体表面に固定されたことを確認
した。
This reactor was filled with digested sludge discharged from an anaerobic digestion tank at a municipal sewage treatment plant, brought to an anaerobic state, and heated to 37°C.
It was left undisturbed for 3 days. After that, artificial sewage (acetic acid 4,000+U/4, peptone 1,500t) was added from the wastewater supply port to be treated.
ag/11. 'y Uni loin 1, OOOH/1)
was supplied at a flow rate of HRTa day, and it was confirmed that the methane-producing bacteria derived from the digested sludge were immobilized on the carrier surface in about two weeks.

別に、消化汚泥を嫌気状態で37℃に保ちながら約2.
0OOLUXの光を7間照射し、それにより光合成細菌
が優先種化した汚泥111を上記メタン生成細菌固定後
のりアクタ−に供給し、人工光源でリアクター周囲から
照明した(リアクター表面における平均照度約3,0O
OLUX)。約2週間でリアクター側壁内面に光合成細
菌が固定された。
Separately, while maintaining the digested sludge at 37°C in an anaerobic state, about 2.
The sludge 111 in which photosynthetic bacteria became a preferential species by irradiating with 0OOLUX light for 7 days was supplied to the reactor after fixing the methane-producing bacteria, and the reactor was illuminated from around the reactor with an artificial light source (the average illuminance on the reactor surface was approximately 3 ,0O
OLUX). Photosynthetic bacteria were immobilized on the inner surface of the reactor side wall in about two weeks.

その後、昼間のみ人工光源による照明を行いながら、上
記条件で人工下水の供給を再開し、60日間、連続的な
処理を行なった。処理済み廃水流出口から出た下水は沈
降槽に溜めて静置し、上溝を処理水として分析した。ま
た、ガス排出口からのガス流出量を流量計により測定し
て処理によるガス発生量を求め、さらにカスクロマトグ
ラフィーにより発生ガス中のメタン含有率を求めた。
Thereafter, the supply of artificial sewage was resumed under the above conditions while illuminating with an artificial light source only during the daytime, and continuous treatment was performed for 60 days. The sewage discharged from the treated wastewater outlet was collected in a sedimentation tank and allowed to stand still, and the upper gutter was analyzed as treated water. In addition, the amount of gas generated by the treatment was determined by measuring the amount of gas flowing out from the gas outlet using a flowmeter, and the methane content in the generated gas was determined by gas chromatography.

実験結果(30日間の運転中の平均値)を表1に示す。The experimental results (average values during 30 days of operation) are shown in Table 1.

比較のため、メタン生成細菌のみを固定したほかは同様
にしたりアクタ−による処理結果(比較例1)および光
合成細菌のみを固定したほかは同様にしたりアクタ−に
よる処理結果(比較例2)を併せて示した。
For comparison, we combined the results of treatment with Actor (Comparative Example 1) in the same manner except that only methane-producing bacteria were immobilized, and the results of treatment with Actor (Comparative Example 2) in the same manner except that only photosynthetic bacteria were immobilized. It was shown.

表1の結果から明らかなように、メタン生成細菌と光合
成細菌を共生させたりアクタ−による処理を行う本発明
の処理法は、炭素化合物と窒素化合物の両方を単一のり
アクタ−で効率よく除去することができる。
As is clear from the results in Table 1, the treatment method of the present invention, which allows methanogenic bacteria and photosynthetic bacteria to coexist and uses an actor, can efficiently remove both carbon compounds and nitrogen compounds with a single actor. can do.

表1 〔発明の効果〕 上述のように、透明な材料からなるリアクターおよび該
リアクターに充填した担体に固定された光合成細菌およ
びメタン生成細菌を利用して廃水剋理を行う本発明によ
れば、有機酸等の炭素化合物と窒素化合物の両方を単一
の装置で除去することが可能になり、リアクターを太陽
光の当たる場所に設置すれば有機性廃水の高度処理を低
廉な装置維持費と管理費できわめて効率よく行うことが
できる。
Table 1 [Effects of the Invention] As described above, according to the present invention, wastewater treatment is carried out using a reactor made of a transparent material and photosynthetic bacteria and methanogenic bacteria immobilized on a carrier filled in the reactor. It is now possible to remove both carbon compounds such as organic acids and nitrogen compounds with a single device, and if the reactor is installed in a location exposed to sunlight, advanced treatment of organic wastewater can be performed at low equipment maintenance costs and management. It can be done very efficiently and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用するりアクタ−の概略説明
図である。 1:リアクタ−2:リアクター本体
FIG. 1 is a schematic explanatory diagram of an actor used in carrying out the present invention. 1: Reactor - 2: Reactor body

Claims (1)

【特許請求の範囲】[Claims] 側壁の全部または一部が透明な材料からなるリアクター
および該リアクターに充填した担体に光合成細菌および
メタン生成細菌を固定し、リアクター内を嫌気状態に保
ち且つ透明な側壁の周囲から照明しながら廃水をリアク
ターに供給して上記微生物固定化担体充填層を通過させ
ることを特徴とする廃水処理法。
Photosynthetic bacteria and methanogenic bacteria are immobilized on a reactor whose side wall is entirely or partially made of a transparent material, and on a carrier filled in the reactor, and the inside of the reactor is maintained in an anaerobic state and wastewater is discharged while illuminating from around the transparent side wall. A wastewater treatment method characterized by supplying the wastewater to a reactor and passing it through the microorganism-immobilized carrier packed bed.
JP2243827A 1990-09-17 1990-09-17 Wastewater treatment method Expired - Lifetime JPH0796118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243827A JPH0796118B2 (en) 1990-09-17 1990-09-17 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243827A JPH0796118B2 (en) 1990-09-17 1990-09-17 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH04126594A true JPH04126594A (en) 1992-04-27
JPH0796118B2 JPH0796118B2 (en) 1995-10-18

Family

ID=17109523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243827A Expired - Lifetime JPH0796118B2 (en) 1990-09-17 1990-09-17 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0796118B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246298A (en) * 1993-02-23 1994-09-06 Bisu Kk Organic matter fermentation treatment device
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
JP2007525314A (en) * 2003-07-08 2007-09-06 ゲオルグ フリッツマイヤー ゲーエムベーハー アンド カンパニー カーゲー Bioreactor
JP2014180622A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment apparatus
CN108275784A (en) * 2017-12-29 2018-07-13 益生环保科技股份有限公司 Shine the enhanced ecological floating island of filler
DE102019007167A1 (en) * 2019-10-15 2021-04-15 Hochschule Kaiserslautern Emerser bioreactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212467A (en) * 2005-02-01 2006-08-17 National Institute Of Advanced Industrial & Technology Organic waste treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246298A (en) * 1993-02-23 1994-09-06 Bisu Kk Organic matter fermentation treatment device
JP2007525314A (en) * 2003-07-08 2007-09-06 ゲオルグ フリッツマイヤー ゲーエムベーハー アンド カンパニー カーゲー Bioreactor
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
JP2014180622A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment apparatus
CN108275784A (en) * 2017-12-29 2018-07-13 益生环保科技股份有限公司 Shine the enhanced ecological floating island of filler
DE102019007167A1 (en) * 2019-10-15 2021-04-15 Hochschule Kaiserslautern Emerser bioreactor

Also Published As

Publication number Publication date
JPH0796118B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
KR101409035B1 (en) Microalgae Culture Aguarlum Using an Artificial Light Source and Flue Gas and Wastewater Treatment System Using the Same Process
CN106430565B (en) It is a kind of directly converted based on carbon source, the sewage low consumption processing of nitrogen biological eliminating and energy recovery combined treatment process
KR101297821B1 (en) A system and the method for culturing micro algae using anaerobic digester
JP3743771B2 (en) Non-powered wastewater treatment method
CN114873837A (en) Method and device for realizing deep nitrogen and phosphorus removal by PD/A in-situ coupling algae
CN110002582A (en) A kind of method of excess sludge fermentation coupled biological Co metabolism removal 2,4,6- trichlorophenol
KR101990059B1 (en) Apparatus and method of producing high purity methane gas using gas recycle
JPH04126594A (en) Treatment of waste water
JP2001170671A (en) Biological treatment method and device for waste water
CN108017234A (en) A kind of sewage disposal system and method
JP3873114B2 (en) Processing method of organic solid waste
JPH0731998A (en) Slightly anaerobic hydrogen fermentation method for organic waste
CN106277599A (en) A kind of method utilizing microalgae to process sewage thus obtaining energy and fertilizer
KR101425874B1 (en) Apparatus and method for cultivating micro-algae with nitrite
JP2002301500A5 (en)
JPH04126595A (en) Treatment of waste water
JP2018183763A (en) Method and apparatus for treatment of organic wastewater
JP2000153292A (en) Method for anaerobically digesting organic waste water and/or organic waste utilizing light, and production of photosynthetic bacteria
CN109179657B (en) Secondary fluidized bed domestic sewage treatment method and device
SK282499B6 (en) Municipal waste-water treatment method
JP2005185925A (en) Treatment method of organic waste liquid of high concentration, circulation treatment method of organic waste liquid and circulating treatment apparatus therefor
JPH04341396A (en) Methane fermentation treatment method
KR20150057658A (en) Method of and Apparatus for Wastewater Treatment by Microalgae Membrane Bioreactor Process
CN212334946U (en) System device for treating sewage by using tubular algae membrane reactor
KR101273937B1 (en) Concentration apparatus for methane fermentation