JPH05312941A - Ultrasonic distance measuring apparatus for obtaining central position of target - Google Patents

Ultrasonic distance measuring apparatus for obtaining central position of target

Info

Publication number
JPH05312941A
JPH05312941A JP11564592A JP11564592A JPH05312941A JP H05312941 A JPH05312941 A JP H05312941A JP 11564592 A JP11564592 A JP 11564592A JP 11564592 A JP11564592 A JP 11564592A JP H05312941 A JPH05312941 A JP H05312941A
Authority
JP
Japan
Prior art keywords
target
ultrasonic
moving body
pair
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11564592A
Other languages
Japanese (ja)
Inventor
Kenji Sugano
賢治 菅野
Yasuke Onari
弥祐 小斉
Tetsuya Arimoto
哲也 有本
Naoyuki Takeuchi
巨幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP11564592A priority Critical patent/JPH05312941A/en
Publication of JPH05312941A publication Critical patent/JPH05312941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain an ultrasonic distance measuring apparatus, which is mounted on a moving body, transmits and receives ultrasonic waves to and from a target from the moving body to the direction of the side surface thereof and can obtain the central position of the target based on the sequentially measured distance data to the target. CONSTITUTION:Ultrasonic-wave transmitting means 1 and 3 transmit ultrasonic waves in the direction perpendicular to the moving direction of a moving body. Pairs of ultrasonic-wave receiving means 2A and 4A and 2B and 4B individually receive the reflected waves of the transmitted ultrasonic wave at positions on both sides, which are separated at an equal distance in the moving direction of the moving body and the opposite direction of the moving direction from the position of the transmission of the ultrasonic waves. A pair of distance measuring parts 6A and 6B individually measure the distance to the target based on the time between the transmitting time of the ultrasonic wave and the receiving time of a pair of the ultrasonic waves. An arithmetic processing part 7 computes the central position of the target based on the difference data of a pair of the measured distance data. These parts are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動体に搭載され、移
動している移動体からその側面方向の物標に超音波の送
受信を行ない、逐次測定した物標までの距離情報から該
物標の中心位置を求める超音波距離測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on a moving body, transmits and receives ultrasonic waves from a moving moving body to a target in the side direction thereof, and detects the distance from the target to the target. The present invention relates to an ultrasonic distance measuring device that obtains the center position of a target.

【0002】[0002]

【従来の技術】現在、工場や倉庫等において、部品や荷
物を運ぶ無人搬送ロボットが使用されている。この無人
搬送ロボットはある地点から目的地まで物品を搬送する
ことが本来の目的である。この場合に、あらかじめ走行
ルート上の特定位置(例えば十字路の通路やその近傍
等)に識別物標(例えば識別信号を発生する信号発生物
標)を設けておき、移動ロボットが内蔵センサにより前
記識別物標を検出して、前記特定位置にあることを認識
し、ロボットの位置や進行方向を較正しながら目的地ま
で到達するものが多い。これは移動ロボットの走行に応
じ、その内蔵する方位センサや距離センサに基づいて算
出されるロボットの位置や方位の累積誤差が大きくなる
ので、所定間隔での較正を行なうためである。しかし床
面を清掃するロボットや、床面上にセメントのコテ仕上
げをするロボットのような床面作業ロボットの場合に
は、与えられたすべての領域を余す所なく、且つ重複す
る所なく掃引(移動)して作業をすることが本来の目的
であるため、その走行ルートやその近傍に前記識別物標
を設けることは、単にコストが増加するのみならず、作
業領域の一部が未作業部分として残ったり、また識別物
標との衝突回避動作を要したりするので、好ましくな
い。
2. Description of the Related Art At present, unmanned transfer robots for carrying parts and luggage are used in factories and warehouses. The purpose of this unmanned transfer robot is to transfer articles from a certain point to a destination. In this case, an identification target (for example, a signal generation target that generates an identification signal) is provided in advance at a specific position on the traveling route (for example, a passage at a crossroad or the vicinity thereof), and the mobile robot uses the built-in sensor to identify the identification target. In many cases, a target is detected to recognize that the target is at the specific position, and the robot reaches the destination while calibrating the position and traveling direction of the robot. This is because the accumulated error of the position and orientation of the robot calculated based on the orientation sensor and the distance sensor incorporated therein increases as the mobile robot travels, so that the calibration is performed at predetermined intervals. However, in the case of a floor-working robot such as a robot that cleans the floor surface or a robot that trowels cement on the floor surface, sweeps all the given areas without overlapping and overlapping. Since the original purpose is to move and work, the provision of the identification target on the traveling route or in the vicinity thereof not only increases the cost but also causes a part of the work area to be an unworked part. Or the collision avoidance operation with the identification target is required, which is not preferable.

【0003】従って、前記の識別信号を発生するような
特定の識別物標を走行ルートやその近傍に設けなくと
も、移動ロボット等の移動体が作業現場にある既知の物
標の位置を正確に測定し、この測定した物標位置を参照
にして、相対的に実平面について設定された絶対座標系
における自分の方位及び位置を較正できることが望まし
い。それ故、作業現場の壁面から突出する柱などの物標
を参照物標として用い、この参照物標の中心位置を正確
に測定したいという要望が従来からあった。このため、
従来は移動ロボット等の移動体を壁面と並行に移動させ
ながら、該移動体に搭載された超音波距離測定装置を用
いて移動体の側面方向にある壁面に超音波の送受信を行
ない、該壁面までの距離を逐次測定し、この測定距離が
短くなった箇所、即ち壁面からの突出部を柱の位置とし
て測定していた。しかしこの場合には、柱の開始点と終
了点の位置が不明確で、特定できない場合が多いので、
これまでは柱などの参照物標の中心位置を正確に求める
ことは困難であった。以下実際の測定例によりこれを説
明する。
Therefore, even if a specific identification target that generates the above-mentioned identification signal is not provided on the traveling route or in the vicinity thereof, the position of the known target on the work site of the mobile body such as a mobile robot can be accurately determined. It is desirable to be able to measure and calibrate one's own azimuth and position in the absolute coordinate system set relatively to the real plane with reference to the measured target position. Therefore, there has conventionally been a demand for using a target such as a pillar protruding from the wall surface of a work site as a reference target and accurately measuring the center position of the reference target. For this reason,
Conventionally, while moving a mobile body such as a mobile robot in parallel with a wall surface, an ultrasonic distance measuring device mounted on the mobile body is used to transmit / receive ultrasonic waves to / from a wall surface in a lateral direction of the mobile body. The distance to was measured sequentially, and the position where the measured distance became short, that is, the protrusion from the wall surface was measured as the position of the column. However, in this case, the positions of the starting point and the ending point of the pillar are unclear and cannot be specified in many cases, so
Until now, it was difficult to accurately determine the center position of a reference target such as a pillar. This will be described below by an actual measurement example.

【0004】図5は従来の超音波距離測定装置の構成を
示すブロック図であり、図において、1は例えば圧電振
動子などの超音波の送波センサ、2も同様な素子による
受波センサ、3は超音波送信部、4は超音波受信部であ
り、例えば、増幅器41、バンドパスフィルタ(以下B
PFという)42、検波器43及び比較器44を含む。
5はタイミング制御部、6は距離計測部である。図6は
図5の装置の動作を説明するための波形図である。図7
は図5の装置を搭載した移動体と壁面及び柱との水平面
における位置関係を示す図であり、走行中の移動体の側
面において、送波センサ1から送信された超音波の反射
波が受波センサ2に受信される状態を示している。
FIG. 5 is a block diagram showing a configuration of a conventional ultrasonic distance measuring apparatus. In the figure, reference numeral 1 is an ultrasonic wave transmitting sensor such as a piezoelectric vibrator, 2 is a wave receiving sensor having similar elements, Reference numeral 3 is an ultrasonic wave transmitting unit, and 4 is an ultrasonic wave receiving unit.
42), a detector 43, and a comparator 44.
Reference numeral 5 is a timing control unit, and 6 is a distance measuring unit. FIG. 6 is a waveform diagram for explaining the operation of the apparatus of FIG. Figure 7
FIG. 6 is a diagram showing a positional relationship in a horizontal plane between a moving body equipped with the device of FIG. 5, a wall surface, and a pillar, in which a reflected wave of an ultrasonic wave transmitted from the wave transmission sensor 1 is received on a side surface of the moving body during traveling. The state of being received by the wave sensor 2 is shown.

【0005】図6及び図7を参照し、図5の動作を説明
する。図5のタイミング制御部5の発生する所定時間
(例えば数ミリ秒)の送信ゲート信号(図6の(a)を
参照)により、超音波送信部3は所定周波数(例えば2
0kHz)の送信駆動信号(図6の(b)を参照)を送波セ
ンサ1に供給し、これを駆動する。送波センサ1は駆動
されると所定のビーム指向特性の超音波を壁面に向けて
送信する。ここで図7の位置関係のように移動体の進行
方向と壁面とがほぼ平行の場合には、送信された超音波
は壁面から反射される。そしてこの反射波の一部は受波
センサ2で受波され、電気信号に変換された受信信号
(図6の(c)を参照)が超音波受信部4に供給され
る。超音波受信部4は、内蔵する増幅器41で受信信号
を増幅後、前記送信周波数を中心にしてその前後に所定
の通過帯域を有するBPF42を通して検波器43で検
波し、該検波信号(図6の(d)を参照)を所定のしき
い値と比較器44で比較し、該しきい値を越えた2値化
信号を検出信号(図6の(e)を参照)として出力す
る。そして距離計測部6は内蔵するカウンタにより前記
送信ゲート信号の立上り時刻から前記検出信号の立上り
時刻までの時間T(図6の(f)を参照)を計数する。
そしてこの計数時間Tと超音波の空中伝播速度から物標
までの距離データを算出して出力する。
The operation of FIG. 5 will be described with reference to FIGS. 6 and 7. The ultrasonic wave transmitting unit 3 generates a predetermined frequency (for example, 2) by the transmission gate signal (see (a) in FIG. 6) generated by the timing control unit 5 in FIG.
A transmission drive signal of 0 kHz (see (b) of FIG. 6) is supplied to the wave transmission sensor 1 to drive it. When driven, the wave transmission sensor 1 transmits an ultrasonic wave having a predetermined beam directivity characteristic toward a wall surface. Here, when the traveling direction of the moving body and the wall surface are substantially parallel as in the positional relationship of FIG. 7, the transmitted ultrasonic waves are reflected from the wall surface. Then, a part of this reflected wave is received by the wave receiving sensor 2, and the reception signal converted to an electric signal (see (c) of FIG. 6) is supplied to the ultrasonic wave reception unit 4. The ultrasonic wave receiving unit 4 amplifies the received signal with the built-in amplifier 41, and then detects it with the detector 43 through the BPF 42 having a predetermined pass band before and after the transmission frequency as a center, and the detected signal (see FIG. 6). (See (d)) is compared with a predetermined threshold value by the comparator 44, and the binarized signal exceeding the threshold value is output as a detection signal (see (e) in FIG. 6). Then, the distance measuring unit 6 counts a time T (see (f) in FIG. 6) from the rising time of the transmission gate signal to the rising time of the detection signal by a built-in counter.
Then, distance data from the counting time T and the ultrasonic wave propagation velocity in the air to the target is calculated and output.

【0006】図8及び図9は図7の移動体が移動しなが
ら測定した柱近傍の距離データ例1及び例2を示す図で
ある。同図の横軸は測定時間であるが、移動速度が一定
の場合には、移動体の座標位置(横軸上の座標位置)と
等価である。縦軸は測定した距離データである。図8に
おいて、超音波距離測定装置はほぼ変化点Dの近傍で柱
をとらえ、また変化点Eの近傍で柱が終了したことを検
出しているが、前記変化点D及びEの前後のデータは変
動が大きいので、柱の開始点と終了点は余り正確ではな
い。図9においては、柱の端面等の影響で、複雑な測定
結果となり、柱の開始点と終了点を明確に特定できな
い。従って柱の中心も正確に算出することができない。
FIGS. 8 and 9 are views showing distance data examples 1 and 2 in the vicinity of a column, which are measured while the moving body of FIG. 7 is moving. The horizontal axis in the figure represents the measurement time, but when the moving speed is constant, it is equivalent to the coordinate position of the moving body (the coordinate position on the horizontal axis). The vertical axis is the measured distance data. In FIG. 8, the ultrasonic distance measuring device catches the pillar near the change point D and detects that the pillar ends near the change point E. However, the data before and after the change points D and E are detected. The starting and ending points of the columns are not very accurate due to the large variability in. In FIG. 9, due to the influence of the end face of the column, a complicated measurement result is obtained, and the starting point and the ending point of the column cannot be clearly specified. Therefore, the center of the pillar cannot be calculated accurately.

【0007】[0007]

【発明が解決しようとする課題】上記のような従来の超
音波距離測定装置では、これを移動体に搭載し、移動し
ている移動体からその側面方向にある壁面に超音波の送
受信を行ない、該壁面までの距離を逐次測定し、壁面か
ら突出する柱などの物標の中心位置を求める場合に、前
記突出物標の開始点と終了点が特定できないため、正し
い中心位置が求められないという問題点があった。本発
明はかかる問題点を解決するためになされたもので、移
動体に搭載され、移動している移動体からその側面方向
の物標に超音波の送受信を行ない、逐次測定した物標ま
での距離情報から該物標の中心位置を求めることができ
る超音波距離測定装置を得ることを目的とする。
In the conventional ultrasonic distance measuring device as described above, the ultrasonic distance measuring device is mounted on a moving body, and ultrasonic waves are transmitted and received from the moving moving body to the wall surface in the side direction thereof. , When the center position of a target such as a pillar projecting from the wall is sequentially measured and the center position of the target projecting from the wall is determined, the correct center position cannot be determined because the starting point and the end point of the projecting target cannot be specified. There was a problem. The present invention has been made to solve such a problem, and is mounted on a moving body, transmits and receives ultrasonic waves from a moving moving body to a target in the lateral direction, and sequentially transmits to the target. An object of the present invention is to obtain an ultrasonic distance measuring device capable of obtaining the center position of the target from the distance information.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に係る
物標の中心位置を求める超音波距離測定装置は、移動体
に搭載され、移動している移動体からその側面方向の物
標に超音波の送受信を行ない、該物標までの距離を逐次
測定する超音波距離測定装置において、前記移動体の移
動方向と直角方向に超音波を送信する超音波送信手段
と、前記超音波送信の位置から前記移動体の移動方向と
その反対方向に等距離を隔てた両側の位置に設置され、
前記超音波送信手段が送信し物標から反射された超音波
を個別に受信する一対の超音波受信手段と、前記超音波
送信手段による送信波発生時刻と、前記一対の超音波受
信手段からそれぞれ得られる受信波検出時刻との間の時
間からそれぞれ前記物標までの距離を計測する一対の距
離計測手段と、前記一対の距離計測手段からそれぞれ得
られる一対の距離情報の差データを逐次算出し、該逐次
算出される差データの変化率データから前記物標の中心
位置を算出する演算処理手段を備えたものである。
An ultrasonic distance measuring apparatus for determining the center position of a target according to claim 1 of the present invention is mounted on a moving body, and the target in the lateral direction from the moving moving body. In the ultrasonic distance measuring device for sequentially transmitting and receiving ultrasonic waves to sequentially measure the distance to the target, ultrasonic wave transmitting means for transmitting ultrasonic waves in a direction perpendicular to the moving direction of the moving body, and the ultrasonic wave transmitting means. Are installed at positions on both sides of the moving body at the same distance in the moving direction of the moving body and the opposite direction thereof,
A pair of ultrasonic wave receiving means for individually receiving the ultrasonic waves transmitted from the ultrasonic wave transmitting means and reflected from the target object, a transmission wave generation time by the ultrasonic wave transmitting means, and a pair of ultrasonic wave receiving means, respectively. A pair of distance measuring means for measuring the distance to the target respectively from the time between the obtained received wave detection time and the difference data of the pair of distance information respectively obtained from the pair of distance measuring means are sequentially calculated. A calculation processing unit that calculates the center position of the target from the change rate data of the sequentially calculated difference data is provided.

【0009】本発明の請求項2に係る物標の中心位置を
求める超音波距離測定装置は、前記請求項1に係る装置
において、前記一対の距離計測手段からそれぞれ得られ
る一対の距離情報の差データを逐次算出する減算器と、
該減算器から逐次得られる差データを記憶するメモリ
と、該メモリから読出した差データの単位時間当りの変
化率を算出する微分器と、該微分器から得られる変化率
データの変極点近傍のデータのみの平均値を算出する平
均値算出器と、該平均値算出器が算出した平均値を基準
レベルとして、前記メモリから読出した差データが前記
基準レベルと交差する2つの交点を、計測開始点側から
交差する第1の交点及び計測終了点側から交差する第2
の交点として求め、前記第1の交点と第2の交点との間
の中点を物標の中心位置として算出する中心位置算出器
とを含む演算処理手段を備えたものである。
An ultrasonic distance measuring apparatus for determining the center position of a target according to claim 2 of the present invention is the ultrasonic distance measuring apparatus according to claim 1, wherein a difference between a pair of distance information obtained from each of the pair of distance measuring means. A subtractor that sequentially calculates data,
A memory for storing difference data sequentially obtained from the subtractor, a differentiator for calculating a change rate per unit time of the difference data read from the memory, and a vicinity of an inflection point of the change rate data obtained from the differentiator. Start the measurement of an average value calculator that calculates the average value of only the data, and two intersections where the difference data read from the memory intersects the reference level with the average value calculated by the average value calculator as the reference level. The first intersection that intersects from the point side and the second intersection that intersects from the measurement end point side
And a center position calculator for calculating the midpoint between the first and second intersections as the center position of the target.

【0010】[0010]

【作用】本請求項1に係る発明においては、移動体に搭
載され、移動している移動体からその側面方向の物標に
超音波の送受信を行ない、該物標までの距離を逐次測定
する超音波距離測定装置において、超音波送信手段は前
記移動体の移動方向と直角方向に超音波を送信する。一
対の超音波送信手段は、前記超音波送信の位置から前記
移動体の移動方向とその反対方向に等距離を隔てた両側
の位置に設置され、前記超音波送信手段が送信し物標か
ら反射された超音波を個別に受信する。一対の距離計測
手段は、前記超音波送信手段による送信波発生時刻と、
前記一対の超音波受信手段からそれぞれ得られる受信波
検出時刻との間の時間からそれぞれ前記物標までの距離
を計測する。演算処理手段は前記一対の距離計測手段か
らそれぞれ得られる一対の距離情報の差データを逐次算
出し、該逐次算出される差データの変化率データから前
記物標の中心位置を算出する。
In the invention according to claim 1, ultrasonic waves are transmitted and received from the moving body mounted on the moving body to the target in the lateral direction, and the distance to the target is successively measured. In the ultrasonic distance measuring device, the ultrasonic wave transmitting means transmits an ultrasonic wave in a direction perpendicular to the moving direction of the moving body. The pair of ultrasonic wave transmitting means are installed at positions on both sides at equal distances from the ultrasonic wave transmitting position in the moving direction of the moving body and in the opposite direction, and are transmitted by the ultrasonic wave transmitting means and reflected from the target. The received ultrasonic waves are individually received. A pair of distance measuring means, the transmission wave generation time by the ultrasonic transmission means,
The distance to each of the targets is measured from the time between the reception wave detection times obtained from the pair of ultrasonic wave reception means. The arithmetic processing means sequentially calculates the difference data of the pair of distance information obtained from the pair of distance measuring means, and calculates the center position of the target from the change rate data of the sequentially calculated difference data.

【0011】本請求項2に係る発明においては、前記請
求項1に係る発明において、前記演算処理手段は、減算
器、メモリ、微分器、平均値算出器及び中心位置算出器
とを含み、前記減算器は前記一対の距離計測手段からそ
れぞれ得られる一対の距離情報の差データを逐次算出
し、メモリは前記減算器から逐次得られる差データを記
憶する。微分器は前記メモリから読出した差データの単
位時間当りの変化率を算出し、平均値算出器は前記微分
器から得られる変化率データの変極点近傍のデータのみ
の平均値を算出する。中心位置算出器は前記平均値算出
器が算出した平均値を基準レベルとして、前記メモリか
ら読出した差データが前記基準レベルと交差する2つの
交点を、計測開始点側から交差する第1の交点及び計測
終了点側から交差する第2の交点として求め、前記第1
の交点と第2の交点との間の中点を物標の中心位置とし
て算出する。
In the invention according to claim 2, in the invention according to claim 1, the arithmetic processing means includes a subtracter, a memory, a differentiator, an average value calculator, and a center position calculator. The subtractor successively calculates the difference data of the pair of distance information obtained from the pair of distance measuring means, and the memory stores the difference data successively obtained from the subtractor. The differentiator calculates the change rate per unit time of the difference data read from the memory, and the average value calculator calculates the average value of only the data near the inflection point of the change rate data obtained from the differentiator. The center position calculator uses the average value calculated by the average value calculator as a reference level, and intersects two intersections at which the difference data read from the memory intersects with the reference level, from the measurement start point side. And the second intersection point intersecting from the measurement end point side,
The midpoint between the intersection and the second intersection is calculated as the center position of the target.

【0012】[0012]

【実施例】図1は本発明に係る物標の中心位置を求める
超音波距離測定装置のブロック図であり、図において、
1は超音波の送波センサ、2Aは#1受波センサ、2B
は#2受波センサであり、これらの配置は図2で説明す
る。3は超音波送信部、5はタイミング制御部であり、
それぞれ図5と同一の機器である。4A及び4Bはそれ
ぞれ前記受波センサ毎に設けられた#1及び#2超音波
受信部である。この2つの超音波受信部4A及び4Bは
図5の超音波受信部4と同一の機器であり、それぞれ増
幅器41、BPF42、検波器43及び比較器44を含
んでいる。6A及び6Bはそれぞれ#1及び#2距離計
測部であり、図5の距離計測部6と同一の機器である。
図1の7は本発明に係る演算処理部であり、内部に減算
器71、メモリ72、微分器73、平均値算出器74及
び中心位置算出器75を含んでいる。また上記71〜7
5の各機器は、実施する演算処理の各機能別の機器とし
て設けた場合の例を示しており、実際のハードウェアと
しては、例えばマイクロプロセッサ(CPU)、制御プ
ログラムを記憶するROM、データを一時記憶するRA
M、及びデータの入出力インタフェース等により演算処
理部7を構成することができる。なお、上記1〜7の機
器により本発明に係る超音波距離測定装置は構成され、
移動体に搭載される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of an ultrasonic distance measuring apparatus for determining the center position of a target according to the present invention.
1 is an ultrasonic wave transmitting sensor, 2A is a # 1 receiving sensor, 2B
Is a # 2 wave receiving sensor, and their arrangement will be described with reference to FIG. 3 is an ultrasonic transmitter, 5 is a timing controller,
Each is the same device as in FIG. Reference numerals 4A and 4B denote # 1 and # 2 ultrasonic wave reception units provided for each of the wave receiving sensors. The two ultrasonic wave receiving units 4A and 4B are the same devices as the ultrasonic wave receiving unit 4 of FIG. 5, and each include an amplifier 41, a BPF 42, a detector 43, and a comparator 44. 6A and 6B are # 1 and # 2 distance measuring units, respectively, which are the same devices as the distance measuring unit 6 in FIG.
Reference numeral 7 in FIG. 1 denotes an arithmetic processing unit according to the present invention, which internally includes a subtractor 71, a memory 72, a differentiator 73, an average value calculator 74, and a center position calculator 75. Also, the above 71 to 7
5 shows an example in the case of being provided as a device for each function of the arithmetic processing to be executed, and as actual hardware, for example, a microprocessor (CPU), a ROM storing a control program, and data RA for temporary storage
The arithmetic processing unit 7 can be configured by M, a data input / output interface, and the like. In addition, the ultrasonic distance measuring device according to the present invention is configured by the devices 1 to 7,
Mounted on a mobile unit.

【0013】図2は図1の装置を搭載した移動体と壁面
及び柱との水平面における位置関係を示す図である。同
図においては、移動体の側面のほぼ中央に送波センサ1
を設置し、その前方(進行方向)と後方に等しい距離d
を隔てて#1受波センサ2Aと#2受波センサ2Bとを
設置している。従って#2受波センサ2B、送波センサ
1及び#1受波センサ2Aは同一直線上に配列され、こ
のセンサの配列方向(即ち移動体の進行方向)と直角方
向に送波センサ1は超音波を送信する。いま図2に示す
移動体の位置では、#1受波センサ2Aは柱からの反射
波を主に受信し、#2受波センサ2Bは壁面からの反射
波を主に受信している状態を示している。しかし移動体
がもう少し前進した位置では、#1及び#2受波センサ
2A及び2Bは共に壁面からの反射波を主に受信する状
態となる。図2のセンサ間隔dは、超音波の送受波周波
数及び指向特性等により、検出距離及び検出角度が最適
となるように選ばれる。この実施例においては、超音波
の送受波周波数を25kHz とした場合の最適間隔として
d=25cmが選択されている。
FIG. 2 is a diagram showing the positional relationship in the horizontal plane between the moving body equipped with the apparatus of FIG. 1, the wall surface and the pillar. In the figure, the wave-transmitting sensor 1 is provided approximately at the center of the side surface of the moving body.
Is installed, and a distance d equal to the front (direction of travel) and the rear
A # 1 wave receiving sensor 2A and a # 2 wave receiving sensor 2B are installed with a space in between. Therefore, the # 2 wave receiving sensor 2B, the wave transmitting sensor 1 and the # 1 wave receiving sensor 2A are arranged on the same straight line, and the wave transmitting sensor 1 is superposed in a direction perpendicular to the arrangement direction of the sensors (that is, the traveling direction of the moving body). Send sound waves. At the position of the moving body shown in FIG. 2, the # 1 wave receiving sensor 2A mainly receives the reflected wave from the pillar, and the # 2 wave receiving sensor 2B mainly receives the reflected wave from the wall surface. Shows. However, at the position where the moving body has advanced a little further, both the # 1 and # 2 wave receiving sensors 2A and 2B are in a state of mainly receiving the reflected wave from the wall surface. The sensor interval d in FIG. 2 is selected so that the detection distance and the detection angle are optimal depending on the transmission / reception frequency of ultrasonic waves, directional characteristics, and the like. In this embodiment, d = 25 cm is selected as the optimum interval when the ultrasonic transmission / reception frequency is 25 kHz.

【0014】図3は本発明に係る一対の距離計測情報間
の差データの説明図であり、図4は図1の演算処理部に
おける演算処理の説明図である。図3及び図4の横軸は
測定時間(移動体が定速の場合は、座標位置と等価)で
あり、縦軸は距離の差データまたはその微分値である。
図1の超音波距離測定装置は、移動体に搭載され、いま
図2に示す位置関係のように、壁面と並行に移動しなが
ら移動体側面に設けられた送波センサ1から超音波を逐
次送信する。送波センサ1と進行方向の前後に設けられ
た#1及び#2受波センサ2A及び2Bは、それぞれ壁
面からの反射波を受信し、この2つの受信信号はそれぞ
れ対応する#1及び#2超音波受信部、並びに#1及び
#2距離測定部6A及び6Bで個別に受信測定される結
果、壁面までの距離データとして、2つの距離データD
A 及びDB が得られる。
FIG. 3 is an explanatory diagram of difference data between a pair of distance measurement information according to the present invention, and FIG. 4 is an explanatory diagram of arithmetic processing in the arithmetic processing unit of FIG. The horizontal axis of FIGS. 3 and 4 is the measurement time (equivalent to the coordinate position when the moving body is at a constant speed), and the vertical axis is the distance difference data or its differential value.
The ultrasonic distance measuring device of FIG. 1 is mounted on a moving body, and sequentially transmits ultrasonic waves from a wave transmission sensor 1 provided on a side surface of the moving body while moving in parallel with a wall surface as in the positional relationship shown in FIG. Send. The wave transmitting sensor 1 and the # 1 and # 2 wave receiving sensors 2A and 2B provided before and after the traveling direction respectively receive reflected waves from the wall surface, and these two received signals correspond to # 1 and # 2, respectively. As a result of being individually received and measured by the ultrasonic wave receiving unit and the # 1 and # 2 distance measuring units 6A and 6B, two distance data D are obtained as distance data to the wall surface.
A and D B are obtained.

【0015】いま、前記2つの距離データDA 及びDB
の差データΔD=DB −DA に注目すると、移動体と壁
面及び柱との相対位置が、(a)2つの受波センサ2A
及び2Bが共に壁面または柱からの反射波を受信する位
置では、差データΔDの値は小さい。但し距離データは
壁面と柱では差がある。(b)一方の受波センサは柱か
らの反射波を受信し、他方の受波センサは壁面からの反
射波を受信する位置(例えば図2の位置)では、ΔDの
絶対値は大きい。但し極性は正または負の2通りがあ
る。従って移動体の側面が壁面、柱、壁面と変化する
と、前記相対位置は、前記(a),(b),(a),
(b),(a)の順序で変化するから、差データΔDは
図3のように変化する。図3の黒丸は移動体が壁面とほ
ぼ並行移動の場合の差データであり、この黒丸を結ぶ曲
線は0の値を境に逆極性となる。図3の白丸は移動体が
並行移動から多少ずれて、壁面とある角度をもって移動
した場合であり、この白丸を結ぶ曲線は0の値を横切ら
ない場合がある。
Now, the two distance data D A and D B
Focusing on the difference data ΔD = D B −D A , the relative positions of the moving body, the wall surface, and the column are (a) the two receiving sensors 2A.
The value of the difference data ΔD is small at the positions where both and 2B receive the reflected wave from the wall surface or the column. However, there is a difference in the distance data between the wall surface and the pillar. (B) The absolute value of ΔD is large at the position where one wave receiving sensor receives the reflected wave from the column and the other wave receiving sensor receives the reflected wave from the wall surface (for example, the position in FIG. 2). However, there are two types of polarity, positive and negative. Therefore, when the side surface of the moving body changes to a wall surface, a pillar, or a wall surface, the relative position becomes (a), (b), (a),
Since it changes in the order of (b) and (a), the difference data ΔD changes as shown in FIG. The black circles in FIG. 3 are difference data in the case where the moving body moves substantially parallel to the wall surface, and the curve connecting the black circles has a reverse polarity with a value of 0 as a boundary. The white circles in FIG. 3 indicate the case where the moving body is slightly displaced from the parallel movement and moves at a certain angle with the wall surface, and the curve connecting the white circles may not cross a value of 0.

【0016】図1の演算処理部7は#1及び#2距離計
測部6A及び6Bからそれぞれ距離データDA 及びDB
が入力されると、 (1)まず減算器71は、前記距離の差データΔD=D
B −DA を逐次算出し、この逐次算出した差データをメ
モリ72に一時記憶する。 (2)次に微分器73は、メモリ72に一時記憶された
前記差データを逐次読出し、差データが単位時間でどれ
だけ増加または減少したか、その変化率を求める。この
演算は前記差データの微分値を算出することになる。図
4の(a)は前記並行移動と多少ずれている場合の白丸
を結んだ差データ曲線であり、(b)は差データの微分
値を示している。 (3)次に平均値算出器74は、微分器73が演算した
前記微分値データの変極点近傍(即ち図4の(b)のピ
ーク値近傍で微分値の増加及び減少のなくなる部分)の
みのデータの平均値を算出し、この平均値を基準レベル
とする。図4の(c)はこの基準レベルを示しており、
移動体が物標と平行でなく、ある角度をもって移動する
場合に、その角度により決まるレベル値になる。 (4)次に中央位置算出器75は、メモリ72から読出
した前記差データを結ぶ差データ曲線が前記基準レベル
と交差する2つの交点を、計測開始点から終了点に向う
交点Aと、計測終了点から開始点に向かう交点Bとして
求め、前記交点AとBの間の中点Cを算出し、この中点
Cの位置を柱の中心位置とする。そしてこの物標中心位
置情報を出力する。
The arithmetic processing unit 7 of FIG. 1 outputs distance data D A and D B from the # 1 and # 2 distance measuring units 6A and 6B, respectively.
(1) First, the subtracter 71 causes the distance difference data ΔD = D.
Sequentially calculating a B -D A, and temporarily stores the sequentially calculated difference data in the memory 72. (2) Next, the differentiator 73 sequentially reads the difference data temporarily stored in the memory 72, and obtains a change rate of how much the difference data increases or decreases in a unit time. This calculation is to calculate the differential value of the difference data. FIG. 4A is a difference data curve formed by connecting white circles in the case of being slightly deviated from the parallel movement, and FIG. 4B is a differential value of the difference data. (3) Next, the average value calculator 74 only determines the vicinity of the inflection point of the differential value data calculated by the differentiator 73 (that is, the portion where the differential value does not increase or decrease near the peak value in FIG. 4B). The average value of the data is calculated, and this average value is used as the reference level. FIG. 4 (c) shows this reference level,
When the moving body is not parallel to the target and moves at an angle, the level value is determined by the angle. (4) Next, the central position calculator 75 measures two intersections at which the difference data curve connecting the difference data read from the memory 72 intersects with the reference level, and an intersection A from the measurement start point to the end point. The intersection point B from the end point to the start point is obtained, the midpoint C between the intersection points A and B is calculated, and the position of the midpoint C is set as the center position of the pillar. Then, the target center position information is output.

【0017】[0017]

【発明の効果】以上のように本発明によれば、移動体に
搭載され、移動をしている移動体からその側面方向の物
標に超音波の送受信を行ない、該物標までの距離を逐次
測定する超音波距離測定装置において、前記移動体の移
動方向と直角方向に超音波を送信し、該送信された超音
波の反射波を前記超音波送信の位置から前記移動体の移
動方向とその反対方向に等距離を隔てた両側の位置にお
いて個別に受信し、前記超音波の送受信信号間の時間か
ら計測される一対の距離情報の差データを逐次算出し、
該差データの変化率データから前記物標の中心位置を算
出するようにしたので、例えば床面掃引ロボットが壁面
から突出する柱等の物標の中心位置を正確に求め、この
物標の中心位置を参照位置として、移動体が自己の位置
や方位を較正できる効果が得られる。
As described above, according to the present invention, ultrasonic waves are transmitted and received from a moving moving object mounted on a moving object to a target in the lateral direction of the moving object to determine the distance to the target. In the ultrasonic distance measuring device for sequentially measuring, the ultrasonic wave is transmitted in a direction perpendicular to the moving direction of the moving body, and the reflected wave of the transmitted ultrasonic wave is moved from the position of the ultrasonic wave transmission to the moving direction of the moving body. Individually received at positions on both sides equally spaced in the opposite direction, sequentially calculating the difference data of a pair of distance information measured from the time between the transmission and reception signals of the ultrasonic wave,
Since the center position of the target is calculated from the change rate data of the difference data, for example, the center position of the target such as a pillar protruding from the wall surface by the floor sweep robot is accurately determined, and the center of the target is calculated. Using the position as the reference position, the effect that the moving body can calibrate its own position and azimuth is obtained.

【0018】また本発明によれば、前記一対の距離情報
の差データの微分値の変極点近傍のデータのみを平均値
を算出し、該平均値を基準レベルとして、前記差データ
が基準レベルと交差する2つの交点を、計測開始点側か
ら交差する第1の交点及び計測終了点側から交差する第
2の交点として求め、前記第1の交点と第2の交点との
間の中点を物標の中心位置として算出するようにしたの
で、移動体が前記柱等の物標表面と並行ではなく、ある
角度をもって移動する場合にも、物標の中心位置を正確
に求められる効果がある。
According to the present invention, the average value is calculated only for the data in the vicinity of the inflection point of the differential value of the differential data of the pair of distance information, and the average value is used as the reference level, and the difference data is used as the reference level. Two intersections intersecting are obtained as a first intersection intersecting from the measurement start point side and a second intersection intersecting from the measurement end point side, and a midpoint between the first intersection and the second intersection is determined. Since it is calculated as the center position of the target, there is an effect that the center position of the target can be accurately obtained even when the moving body moves at a certain angle instead of parallel to the surface of the target such as the pillar. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る物標の中心位置を求める超音波距
離測定装置のブロック図である。
FIG. 1 is a block diagram of an ultrasonic distance measuring apparatus for determining a center position of a target according to the present invention.

【図2】図1の装置を搭載した移動体と壁面及び柱との
水平面における位置関係を示す図である。
FIG. 2 is a diagram showing a positional relationship in a horizontal plane between a moving body equipped with the apparatus of FIG. 1, a wall surface and a pillar.

【図3】本発明に係る一対の距離計測情報間の差データ
の説明図である。
FIG. 3 is an explanatory diagram of difference data between a pair of distance measurement information according to the present invention.

【図4】図1の演算処理部における演算処理の説明図で
ある。
4 is an explanatory diagram of a calculation process in a calculation processing unit in FIG.

【図5】従来の超音波距離測定装置の構成を示すブロッ
ク図である。
FIG. 5 is a block diagram showing a configuration of a conventional ultrasonic distance measuring device.

【図6】図5の動作を説明するための波形図である。6 is a waveform chart for explaining the operation of FIG.

【図7】図5の装置を搭載した移動体と壁面及び柱との
水平面における位置関係を示す図である。
FIG. 7 is a diagram showing a positional relationship in a horizontal plane between a moving body equipped with the apparatus of FIG. 5, a wall surface and a pillar.

【図8】図7の移動体が移動しながら測定した柱近傍の
距離データ例1を示す図である。
8 is a diagram showing a distance data example 1 in the vicinity of a column measured while the moving body in FIG. 7 is moving.

【図9】図7の移動体が移動しながら測定した柱近傍の
距離データ例2を示す図である。
FIG. 9 is a diagram showing a distance data example 2 in the vicinity of a column measured while the moving body in FIG. 7 is moving.

【符号の説明】[Explanation of symbols]

1 送波センサ 2A,2B #1及び#2受波センサ 3 超音波送信部 4A,4B #1及び#2超音波受信部 5 タイミング制御部 6A,6B #1及び#2距離計測部 7 演算処理部 71 減算器 72 メモリ 73 微分器 74 平均値算出器 75 中心位置算出器 DESCRIPTION OF SYMBOLS 1 wave transmission sensor 2A, 2B # 1 and # 2 wave reception sensor 3 ultrasonic wave transmission section 4A, 4B # 1 and # 2 ultrasonic wave reception section 5 timing control section 6A, 6B # 1 and # 2 distance measurement section 7 arithmetic processing Part 71 Subtractor 72 Memory 73 Differentiator 74 Average Value Calculator 75 Center Position Calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 巨幸 東京都大田区南蒲田2丁目16番46号 株式 会社トキメック内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyoyuki Takeuchi 2-16-46 Minami-Kamata, Ota-ku, Tokyo Tokimec Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動体に搭載され、移動している移動体
からその側面方向の物標に超音波の送受信を行ない、該
物標までの距離を逐次測定する超音波距離測定装置にお
いて、 前記移動体の移動方向と直角方向に超音波を送信する超
音波送信手段と、 前記超音波送信の位置から前記移動体の移動方向とその
反対方向に等距離を隔てた両側の位置に設置され、前記
超音波送信手段が送信し物標から反射された超音波を個
別に受信する一対の超音波受信手段と、 前記超音波送信手段による送信波発生時刻と、前記一対
の超音波受信手段からそれぞれ得られる受信波検出時刻
との間の時間からそれぞれ前記物標までの距離を計測す
る一対の距離計測手段と、 前記一対の距離計測手段からそれぞれ得られる一対の距
離情報の差データを逐次算出し、該逐次算出される差デ
ータの変化率データから前記物標の中心位置を算出する
演算処理手段とを備えたことを特徴とする物標の中心位
置を求める超音波測定装置。
1. An ultrasonic distance measuring device mounted on a moving body, which transmits and receives ultrasonic waves to and from a moving moving body to a target in a lateral direction thereof, and successively measures a distance to the target. An ultrasonic wave transmitting means for transmitting ultrasonic waves in a direction perpendicular to the moving direction of the moving body, and is installed at positions on both sides that are equidistant from the position of the ultrasonic wave transmitting in the moving direction of the moving body and the opposite direction thereof, A pair of ultrasonic wave receiving means for individually receiving the ultrasonic waves transmitted by the ultrasonic wave transmitting means and reflected from the target, a transmission wave generation time by the ultrasonic wave transmitting means, and a pair of ultrasonic wave receiving means, respectively. A pair of distance measuring means for measuring the distance to the target respectively from the time between the obtained received wave detection time and a pair of distance information difference data obtained from the pair of distance measuring means are sequentially calculated. , The Ultrasonic measuring device for determining the center position of the target object, characterized in that an arithmetic processing means for calculating the center position of the target object from the change rate data of the difference data that is next calculated.
【請求項2】 前記一対の距離計測手段からそれぞれ得
られる一対の距離情報の差データを逐次算出する減算器
と、 該減算器から逐次得られる差データを記憶するメモリ
と、 該メモリから読出した差データの単位時間当りの変化率
を算出する微分器と、 該微分器から得られる変化率データの変極点近傍のデー
タのみの平均値を算出する平均値算出器と、 該平均値算出器が算出した平均値を基準レベルとして、
前記メモリから読出した差データが前記基準レベルと交
差する2つの交点を、計測開始点側から交差する第1の
交点及び計測終了点側から交差する第2の交点として求
め、前記第1の交点と第2の交点との間の中点を物標の
中心位置として算出する中心位置算出器とを含む演算処
理手段を備えた請求項1記載の物標の中心位置を求める
超音波測定装置。
2. A subtracter for sequentially calculating difference data of a pair of distance information respectively obtained from the pair of distance measuring means, a memory for storing difference data successively obtained from the subtractor, and a memory read from the memory. A differentiator for calculating the change rate of the difference data per unit time, an average value calculator for calculating the average value of only the data near the inflection point of the change rate data obtained from the differentiator, and the average value calculator With the calculated average value as the reference level,
Two intersections at which the difference data read from the memory intersects with the reference level are obtained as a first intersection intersecting from the measurement start point side and a second intersection intersection from the measurement end point side, and the first intersection point is obtained. The ultrasonic measurement apparatus for determining the center position of a target according to claim 1, further comprising arithmetic processing means including a center position calculator that calculates a center point between the second intersection and the center position of the target.
JP11564592A 1992-05-08 1992-05-08 Ultrasonic distance measuring apparatus for obtaining central position of target Pending JPH05312941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11564592A JPH05312941A (en) 1992-05-08 1992-05-08 Ultrasonic distance measuring apparatus for obtaining central position of target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11564592A JPH05312941A (en) 1992-05-08 1992-05-08 Ultrasonic distance measuring apparatus for obtaining central position of target

Publications (1)

Publication Number Publication Date
JPH05312941A true JPH05312941A (en) 1993-11-26

Family

ID=14667773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11564592A Pending JPH05312941A (en) 1992-05-08 1992-05-08 Ultrasonic distance measuring apparatus for obtaining central position of target

Country Status (1)

Country Link
JP (1) JPH05312941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265451A (en) * 2007-07-17 2007-10-11 Matsushita Electric Works Ltd Obstacle detector for vehicle
JP2008082706A (en) * 2006-09-25 2008-04-10 Matsushita Electric Works Ltd Object detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082706A (en) * 2006-09-25 2008-04-10 Matsushita Electric Works Ltd Object detection device
JP2007265451A (en) * 2007-07-17 2007-10-11 Matsushita Electric Works Ltd Obstacle detector for vehicle
JP4535094B2 (en) * 2007-07-17 2010-09-01 パナソニック電工株式会社 Obstacle detection device for vehicles

Similar Documents

Publication Publication Date Title
US5280457A (en) Position detecting system and method
JPH07306042A (en) Method and device for forming peripheral map in cellular structure
US4606015A (en) Method and apparatus for detecting position of object with ultrasonic wave
JPH11175149A (en) Autonomous traveling vehicle
JPH01217508A (en) Positioning of obstacle
JP2002333920A (en) Movement controller for traveling object for work
JPH0431075B2 (en)
JP2005069892A (en) System for computing self-position of moving object
US5280719A (en) Measurement of road roughness
KR101408089B1 (en) Device and method for measuring 3D position using multi-channel ultrasonic sensor
JPH05312941A (en) Ultrasonic distance measuring apparatus for obtaining central position of target
JPH05257530A (en) Method and device for correcting bearing and position of moving robot
Shoval et al. Measurement of angular position of a mobile robot using ultrasonic sensors
JPH0854926A (en) Guidance device for autonomous mobile robot
JPH02102481A (en) Ultrasonic guidance device
JPS60178373A (en) Detection of obstacle in moving body
JP3959376B2 (en) Object detection apparatus and object detection method
JPH0582601B2 (en)
JP2891349B2 (en) Mobile robot device
JPH0727852A (en) Position detecting device of traveling object
JP2765317B2 (en) Sonar device
JPH0587792B2 (en)
Aoyagi et al. Development of indoor mobile robot navigation system using ultrasonic sensors
JPH0412433B2 (en)
KR0161044B1 (en) Control system and method of mobile robot