JPH05312867A - Noise finder device - Google Patents

Noise finder device

Info

Publication number
JPH05312867A
JPH05312867A JP4140964A JP14096492A JPH05312867A JP H05312867 A JPH05312867 A JP H05312867A JP 4140964 A JP4140964 A JP 4140964A JP 14096492 A JP14096492 A JP 14096492A JP H05312867 A JPH05312867 A JP H05312867A
Authority
JP
Japan
Prior art keywords
noise
axis direction
processing part
moving shaft
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4140964A
Other languages
Japanese (ja)
Other versions
JP2769472B2 (en
Inventor
Toshiaki Kurouchi
利明 黒内
Yozo Yamazaki
洋三 山崎
Akio Hasumi
昭夫 荷見
Akiyoshi Oneda
明由 大根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOCHIGI PREF GOV
Tochigi Prefecture
Original Assignee
TOCHIGI PREF GOV
Tochigi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOCHIGI PREF GOV, Tochigi Prefecture filed Critical TOCHIGI PREF GOV
Priority to JP4140964A priority Critical patent/JP2769472B2/en
Publication of JPH05312867A publication Critical patent/JPH05312867A/en
Application granted granted Critical
Publication of JP2769472B2 publication Critical patent/JP2769472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To provide a device capable of promptly specifying noise generating parts on a mounting substrate. CONSTITUTION:A noise finder device is formed of a noise scanning part S, an image processing part G, a high frequency signal processing part K, and a data processing part D. The noise scanning part S is provided with a base mounting face 1. A moving shaft 7 movable in an X-axis direction and a Y-axis direction is provided below the base mounting face 1, and a micro-probe 2 is mounted to one place of the moving shaft 7, in proximity to the base mounting face 1. In the image processing part G, noise data in a plane position obtained by scanning operation is inputted into a personal computer C, and the distributed state and intensity of noise generated from mounted parts are displayed simultaneously in the overlapped state on the mounting substrate image plane of an output device. The automatic contraction control of the most intense noise generating source is performed in the high frequency signal processing part K and data processing part D. Since the intensity and distributed state of noise can be displayed simultaneously one over the other in details on the mounting substrate image plane, noise generating parts can be specified correctly.

Description

【発明の詳細な説明 】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子回路を実装したプ
リント配線基板から輻射するノイズ(電磁波)発生位置
を自動的に特定をする装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for automatically specifying the position of noise (electromagnetic waves) radiated from a printed wiring board on which an electronic circuit is mounted.

【0002】[0002]

【従来の技術】電子回路を実装したプリント配線基板か
ら輻射するノイズ(電磁波)が電子機器に悪影響を与え
ることが、電子機器の高度化に伴って問題化されてき
た。その問題となっている電磁波障害は、電子・電気機
器自体からの発生電磁波に起因する場合と、発生した電
磁波が機器に悪影響が及す場合とがあるが、その発生源
の殆どは電子回路の構成部品である電子素子である。電
子・電気機器の開発に当たって、機器を構成する回路基
板内から発生するノイズによる障害は重大問題であり、
特に基板の実装が高密度化する現在、各素子のノイズ発
生状態の把握が非常に重要な課題となっている。
2. Description of the Related Art It has become a problem that noise (electromagnetic waves) radiated from a printed wiring board on which an electronic circuit is mounted adversely affects electronic equipment with the sophistication of electronic equipment. The electromagnetic interference in question may be caused by an electromagnetic wave generated from the electronic / electrical device itself, or the generated electromagnetic wave may adversely affect the device. Most of the generation sources are electronic circuits. An electronic element that is a component. In the development of electronic and electrical equipment, the failure caused by noise generated from inside the circuit board that constitutes the equipment is a serious problem,
In particular, as the mounting density of boards increases, it is very important to understand the noise generation state of each element.

【0003】この課題に対応するため、電界強度計、ス
ペクトラムアナライザ等の計測機器が多く開発市販され
ている。しかし、基板あるいは機器への素子の実装状態
から直接ノイズ分布の状態を解析する装置の提供は極め
て少ないのが実態である。その中で、ノイズ分布の表示
(基板の表示はない)とスペクトラムアナライザの機能
を持たせて、解析する装置が市販されてはいるが、この
解析装置はノイズ発生部品の把握に直接には関係ないス
ペクトラムアナライザの機能を持たせているために、そ
の分不必要に高価な装置とならざるを得なかった。また
従来から、ラック、キャビネット等の電子機器用金属筐
体のノイズ発生状態の把握のために二次元プロ−ブ走査
装置が提供されているが、この装置では、ノイズ漏洩状
態の概略の把握ができても、発生部品の特定に必要な正
確な位置関係の把握が困難であった。
In order to meet this problem, many measuring instruments such as an electric field strength meter and a spectrum analyzer have been developed and marketed. However, the fact is that the number of devices that directly analyze the state of noise distribution from the mounting state of elements on a board or equipment is very few. Among them, there are commercially available devices that analyze the noise distribution (there is no display on the board) and have the function of a spectrum analyzer. However, this analysis device is directly related to the grasp of noise-generating components. Since it has the function of a spectrum analyzer that does not exist, it has to be an unnecessarily expensive device. Conventionally, a two-dimensional probe scanning device has been provided for grasping the noise occurrence state of a metal housing for electronic devices such as a rack and a cabinet. However, in this device, the outline of the noise leakage state can be grasped. Even if it could be done, it was difficult to grasp the exact positional relationship necessary for specifying the generated parts.

【0004】この他、電子部品の各素子のノイズ発生状
態の把握に用いられている手段として、多数のル−プア
ンテナを格子状に敷き詰めたアンテナアレ−を用いた装
置が提供されている。しかしこの装置においては、ル−
プアンテナの装着数に限界があり、このためにノイズ発
生部品のおよその位置については把握できるが、その位
置に部品が密集、密接している場合にはノイズ発生部品
の特定が困難であった。また、アンテナを多数配列する
ことは、強い指向性を持つに至り、さらにアンテナへの
給電延長が個々に異なるためインピ−ダンスが変化して
測定誤差が生じる。これらは元来曖昧不正確な位置把握
であるため、部品を特定するためには、対策を要する部
品や回路パタ−ンの位置関係を経験や予想に基づき関連
づけ、特定しなければならなかった。また別に、プリン
ト基板上に微小アンテナを多数形成して電子的にスキャ
ンする方法もあるが、配列密度に限界があることやその
回路自体高密度にすると非常に高価となるといった難点
がある。これらアンテナを多数配列する装置において
は、いずれも特定の一周波数のノイズの把握に限られ、
別の周波数ノイズを同時に検知することはできない。
In addition, as a means used for grasping the noise generation state of each element of the electronic component, there is provided a device using an antenna array in which a large number of loop antennas are spread in a grid pattern. However, in this device,
Since there is a limit to the number of antennas that can be mounted, it is possible to know the approximate position of the noise-generating component, but it is difficult to identify the noise-generating component when the components are dense or closely located at that position. Arranging a large number of antennas leads to a strong directivity, and the extension of power feeding to the antennas is different, so that the impedance changes and a measurement error occurs. Since these are originally ambiguous and inaccurate position grasps, in order to specify the parts, it was necessary to correlate and specify the position relationship of the parts and circuit patterns requiring countermeasures based on experience and prediction. Another method is to electronically scan by forming a large number of minute antennas on a printed circuit board, but there are drawbacks in that there is a limit to the array density and the circuit itself becomes very expensive if it is made dense. In a device in which a large number of these antennas are arranged, all are limited to grasping noise of one specific frequency,
Different frequency noises cannot be detected at the same time.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来のかか
る実情に鑑みてなされたもので、電子回路を構成する素
子から発生するノイズの状態を、微小プロ−ブを自動的
に平面操作して、画像処理により、予めディスプレイ上
に記憶表示した回路基板映像にノイズ強度と分布状態を
重ね合わせて同時に表示することにより、広帯域の周波
数範囲において最大ノイズを出している部品を自動的に
映像画面に正確に特定をし、電子回路設計時のノイズ対
策を短時間に解決する手段を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and the state of noise generated from an element forming an electronic circuit is automatically planar-operated by a microprobe. Then, by image processing, the circuit board image stored and displayed on the display in advance is superimposed and the noise intensity and the distribution state are displayed at the same time, so that the parts that generate the maximum noise in the wide frequency range are automatically displayed on the screen. It is intended to provide a means for accurately identifying the noise and solving the noise countermeasure in the electronic circuit design in a short time.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、ノイズスキャニング部S、画像処理部
G、高周波信号処理部K及びデ−タ処理部Dから構成さ
れる。前記ノイズスキャニング部Sは、基板装着面1を
備え、この基板装着面1の下方にX軸方向とY軸方向に
自在に移動可能な移動軸7を設ける。その移動軸7の一
箇所に前記基板装着面1に近接して微小プロ−ブ2を装
着し、前記移動軸7にX軸方向とY軸方向のエンコ−ダ
5,6を装着する。そして、スキャン操作による平面的
位置におけるノイズのデ−タをパソコンCに入力し、実
装部品から発生するノイズの分布状態及び強度を、実装
基板映像画面上に同時に重ねて出力装置に表示する。ま
た、電子的制御指令によってノイズ最強発生源の自動絞
り込みを行ない、その絞り込み部分を出力装置に表示
し、最大ノイズ源である実装部品を特定表示するもので
ある。
In order to solve the above problems, the present invention comprises a noise scanning section S, an image processing section G, a high frequency signal processing section K and a data processing section D. The noise scanning unit S includes a substrate mounting surface 1, and a moving shaft 7 that is freely movable in the X axis direction and the Y axis direction is provided below the substrate mounting surface 1. The microprobe 2 is mounted at one position of the moving shaft 7 in the vicinity of the substrate mounting surface 1, and the encoders 5, 6 in the X-axis direction and the Y-axis direction are mounted on the moving shaft 7. Then, the noise data at the planar position due to the scanning operation is input to the personal computer C, and the distribution state and the intensity of the noise generated from the mounted components are simultaneously displayed on the mounting board image screen and displayed on the output device. Further, the strongest noise source is automatically narrowed down by an electronic control command, the narrowed down portion is displayed on the output device, and the mounted component which is the maximum noise source is specified and displayed.

【0007】また、前記ノイズスキャニング部Sのフレ
−ム8、モ−タ3,4の構成部分をノイズの反射の少な
い材質とし、さらにモ−タ3,4にノイズ発生の少ない
部品を用いて測定機自体からのノイズの測定機に対する
干渉・影響を極力少なくしノイズ最強発生源を正確に測
定するものである。
Further, the frame 8 of the noise scanning section S and the constituent parts of the motors 3 and 4 are made of a material having less noise reflection, and further, parts having less noise are used for the motors 3 and 4. This is to accurately measure the strongest noise source by minimizing the interference and influence of noise from the measuring machine itself on the measuring machine.

【0008】[0008]

【作用】本発明は、電子回路を構成する電子素子等の部
品から発生するノイズの状態を、微小プロ−ブ2で一部
品ごとに的確に捉えられる。その微小プロ−ブ2で捉え
たノイズの強度や分布等の状態を、画像処理により、デ
ィスプレイ上に表示した実装部品の電子回路基板像に重
ね合わせて同時表示することができる。また、電子的制
御指令によってノイズ最強発生源の位置を自動的に絞り
込みを行ない、その絞り込み部分を出力装置に表示し、
最大ノイズ源である実装部品をディスプレイ上に特定し
て表示できる。予めノイズ発生源が予想できる時には、
ディスプレイ上に写る部品の周辺を選択指示することに
よって任意の位置におけるノイズ強度を計測できる。さ
らに、各構成部分をノイズの反射又は吸収の少ない材質
とし、さらにモ−タ3,4、エンコ−ダ5,6にノイズ
発生の少ない部品を用いることによって、測定機自体か
らのノイズの干渉、影響を極力少なくできる。
According to the present invention, the state of noise generated from parts such as an electronic element forming an electronic circuit can be accurately grasped for each part by the microprobe 2. The state of the intensity and distribution of noise captured by the microprobe 2 can be simultaneously displayed by image processing by superimposing it on the electronic circuit board image of the mounted component displayed on the display. In addition, the position of the strongest noise source is automatically narrowed down by an electronic control command, and the narrowed portion is displayed on the output device.
The mounted component that is the maximum noise source can be specified and displayed on the display. When the noise source can be predicted in advance,
The noise intensity at an arbitrary position can be measured by selecting and instructing the periphery of the part displayed on the display. Furthermore, each component is made of a material that reflects or absorbs less noise, and by using parts that generate less noise for the motors 3 and 4 and the encoders 5 and 6, interference of noise from the measuring instrument itself, The influence can be minimized.

【0009】[0009]

【実施例】本発明の実施例を図で説明すると、図1にお
いて、ノイズスキャニング部S、画像処理部G、高周波
信号処理部K及びデ−タ処理部Dから構成される。前記
ノイズスキャニング部Sは、微小プロ−ブを移動するた
めに、2軸のテ−ブルを用いる。このXYテ−ブルの駆
動にはステツピングモ−タを用い、必要であれば位置情
報をフィ−ドバック(セミクロ−ズド)するためのロ−
タリエンコ−ダを備える。さらに、モ−タの容量に応じ
てドライバを付加しバソコンで位置制御を行なう。テ−
ブルの材質による反射及びモ−タのノイズ等について
は、測定系の誤差となり得るので、影響を受けにくいも
のを選定する。さらに本装置の構成をさらに詳しく説明
すると、図2に示すように、基板装着部1の下方を水平
にX軸方向・Y軸方向の位置を変える移動軸7に微小プ
ロ−ブ2を装着する。そして、前記移動軸7にX軸方向
・Y軸方向のエンコ−ダ5,6を装着する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawing. In FIG. 1, it comprises a noise scanning section S, an image processing section G, a high frequency signal processing section K and a data processing section D. The noise scanning unit S uses a biaxial table to move a minute probe. A stepping motor is used to drive the XY table, and if necessary, position information is fed back (semi-controlled) to the position information.
Equipped with a Talyen coder. Further, a driver is added according to the capacity of the motor and position control is performed by the computer. Tee
Reflection due to the material of the bull and noise from the motor can cause errors in the measurement system, so select one that is not easily affected. The structure of the present apparatus will be described in more detail. As shown in FIG. 2, the microprobe 2 is mounted on the moving shaft 7 that horizontally changes the position in the X-axis direction and the Y-axis direction below the substrate mounting portion 1. .. Then, the encoders 5 and 6 in the X-axis direction and the Y-axis direction are mounted on the moving shaft 7.

【0010】各電子部品から発生するノイズを正確に捉
えるためにはアンテナをより小型化する必要がある(ア
ンテナが大きい場合は、特定部品と他の部品の両方のノ
イズを同時に捉えてしまうためどちらの部品からどんな
ノイズが出ているか判別できない)。本装置には小さい
アナンテナ(微小プロ−ブ2)を用いるので、特定一部
品のノイズのみを捉え他の部品のノイズに影響されない
のでノイズ発生部品の特定ができる。しかしながら、ノ
イズの広い周波数帯域(9KHz〜1GHz)をカバ−
するためには、微小プロ−ブ2を用いると、低い周波数
の部分で感度が著しく低下する。そのためにノイズ処理
電子回路によって補正する必要がある。
[0010] Both for the case in order to capture accurately the noise generated from the electronic component that needs to be further miniaturized antenna (antenna is large, thereby capturing both noise of a particular component and other components at the same time I can't tell what kind of noise is coming from the parts. Since a small antenna (small probe 2) is used in this device, only the noise of one specific component is captured and is not affected by the noise of other components, so that the noise generating component can be identified. However, it covers a wide frequency band of noise (9 kHz to 1 GHz).
In order to achieve this, if the fine probe 2 is used, the sensitivity remarkably decreases in the low frequency part. Therefore, it is necessary to correct it by the noise processing electronic circuit.

【0011】また、ノイズスキャニング部Sのモ−タ
3,4とそのモ−タの駆動装置にはノイズ発生の少ない
部品を使用し、さらにモ−タ3,4とそのモ−タの駆動
装置の全体にシ−ルド処理を施すか、超音波モ−タ等を
使用する。さらに、位置情報を出力するエンコ−ダ5,
6も磁気式のものは避け、光学式のものを用いて測定機
より発生するノイズを極力抑える。そして、全体を構成
するフレ−ム8自体も樹脂系部材とする。フレ−ム8は
金属系の方が強度的にもすぐれているが、金属は電磁波
を反射又は吸収し不必要な電磁波を信号として捉える虞
がある。このために電磁波の反射又は吸収が少ない合成
樹脂製とし、導電性プラスチックを使用すればより好ま
しい。
Further, the motors 3 and 4 of the noise scanning section S and the drive device for the motor use parts which generate less noise, and further the motors 3 and 4 and the drive device for the motors. Shielding is applied to the entire surface or ultrasonic wave motor or the like is used. Furthermore, the encoder 5, which outputs the position information,
The magnetic type 6 is also avoided, and the optical type is used to suppress the noise generated from the measuring machine as much as possible. The frame 8 itself, which constitutes the whole, is also a resin-based member. The frame 8 is made of a metal-based material which is superior in strength, but the metal may reflect or absorb the electromagnetic wave and catch an unnecessary electromagnetic wave as a signal. For this reason, it is more preferable to use a synthetic resin which is less likely to reflect or absorb electromagnetic waves and use a conductive plastic.

【0012】次に、画像処理部Gについて説明すると、
CCDカメラFを使用し、被測定物であるプリント配線
用基板9をパソコンCのCRTディスプレイ11上に描
写する。基板9をセットする方向により部品10の実装
面(表)またはパタ−ン面(裏)のいずれかを写し出
す。カメラFによる映像出力は、ビデオ信号を取込むこ
とが可能な画像処理ボ−ド(ビデオボ−ド)においてV
RAMデ−タに変換するかまたはフレ−ムメモリ−で高
解像度に変換してディスプレイに表示する。また次に高
周波信号処理部Kについて説明すると、被測定物から輻
射する電磁波は微小プロ−ブ2でとらえる。微小プロ−
ブ2は微小形状のル−プあるいは針状の単一型とし目的
に応じて帯域、基板との距離及び向きを変化させる。誘
起する高周波電流はもともと微弱であるためレシ−バの
感度を補うためにも広帯域の高周波増幅器を前置する。
さらに、高周波信号処理回路に入力して周波数解析及び
ピ−ク処理を行ない、GPIBによりパソコンCにデ−
タを渡すものとする。デ−タ処理部Dについては、上記
各処理部におけるデ−タの入出力制御にパソコンCを用
いる。測定結果の印刷には、ビデオプリンタ12もしく
はセントロニクス出力でハ−ドコピ−を行なうものとす
る。また計測デ−タはドットプリンタ13で印字記録す
る。
Next, the image processing section G will be described.
Using the CCD camera F, the printed wiring board 9 as the object to be measured is drawn on the CRT display 11 of the personal computer C. Either the mounting surface (front) or the pattern surface (back) of the component 10 is projected depending on the direction in which the board 9 is set. The image output by the camera F is V in an image processing board (video board) capable of capturing a video signal.
It is converted into RAM data or converted into high resolution by the frame memory and displayed on the display. Next, the high-frequency signal processing unit K will be described. The electromagnetic waves radiated from the object to be measured are captured by the minute probe 2. Micro-
The loop 2 is a microscopic loop or a single needle type, and the band, the distance to the substrate, and the direction are changed according to the purpose. Since the induced high frequency current is originally weak, a wide band high frequency amplifier is provided in advance in order to supplement the sensitivity of the receiver.
Furthermore, the data is input to the high frequency signal processing circuit for frequency analysis and peak processing, and the data is sent to the personal computer C by GPIB.
I shall pass the data. Regarding the data processing unit D, the personal computer C is used for input / output control of data in each processing unit. To print the measurement results, the hard copy is performed by the video printer 12 or the output of Centronics. The measurement data is printed and recorded by the dot printer 13.

【0013】前記CCDカメラFには、電子回路が内蔵
されているので不要なノイズが発生するが、基板のノイ
ズを検出している時には作動停止させておくためにノイ
ズ測定上影響はない。これは計測に当たっては初めに基
板画像(モノクロ)CCDカメラFから画像処理ボ−ド
を経てパソコンCに静止画像としてメモリ−上に一度取
り込んでおくので、その後の計測時は作動させる必要が
ないためである。そして必要に応じてディスプレイに表
示する機能、モ−タの制御、ノイズ強度のカラ−デ−タ
への転換及び座標メモリ−へのアクセス、そしてカラ−
化されたノイズ分布のディスプレイへの表示を行なう。
Since the CCD camera F has an electronic circuit built-in, unnecessary noise is generated, but since the operation is stopped when the noise of the substrate is detected, it does not affect the noise measurement. This is because at the time of measurement, it is not necessary to operate it at the time of the subsequent measurement because it is first taken from the substrate image (monochrome) CCD camera F through the image processing board to the personal computer C as a still image in the memory once. Is. If necessary, the function of displaying on the display, control of motor, conversion of noise intensity into color data and access to coordinate memory, and color
The converted noise distribution is displayed on the display.

【0014】パソコンCは処理された基板画像デ−タを
メモリ−に格納し、必要に応じてディスプレイ11に出
力する機能、エンコ−ダ5,6からの位置情報をX−Y
座標系への転換、駆動モ−タ3,4の制御、電磁波強度
のカラ−デ−タへの転換及び座標メモリ−へのアクセ
ス、そしてカラ−化された電磁波分布のディスプレイ1
1への表示と多くの機能を持つことになる。
The personal computer C stores the processed board image data in the memory and outputs it to the display 11 as necessary, and the position information from the encoders 5 and 6 is XY.
Conversion to coordinate system, control of driving motors 3 and 4, conversion of electromagnetic wave intensity to color data, access to coordinate memory, and display of colored electromagnetic wave distribution 1
It has a display to 1 and many functions.

【0015】ノイズ処理電子回路によって微小プロ−ブ
2で捉えられたノイズは、この回路でパソコンCに入力
できる信号に変換される。またこの回路は、ノイズの周
波数成分をスペクトラムアナライザで解析するための出
力と、微小プロ−ブ2の補正機能を持たせる。カラ−デ
ィスプレイ11で、最終的には基板画像(モノクロ)と
電磁波発生分布状態(カラ−)を同時に表示し、基板上
の電磁波状態を目視することが可能となる。また、必要
に応じてカラ−プリンタ13へ出力する。
The noise captured by the microprobe 2 by the noise processing electronic circuit is converted into a signal that can be input to the personal computer C by this circuit. Further, this circuit has an output for analyzing the frequency component of noise with a spectrum analyzer and a correction function for the minute probe 2. Finally, the color display 11 can simultaneously display the substrate image (monochrome) and the electromagnetic wave generation distribution state (color) and visually check the electromagnetic wave state on the substrate. Also, it outputs to the color printer 13 as needed.

【0016】実際のノイズ対策に必要なのは、周波数ご
との解析は必要なく、どの位置(部品・パタ−ン)にど
の様な強さのノイズが発生しているかが確実に把握する
ことが必要である。そこで、ノイズスキャニング部Sの
移動部7にはエンコ−ダ5,6が取り付けられ、スキャ
ン時のX軸方向・Y軸方向の位置情報をパソコンCに入
力し、ディスプレイ11の画面又は、プリンタ13に出
力し、図5の(ロ)に示すようにノイズの発生分布と強
度を画面上に同時に重ねて表示する。この図5の(イ)
は基板画像(モノクロ)を模式的に示すものである。図
中の丸や四角は実装電子部品を表している。そして図5
の(ロ)は前記基板画像(モノクロ)にノイズの発生分
布と強度(カラ−)を重ね合せてカラ−映像化したもの
で、網状、斜線、格子線等に示す部分はノイズ強度に対
応した色を表すもので、図中のTが最大濃度で目立つ色
に設定しておくことによって、最大ノイズ発生源を一目
で認識可能としたものである。
What is necessary for actual noise countermeasures is that it is not necessary to analyze for each frequency, but it is necessary to surely grasp at what position (parts / patterns) what kind of noise is generated. is there. Therefore, the encoders 5 and 6 are attached to the moving section 7 of the noise scanning section S, and the positional information in the X-axis direction and the Y-axis direction at the time of scanning is input to the personal computer C, and the screen of the display 11 or the printer 13 is displayed. Then, as shown in FIG. 5B, the noise occurrence distribution and intensity are simultaneously displayed on the screen. This (a) of FIG.
Shows schematically a board image (monochrome). Circles and squares in the figure represent mounted electronic components. And FIG.
(B) is a color image obtained by superimposing the noise occurrence distribution and intensity (color) on the board image (monochrome), and the portions indicated by meshes, diagonal lines, grid lines, etc. correspond to the noise intensity. It represents a color, and T in the figure is set to a color that is conspicuous at the maximum density, so that the maximum noise generation source can be recognized at a glance.

【0017】[0017]

【作動手順】試験するプリント基板9を基板装着部1に
セットして、基板9は電源・信号等を加え動作状態とし
ておく。基板映像をCCDカメラF(TVカメラ)によ
りパソコンCに取込む。その映像信号はパソコンCのス
ロットに装着された画像処理ボ−ドで処理され、映像デ
−タとしてメモリ−に記憶し、基板9の大きさと面積を
求める。この際微小プロ−ブ2は基板映像に影響を与え
ない位置(原点)に置く。画像入力が終了したら、CC
DカメラF(TVカメラ)の電源は「off」にしてお
く。これは、CCDカメラFの発生する高周波ノイズが
微小プロ−ブ2に捉えられることがないようにするため
である。
[Operating Procedure] The printed circuit board 9 to be tested is set on the circuit board mounting portion 1, and the circuit board 9 is put in an operating state by applying power, signals and the like. The board image is taken into the personal computer C by the CCD camera F (TV camera). The video signal is processed by the image processing board mounted in the slot of the personal computer C and stored in the memory as video data to obtain the size and area of the substrate 9. At this time, the minute probe 2 is placed at a position (origin) that does not affect the board image. After inputting the image, CC
The power of the D camera F (TV camera) is set to "off". This is to prevent the high frequency noise generated by the CCD camera F from being caught by the minute probe 2.

【0018】次に、周波数帯域、分解能帯域幅及びプロ
−ブ移動幅等を入力し、図3に示ように次の(1)から
(3)の操作モ−ドの中から自由選択し測定条件を設定
する。 (1)オ−トサ−チモ−ド(図3の(イ)に示す) 基板映像を見ながら任意の範囲と、分割数nを指定し、
分割して最大輻射エリアを探す。次に最大輻射エリアを
限定し、n分割してサ−チする。さらに同様な繰返しサ
−チを行ない、プロ−ブの移動間隔が10mm以下にな
るまで絞り込みノイズ源を特定する。破線桝目は分解能
帯域幅を表し、丸印は計測ポイントであり、その丸印を
結ぶ線はアンテナの軌跡である。図3の(イ)に示して
いる破線桝目が図の中央部に至るに従って小さくなって
いるのは分解能帯域幅をノイズ源に向って狭めて絞り込
みをしている状態を表している。 (2)オ−トスキャンモ−ド(図3の(ロ)に示す) 基板映像を見ながら任意の範囲を指定し、分割して自動
計測する。 (3)マニュアルサ−チモ−ド(図3の(ハ)に示す) 基板映像を見ながら任意の場所をユ−ザが選択し計測す
る。上記いずれのモ−ドでも部品の実装密度が高い時、
移動幅を細かくし、実装密度が低い時、移動幅を粗くす
るように設定する。プロ−ブの移動間隔は任意の幅で指
定可能である。
Next, the frequency band, the resolution bandwidth, the probe movement width, etc. are input, and as shown in FIG. 3, the operation modes of the following (1) to (3) are freely selected and measured. Set the conditions. (1) Auto search mode (shown in (a) of FIG. 3) Designate an arbitrary range and the division number n while observing the board image,
Divide to find the maximum radiation area. Next, the maximum radiation area is limited and divided into n and searched. Further, the same repeated search is performed, and the noise source is narrowed down until the moving interval of the probe becomes 10 mm or less. The broken line cells represent the resolution bandwidth, the circles are the measurement points, and the line connecting the circles is the locus of the antenna. The broken line meshes shown in FIG. 3A indicate that the resolution bandwidth is narrowed toward the noise source and narrowed down. (2) Auto-scan mode (shown in (b) of FIG. 3) An arbitrary range is designated while observing the board image, and automatic measurement is performed by dividing. (3) Manual search mode (shown in (c) of FIG. 3) The user selects and measures an arbitrary position while watching the board image. When the mounting density of parts is high in any of the above modes,
The movement width is made fine, and the movement width is set to be coarse when the mounting density is low. The moving interval of the probe can be specified with any width.

【0019】ノイズスキャン装置がX軸方向・Y軸方向
に移動すると、スキャンは、部品の実装密度が高いとき
図4(イ)に示すように走査線のスキャン密度を細かく
し、部品の実装密度が低いとき図4(ロ)に示すように
スキャン密度を粗くする。このスキャンの通りに微小プ
ロ−ブ2が、基板9上を移動し、部品・パタ−ン上から
発生するノイズを捉え、ノイズ処理電子回路に送り込ま
れ、アナログ/デジタル変換されパソコンCのメモリ−
に記憶される。同時にX軸及びY軸のモ−タ3,4に取
り付けられたエンコ−ダ5,6により、位置デ−タもパ
ソコンCに送り込まれ、メモリ−に記憶されるが、別の
方法として、モ−タ3,4を駆動する信号をそのまま位
置デ−タとすることも可能である。この時、微小プロ−
ブ2の周波数特性は校正されるようにしておく。
When the noise scanning device moves in the X-axis direction and the Y-axis direction, when the component mounting density is high, the scanning is performed by reducing the scan density of the scanning lines as shown in FIG. When is low, the scan density is made coarse as shown in FIG. As shown in this scan, the microprobe 2 moves on the substrate 9, captures the noise generated from the parts / patterns, is sent to the noise processing electronic circuit, is analog / digital converted, and is the memory of the personal computer C.
Memorized in. At the same time, the position data is also sent to the personal computer C by the encoders 5 and 6 attached to the X-axis and Y-axis motors 3 and 4 and stored in the memory. It is also possible to directly use the signals for driving the data 3 and 4 as the position data. At this time,
The frequency characteristics of B2 should be calibrated.

【0020】CCDカメラFによる画像デ−タ(図5の
(イ)に略図で示す)と、デジタル化されたノイズデ−
タをディスプレイ11に重ね合わせ同時表示(図5の
(ロ)に略図で示す)することによって、基板9上に発
生するノイズ分布と強度を実際の部品・パタ−ン映像上
にノイズ発生位置及び強度を色分けして表示する。以上
の結果から、各電子部品・プリントパタ−ンからのノイ
ズ状態がすみやかに把握できるため、基板設計後のノイ
ズ対策がすみやかに行なえる。ノイズ周波数分布や正確
な強度はノイズ処理電子回路からスペクトラムアナライ
ザに入力することで、さらに正確なノイズの状態を知る
ことができる。
Image data from the CCD camera F (schematically shown in FIG. 5A) and digitized noise data.
By simultaneously displaying the data on the display 11 (shown schematically in FIG. 5B), the noise distribution and the intensity generated on the substrate 9 can be determined by comparing the noise generation position and the noise generation position on the actual part / pattern image. The intensity is displayed in different colors. From the above results, the state of noise from each electronic component / print pattern can be grasped promptly, so that noise countermeasures can be taken promptly after board design. By inputting the noise frequency distribution and the accurate intensity to the spectrum analyzer from the noise processing electronic circuit, it is possible to know the more accurate noise state.

【0021】[0021]

【発明の効果】本発明は以上のようで、電子回路を実装
したプリント配線用基板9から輻射するノイズ発生位置
を自動的に特定できるので、部品10の配置や回路パタ
−ンの見直しなどの試作段階でノイズ対策を短時間で解
決できる。特に微小プロ−ブ2を用いてパソコンCによ
る画像処理装置を装着したことにより、ノイズ強度とノ
イズ分布状態を細部まで重ねて同時にディスプレイ11
に表示でき、ノイズを出している位置がリアルに一目で
把握でき、部品の特定が即座に正確に認識できる。さら
に自動絞り込み機能によって指定区域内の最大ノイズ発
生部品を自動的に特定表示できる。また、金属反射のな
い材質や低ノイズ部品を用いることによって、その部品
からのノイズの干渉、影響を極力少なくし、より正確な
ノイズ分布状態を捉えることができる。即ちこの装置に
よって、ノイズ環境における信頼性の向上が少ない対策
部品で構成できるため、製品のコストダウンが可能で、
サイトや電波暗室の利用効率のアップ及び開発サイクル
の大幅な短縮等が可能となる。
As described above, the present invention can automatically identify the position of noise emitted from the printed wiring board 9 on which an electronic circuit is mounted. Therefore, the layout of the components 10 and the circuit pattern can be reviewed. Noise countermeasures can be solved in a short time at the prototype stage. In particular, by mounting the image processing device by the personal computer C using the minute probe 2, the noise intensity and the noise distribution state are overlapped in detail and the display 11 is simultaneously displayed.
Can be displayed on the screen, the position where noise is generated can be grasped at a glance, and the parts can be identified immediately and accurately. Furthermore, the automatic narrowing-down function can automatically identify and display the maximum noise generating component in the specified area. Further, by using a material having no metal reflection or a low noise component, it is possible to minimize the interference and influence of noise from the component, and to capture a more accurate noise distribution state. In other words, with this device, it is possible to reduce the cost of the product because it can be configured with countermeasure components with little improvement in reliability in a noise environment.
It will be possible to improve the utilization efficiency of the site and anechoic chamber and significantly shorten the development cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の実施例におけるハ−ドウェアの構
成を示す概念図。
FIG. 1 is a conceptual diagram showing the configuration of hardware in an embodiment of the device of the present invention.

【図2】本発明装置の実施例におけるシステムの構成を
示す模式図。
FIG. 2 is a schematic diagram showing a system configuration in an embodiment of the device of the present invention.

【図3】微小プロ−ブの動作を示す模式図。FIG. 3 is a schematic diagram showing the operation of a microprobe.

【図4】実装密度の違いによるプロ−ブの移動間隔を示
す略図的模式図。
FIG. 4 is a schematic diagram showing a moving interval of the probe due to a difference in mounting density.

【図5】基板から輻射するノイズ分布を示し、(イ)が
プリント配線基板の映像画面を示す模式図、(ロ)がプ
リント配線基板の映像画面にノイズ分布を重ねた状態を
示す模式図。
FIG. 5 is a schematic diagram showing a noise distribution radiated from a substrate, (a) is a schematic diagram showing a video screen of a printed wiring board, and (b) is a schematic diagram showing a state in which the noise distribution is superimposed on the video screen of the printed wiring board.

【符号の説明】[Explanation of symbols]

S ノイズスキャニング部 G 画像処理部 K 高周波信号処理部 D デ−タ処理部 F 基板画像デ−タ入力用CCDカメラ C パソコン 1 基板装着部 2 微小プロ−ブ 3 モ−タ− 4 モ−タ− 5 エンコ−ダ 6 エンコ−ダ 7 移動軸 8 フレ−ム 9 プリント基板 10 部品(電子素子) 11 ディスプレイ 12 ビデオプリンタ 13 ドットプリンタ 14 パソコン本体 S noise scanning section G image processing section K high-frequency signal processing section D data processing section F board image data input CCD camera C personal computer 1 board mounting section 2 microprobe 3 motor 4 motor 5 Encoder 6 Encoder 7 Moving Axis 8 Frame 9 Printed Circuit Board 10 Parts (Electronic Element) 11 Display 12 Video Printer 13 Dot Printer 14 Personal Computer Body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ノイズスキャニング部Sと、画像処理部
Gと、高周波信号処理部K及びデ−タ処理部Dから成
り、前記ノイズスキャニング部Sは、基板装着面(1)
を備え、この基板装着面(1)の下方にX軸方向とY軸
方向に自在に移動可能な移動軸(7)を設け、その移動
軸(7)の一箇所に前記基板装着面(1)に近接して微
小プロ−ブ(2)を装着し、前記移動軸(7)にX軸方
向とY軸方向のエンコ−ダ(5),(6)を装着して、
スキャン操作による平面的位置におけるノイズのデ−タ
をパソコンCに入力し、実装部品から発生するノイズの
分布状態と強度を実装基板映像画面上に同時に重ねて出
力表示するとともに電子指令系の指示によって指定区画
内でのノイズ最強発生源の自動絞り込みを行ない、ノイ
ズ源である実装部品を特定表示するようにしたノイズフ
ァインダ−装置。
1. A noise scanning section S, an image processing section G, a high frequency signal processing section K and a data processing section D, wherein the noise scanning section S is a substrate mounting surface (1).
And a moving shaft (7) that is freely movable in the X-axis direction and the Y-axis direction is provided below the substrate mounting surface (1), and the substrate mounting surface (1) is provided at one position of the moving shaft (7). ), A microprobe (2) is mounted in proximity to the moving shaft (7), and encoders (5) and (6) in the X-axis direction and the Y-axis direction are mounted on the moving shaft (7),
The noise data at the planar position by the scanning operation is input to the personal computer C, and the distribution state and the intensity of the noise generated from the mounting components are simultaneously output and displayed on the mounting substrate image screen, and the instruction of the electronic command system is given. A noise finder device that automatically narrows down the strongest noise source in a designated section and displays the mounted component that is the noise source.
【請求項2】 ノイズスキャニング部Sのフレ−ム
(8)、モ−タ(3),(4)の構成部分をノイズの反
射の少ない材質とし、さらにモ−タ(3),(4)にノ
イズ発生の少ない部品を用いた請求項1のノイズファイ
ンダ−装置。
2. The frame (8), motors (3), (4) of the noise scanning section S are made of a material having less noise reflection, and further, the motors (3), (4). 2. The noise finder device according to claim 1, wherein a component that generates less noise is used for the noise finder.
JP4140964A 1992-05-06 1992-05-06 Noise finder device Expired - Lifetime JP2769472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4140964A JP2769472B2 (en) 1992-05-06 1992-05-06 Noise finder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4140964A JP2769472B2 (en) 1992-05-06 1992-05-06 Noise finder device

Publications (2)

Publication Number Publication Date
JPH05312867A true JPH05312867A (en) 1993-11-26
JP2769472B2 JP2769472B2 (en) 1998-06-25

Family

ID=15280919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4140964A Expired - Lifetime JP2769472B2 (en) 1992-05-06 1992-05-06 Noise finder device

Country Status (1)

Country Link
JP (1) JP2769472B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053055A (en) * 2009-09-01 2011-03-17 Kyushu Institute Of Technology Device for visualizing electromagnetic wave generation source and method thereof
JP2012117891A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Sensor detection value display system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025768A (en) * 2008-07-18 2010-02-04 Honda Motor Co Ltd Electromagnetic wave measurement apparatus
JP2010025767A (en) * 2008-07-18 2010-02-04 Honda Motor Co Ltd Electromagnetic wave measurement apparatus
JP5205547B1 (en) * 2012-04-20 2013-06-05 株式会社ノイズ研究所 Radiation signal visualization device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493777A (en) * 1990-08-08 1992-03-26 Mitsubishi Electric Corp Radiation noise detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493777A (en) * 1990-08-08 1992-03-26 Mitsubishi Electric Corp Radiation noise detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053055A (en) * 2009-09-01 2011-03-17 Kyushu Institute Of Technology Device for visualizing electromagnetic wave generation source and method thereof
JP2012117891A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Sensor detection value display system

Also Published As

Publication number Publication date
JP2769472B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US4829238A (en) Method and apparatus for monitoring electromagnetic emission levels
US5028866A (en) Method and apparatus for mapping printed circuit fields
US20090295405A1 (en) Resonance scanning system and method for testing equipment for electromagnetic resonances
WO2000065362A1 (en) Electromagnetic wave generating source probing device, method therefor and analyzing method therefor
KR20030020964A (en) System, method, and apparatus for electromagnetic compatibility-driven product design
JP3189801B2 (en) Semiconductor evaluation device, magnetic field detector used therefor, manufacturing method thereof, and storage medium storing semiconductor evaluation program
JPH08248080A (en) Electromagnetic noise measuring magnetic field probe, electromagnetic noise measuring electric field probe and electromagnetic noise measuring apparatus
JPH05312867A (en) Noise finder device
JP2000019204A (en) Noise source searching equipment for printed board
JP3760908B2 (en) Narrow directional electromagnetic antenna probe and electromagnetic field measuring device, current distribution exploration device or electrical wiring diagnostic device using the same
JP2003185689A (en) Apparatus and method for measurement of electric field, program and recording medium
JP2007040894A (en) Electromagnetic interference wave measuring system
Haelvoet et al. Near-field scanner for the accurate characterization of electromagnetic fields in the close vicinity of electronic devices and systems
JP2009002757A (en) Electromagnetic wave measuring device and electromagnetic wave measuring method
KR100198806B1 (en) Pcb emi monitoring system
JP2008082945A (en) Near electromagnetic field distribution measurement apparatus
EP0772784B1 (en) A method of and a system for moving a measuring means above a test object
EP0459487B1 (en) Ultrasonic inspection and imaging instrument
JP2004069372A (en) Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program
JP5170955B2 (en) Electromagnetic wave measuring method and electromagnetic wave measuring device
JPH06308202A (en) Circuit inspection device
JP2009276092A (en) Measuring equipment of electromagnetic field
WO2008035145A1 (en) System, probe and method for performing an electromagnetic scan
JP2005134169A (en) Electromagnetic field measuring method, measuring device and semiconductor device
JP4312094B2 (en) Composite probe device for electromagnetic field evaluation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15