JPH05312742A - Material judging apparatus - Google Patents

Material judging apparatus

Info

Publication number
JPH05312742A
JPH05312742A JP15848192A JP15848192A JPH05312742A JP H05312742 A JPH05312742 A JP H05312742A JP 15848192 A JP15848192 A JP 15848192A JP 15848192 A JP15848192 A JP 15848192A JP H05312742 A JPH05312742 A JP H05312742A
Authority
JP
Japan
Prior art keywords
laser
detected
measured
irradiation
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15848192A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INR Kenkyusho KK
Original Assignee
INR Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INR Kenkyusho KK filed Critical INR Kenkyusho KK
Priority to JP15848192A priority Critical patent/JPH05312742A/en
Publication of JPH05312742A publication Critical patent/JPH05312742A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily perform a material judgment regarding the internal state, the material quality, the film-layer state and the like of an object under test and to increase the judgment accuracy of its detection. CONSTITUTION:An object 7 under test is irradiated with a laser beam by using a laser oscillator 1 which is operated by a pulse power supply 8. A beam of infrared reflected light which is generated by a rise in the temperature of an irradiation point on the object 7 under test is detected by means of a detector 4. The time which is elapsed until infrared rays in a prescribed quantity are detected from the irradiation of the laser is detected by using a timer circuit 10. A signal is input to an operation and processing device 12; it is operated and processed. A result is compared with known data in memories 13 and processed. A judged output is displayed 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は材料判定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material judging device.

【0002】[0002]

【従来の技術】従来、被測定物にレーザー光を照射し、
その反射光をCCD等を用いて検出し、材料判定するこ
とが知られているが、これによる場合、被測定物の表面
状態は検出できても、内部の状態、材質、膜層状態等に
ついては検出判定することができなかった。又、被測定
物の反射面が傾斜したり凹凸すると2次、3次反射を繰
返し乱反射してくるから検出信号に多くの誤差を含み、
正確測定をすることができなかった。
2. Description of the Related Art Conventionally, an object to be measured is irradiated with laser light,
It is known that the reflected light is detected using a CCD or the like to determine the material. In this case, the internal state, material, film layer state, etc. can be detected even if the surface state of the DUT can be detected. Could not be detected and judged. Further, if the reflection surface of the object to be measured is inclined or uneven, secondary reflection is repeatedly diffused, so that the detection signal contains many errors.
It was not possible to make an accurate measurement.

【0003】[0003]

【発明が解決しようとする課題】本発明は被測定物の内
部の状態、材質、膜層状態等の材料判定が容易にでき、
且つその検出判定精度が正確にできることを目的とす
る。
According to the present invention, it is possible to easily determine the material such as the internal condition, material and film layer condition of the object to be measured.
In addition, it is an object of the present invention to be able to make the detection determination accuracy accurate.

【0004】[0004]

【課題を解決するための手段】被測定物にレーザービー
ムを照射するレーザー照射装置と、前記被測定物から反
射する赤外線を検出する赤外線検出装置とを設け、赤外
線検出信号により材料判定するようにしたことを特徴と
する。又被測定物にレーザービームを照射するレーザー
照射装置と、前記被測定物から反射する赤外線を検出す
る赤外線検出装置と、該検出装置の検出信号を既知デー
タと比較判定する演算処理装置とを設けて成ることを特
徴とする。
A laser irradiation device for irradiating an object to be measured with a laser beam and an infrared detection device for detecting infrared rays reflected from the object to be measured are provided, and a material is determined by an infrared detection signal. It is characterized by having done. Further, a laser irradiation device for irradiating the object to be measured with a laser beam, an infrared detection device for detecting infrared rays reflected from the object to be measured, and an arithmetic processing device for comparing the detection signal of the detection device with known data are provided. It is characterized by consisting of.

【0005】[0005]

【作用】本発明は前記のように照射光と異なる波長の赤
外線反射光を検出して材料判定するものであるから、被
測定物の内部状態、材質、膜層状態等が容易に検出判定
できる。又その検出判定精度も正確にできる効果があ
る。
As described above, according to the present invention, the material is judged by detecting the infrared reflected light having a wavelength different from the irradiation light, so that the internal condition, material, film layer condition, etc. of the object to be measured can be easily detected and judged. .. Further, there is an effect that the accuracy of detection and determination can be made accurate.

【0006】[0006]

【実施例】以下、図面の一実施例により本発明を説明す
る。図1において1はレーザー発振器、2はレーザービ
ームの集束レンズ、3は反射光の受光レンズ、4は赤外
線検出器で、これらの照射系及び受光系が支持ヘッド5
に設けられ、ヘッド5の先端に距離計測用の接触針6を
隔てて被測定物7に対向させる。8はレーザー発振器1
のパルスパワー電源、9は検出器4の信号を判別する判
別器、10は電源8の信号と検出器4の信号との間の時
間信号を得るタイマ回路、11はインターフェースで、
これを通して演算処理装置CPU12に時間信号を入力
し、CPU12はこの信号により演算処理し、既知デー
タをROM,RAMメモリ13から読み出し演算データ
と比較演算処理を行なって表示器14に表示する。15
はCPU12のプリセット装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. In FIG. 1, 1 is a laser oscillator, 2 is a laser beam focusing lens, 3 is a reflected light receiving lens, 4 is an infrared detector, and these irradiation system and light receiving system are the supporting heads 5.
Is provided at the end of the head 5, and a contact needle 6 for distance measurement is placed at the tip of the head 5 to face the object to be measured 7. 8 is a laser oscillator 1
Pulse power source, 9 is a discriminator for discriminating the signal of the detector 4, 10 is a timer circuit for obtaining a time signal between the signal of the power source 8 and the signal of the detector 4, 11 is an interface,
Through this, a time signal is input to the arithmetic processing unit CPU12, the CPU12 performs arithmetic processing by this signal, reads known data from the ROM and RAM memory 13, performs arithmetic processing on the known data, and displays it on the display unit 14. 15
Is a preset device of the CPU 12.

【0007】レーザー発信器1には半導体のHe−Ne
レーザー等が利用され、又、赤外線検出器4には赤外線
の選択検出が出来るセンサを用いる。センサの検出波長
域はPTiOで1〜15μm,PSで0.8〜3
μm,LiTiOで1〜15μmである。勿論、赤外
線フィルタを設けることができ、Siで0.6〜1.2
μm,Geで0.6〜1.5μm,InAsで0.8〜
3.6μm,InSnTeで1〜5μm等が利用され
る。
The laser oscillator 1 is a semiconductor He--Ne.
A laser or the like is used, and the infrared detector 4 uses a sensor capable of selectively detecting infrared rays. Detection wavelength range of the sensor is P b TiO 3 1~15μm, at P b S 0.8 to 3
μm, and LiTiO 3 is 1 to 15 μm. Of course, an infrared filter can be provided, and Si is 0.6 to 1.2.
μm, Ge 0.6-1.5 μm, InAs 0.8-
3.6 μm, 1 to 5 μm for InSnTe, etc. are used.

【0008】以上において、発振器1をパルス電源8で
駆動し、発振するパルスレーザーをレンズ2で集束して
被測定物7の1点測定点に照射する。照射点はレーザー
照射によって急激に温度上昇して赤外線を発生する。照
射点の温度上昇∂T/∂tと温度傾斜変化率との関係は
次式で表される。
In the above, the oscillator 1 is driven by the pulse power source 8, and the oscillating pulse laser is focused by the lens 2 to irradiate one measurement point of the DUT 7. The irradiation point rapidly rises in temperature by laser irradiation and emits infrared rays. The relationship between the temperature rise ∂T / ∂t at the irradiation point and the temperature gradient change rate is expressed by the following equation.

【0009】[0009]

【数1】 [Equation 1]

【0010】比熱Cは次式で表される。The specific heat C is expressed by the following equation.

【0011】[0011]

【数2】 [Equation 2]

【0012】今レーザー照射してt秒後の上昇温度ΔT
は次式で表される。
Temperature rise ΔT t seconds after laser irradiation
Is expressed by the following equation.

【0013】[0013]

【数3】 [Equation 3]

【0014】ここで、tc=l/π1/2でlは
厚さを示し、t1/2はTmaxになる時間の1/2の
時間を示す。上式をラプラス変換してl/tにln(t
1/4・ΔT)を直線回帰して−l/4αよりαを求
めると、対数法で次式で表される。
Here, tc = l 2 / π 2 t 1/2 , 1 represents the thickness, and t 1/2 represents half the time to reach Tmax. Laplace transform the above equation to ln (t
When [ alpha] is calculated from -l < 2 > / 4 [alpha] by linear regression of [ 1/4. [ Delta] T), it is expressed by the following equation by the logarithmic method.

【0015】[0015]

【数4】 [Equation 4]

【0016】1/2時間のときのΔTは次式で表され
る。
ΔT at the time of 1/2 hour is expressed by the following equation.

【0017】[0017]

【数5】 [Equation 5]

【0018】各種材質におけるαの変化よりその材質を
判定することができ、又、膜厚lの判定検出ができる。
パルス電源8により半導体レーザー1を発振し厚さlの
被測定物7にレーザー照射したとき、パルス電源8から
の信号によりタイマ回路10をリセットし、被測定物7
のレーザー照射点が温度上昇によって所定の時間経過t
1/2後に所要の赤外線を反射するようになるから、こ
れを赤外線センサ4で検出する。検出信号を判別器9で
判別し所定の信号出力が得られたときタイマ回路10に
信号を加えてセットする。このタイマ回路10の時間信
号t1/2をCPU12に入力して熱拡散率αを演算
し、これをメモリ13内の既知データと比較することに
より被測定物14の材質判定をすることができる。又、
被測定物7の材質が明らか(αが定まる)なものの厚さ
lを時間t1/2の検出により測定することができる。
The material can be judged from the change of α in various materials, and the film thickness 1 can be judged and detected.
When the semiconductor laser 1 is oscillated by the pulse power source 8 to irradiate the DUT 7 having a thickness of 1 with laser, the timer circuit 10 is reset by the signal from the pulse power source 8 and the DUT 7 is measured.
The laser irradiation point in the
The infrared sensor 4 detects the required infrared ray after ½ , and this is detected by the infrared sensor 4. The detection signal is discriminated by the discriminator 9, and when a predetermined signal output is obtained, the signal is added to the timer circuit 10 and set. The time signal t 1/2 of the timer circuit 10 is input to the CPU 12 to calculate the thermal diffusivity α, and by comparing this with known data in the memory 13, the material of the DUT 14 can be determined. .. or,
It is possible to measure the thickness 1 of the object 7 to be measured whose material is clear (α is determined) by detecting the time t 1/2 .

【0019】例えば被測定物が金白金合金の場合は、レ
ーザービームにパルス幅10〜100μS程度でパワー
0.1W〜50mw程度のパルスを15μφのビーム径
に絞り、電力密度10〜10W/cmのビーム照
射をし、照射点の加熱温度Tmaxを200〜500℃
程度で測定する。検出センサにInSを用いれば、こ
れは波長5μm付近に感度のピークがあり3〜5μm域
の赤外線検出をし、前記200〜500℃に対応する赤
外線強度を基準にして判別信号を出力する。即ち、パル
スビームを照射してから検出センサが所定値の赤外線を
検出するまでの遅れ時間を測定して判定信号とする。
尚、めっき等の場合は照射レーザーのパルス幅は1〜1
0ms程度のパルスを利用するので、前記パルスの複数
パルスを照射する。又被測定物には金属、合金以外に有
機物判定もすることができ、この照射ビームのパワー密
度も10〜10W/cm程度、又セラミックスの
場合は10〜10W/cm程度のエネルギーを利
用する。その他複合材料とか傾斜材料の判定等が同様に
して出来る。
For example, when the object to be measured is a gold-platinum alloy, a laser beam having a pulse width of about 10 to 100 μS and a power of about 0.1 W to 50 mw is narrowed to a beam diameter of 15 μφ, and the power density is 10 3 to 10 4 W. / Cm 2 beam irradiation and heating temperature Tmax at the irradiation point is 200 to 500 ° C.
Measure in degrees. The use of InS b to the detection sensor, which is the infrared detection of 3~5μm zone has a peak sensitivity near a wavelength 5 [mu] m, and outputs a determination signal based on the infrared intensity which corresponds to the 200 to 500 ° C.. That is, the delay time from the irradiation of the pulse beam until the detection sensor detects the infrared ray having the predetermined value is measured and used as the determination signal.
In the case of plating, etc., the pulse width of the irradiation laser is 1 to 1
Since a pulse of about 0 ms is used, a plurality of the above pulses are emitted. In addition to metals and alloys, organic substances can be determined for the object to be measured, and the power density of this irradiation beam is about 10 3 to 10 4 W / cm 2 , and in the case of ceramics, 10 5 to 10 8 W / cm. Uses about 2 energy. Other judgments such as composite materials and graded materials can be made in the same manner.

【0020】[0020]

【発明の効果】以上のように本発明は、レーザー照射装
置によって被測定物に微小スポットで照射し、その照射
点から反射する赤外線を赤外線検出器で検出して材料判
定を行なうようにしたものであり、即ち、材料特有の熱
拡散率がレーザー照射してから照射点の加熱により赤外
線が発生するまでの時間に反比例しているから、この遅
れ時間を測定することによって熱拡散率を求めることが
でき、これを既知データと比較することによって容易に
材料判定をすることができる。又、材料は材質判定だけ
でなく内部状態、膜層状態、膜厚の検出測定もでき、材
料内から発生する赤外線の検出であるから、被測定物の
表面状態による乱反射にあまり影響されずに正確に測定
することができる。
As described above, according to the present invention, a laser irradiation device irradiates an object to be measured with a minute spot, and infrared rays reflected from the irradiation point are detected by an infrared detector to judge a material. That is, since the thermal diffusivity peculiar to the material is inversely proportional to the time from the laser irradiation until the infrared rays are generated by the heating of the irradiation point, the thermal diffusivity can be calculated by measuring this delay time. The material can be easily determined by comparing this with known data. In addition, the material can be used not only to judge the material but also to detect and measure the internal state, film layer state, and film thickness, and because it detects the infrared rays generated from within the material, it is not significantly affected by diffused reflection due to the surface state of the measured object. Can be measured accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザー発振器 2,3 レンズ 4 赤外線検出器 7 被測定物 8 パルス電源 9 判別器 10 タイマ回路 11 I/O 12 CPU 13 メモリ 14 表示器 15 プリセット装置 1 Laser Oscillator 2, 3 Lens 4 Infrared Detector 7 DUT 8 Pulse Power Supply 9 Discriminator 10 Timer Circuit 11 I / O 12 CPU 13 Memory 14 Display 15 Preset Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物にレーザービームを照射するレ
ーザー照射装置と、前記被測定物から反射する赤外線を
検出する赤外線検出装置とを設け、赤外線検出信号によ
り材料判定するようにしたことを特徴とする材料判定装
置。
1. A laser irradiation device for irradiating a measured object with a laser beam and an infrared detection device for detecting infrared rays reflected from the measured object are provided, and the material is determined by an infrared detection signal. Material determination device.
【請求項2】 被測定物にレーザービームを照射するレ
ーサー照射装置と、前記被測定物から反射する赤外線を
検出する赤外線検出装置と、該検出装置の検出信号を既
知データと比較判定する演算処理装置とを設けて成るこ
とを特徴とする材料判定装置。
2. A laser irradiation device for irradiating an object to be measured with a laser beam, an infrared detection device for detecting infrared rays reflected from the object to be measured, and arithmetic processing for comparing and comparing a detection signal of the detection device with known data. A material determination device comprising: a device.
JP15848192A 1992-05-07 1992-05-07 Material judging apparatus Pending JPH05312742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15848192A JPH05312742A (en) 1992-05-07 1992-05-07 Material judging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15848192A JPH05312742A (en) 1992-05-07 1992-05-07 Material judging apparatus

Publications (1)

Publication Number Publication Date
JPH05312742A true JPH05312742A (en) 1993-11-22

Family

ID=15672686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15848192A Pending JPH05312742A (en) 1992-05-07 1992-05-07 Material judging apparatus

Country Status (1)

Country Link
JP (1) JPH05312742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029397A (en) * 1997-06-06 2000-02-29 Technology Licensing Corp. Stabilized natural turf for athletic field
US6035577A (en) * 1998-12-03 2000-03-14 Technology Licensing Corp Temporarily stabilized natural turf
US6145248A (en) * 1992-06-22 2000-11-14 Turf Stabilization Technologies, Inc. Sports playing surfaces with biodegradable backings
WO2004065950A3 (en) * 2003-01-20 2005-06-16 Rolton Group Ltd Identification of materials by non desctructive testing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6145248A (en) * 1992-06-22 2000-11-14 Turf Stabilization Technologies, Inc. Sports playing surfaces with biodegradable backings
US6029397A (en) * 1997-06-06 2000-02-29 Technology Licensing Corp. Stabilized natural turf for athletic field
US6094860A (en) * 1997-06-06 2000-08-01 Technology Licensing Corp. Stabilized turf for athletic field
US6035577A (en) * 1998-12-03 2000-03-14 Technology Licensing Corp Temporarily stabilized natural turf
WO2004065950A3 (en) * 2003-01-20 2005-06-16 Rolton Group Ltd Identification of materials by non desctructive testing

Similar Documents

Publication Publication Date Title
US6515284B1 (en) Processes and devices for the photothermal inspection of a test body
US4632561A (en) Evaluation of surface and subsurface characteristics of a sample
US4965451A (en) Method and apparatus for the contactless testing of the surface and inner structure of a solid workpiece
US4243327A (en) Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect
US4007631A (en) Method and apparatus for evaluating welds using stress-wave emission techniques
US7705292B2 (en) Method and apparatus for detecting a condition of an optical element
CN1971233B (en) Method for synchronous measurement of absorption loss and surface thermal deformation amount of optical element
JPH10227737A (en) Method and device for measuring characteristic of small particle
EP1563285B1 (en) Method and system for measuring the thermal diffusivity
JP5058180B2 (en) Method and apparatus for characterizing a thin layer material constructed on a substrate using active pyrometry
EP0192722B1 (en) Apparatus and method for static stress measurement in an object
JPH05312742A (en) Material judging apparatus
US3795133A (en) Thickness measuring method and apparatus
CN105928625B (en) Metal surface dynamic temperature point measuring method based on reflectivity change
US4755049A (en) Method and apparatus for measuring the ion implant dosage in a semiconductor crystal
RU2512659C2 (en) Method to measure length of distribution of infra-red superficial plasmons on real surface
JP2009031180A (en) Method and device for measuring internal temperature
JP2599282B2 (en) Thermal constant measurement method
Rose et al. Combustion diagnostics by photo-deflection spectroscopy
RU2725695C1 (en) Method for determining thermal conductivity of optically transparent materials
JP2580011B2 (en) Droplet particle size measuring device
Kuo et al. Theory of mirage effect detection of thermal waves in solids
JPS61137047A (en) Apparatus for measuring scattering of light
JPS6234040A (en) Evaluation of characteristic of surface and lower section ofsurface of sample
SU1659813A1 (en) Process of measuring temperature conductivity coefficient and flat transparent sample and device thereof