JPS61137047A - Apparatus for measuring scattering of light - Google Patents

Apparatus for measuring scattering of light

Info

Publication number
JPS61137047A
JPS61137047A JP59259075A JP25907584A JPS61137047A JP S61137047 A JPS61137047 A JP S61137047A JP 59259075 A JP59259075 A JP 59259075A JP 25907584 A JP25907584 A JP 25907584A JP S61137047 A JPS61137047 A JP S61137047A
Authority
JP
Japan
Prior art keywords
light
scattering
intermittent
converted
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59259075A
Other languages
Japanese (ja)
Inventor
Kenji Saito
謙治 斉藤
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Yoshinori Tomita
佳紀 富田
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59259075A priority Critical patent/JPS61137047A/en
Priority to US06/804,108 priority patent/US4682897A/en
Priority to DE19853543363 priority patent/DE3543363A1/en
Publication of JPS61137047A publication Critical patent/JPS61137047A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids

Abstract

PURPOSE:To measure the scattering of light containing a light scattering component having a large scattering angle with high sensitivity and high accuracy, by irradiating intermittent light and absorbing the scattered light thereof to convert the same to heat energy before detecting the refractivity distribution of light due to the change in temp. of said energy. CONSTITUTION:Light incident as shown by the arrow is converted to intermittent irradiation beam 2 by a chopper 10 and said beam is converted by a lens 13 to irradiate matter 1 to be inspected. The scattered beam 3 thereof transmits through a transparent flat plate 7a to be absorbed by an absorbing substance 7 to be converted to intermittent heat. The detection beam 15 from a light source 16 and a mirror 17 is refracted in the vicinity of the absorbing substance 7 by said heat and converted to an electric signal by a position sensor 18 to be sent to a lock-in amplifier 12. This electric signal is subjected to frequency synchronous detection on the basis of the reference signal from the chopper 10 and the result thereof is recorded on a recorder 14.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光散乱を利用して物体表面及び物体内の物性
を解析する装置に関し、特に、その散乱光を熱エネルギ
ーに変換して測定する装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an apparatus that uses light scattering to analyze physical properties on the surface of an object and inside an object, and in particular, to a device that uses light scattering to analyze the physical properties of an object surface and inside an object, and in particular, converts the scattered light into thermal energy for measurement. related to a device for

[従来の技術] 従来、光散乱を利用して物体表面及び物体内の物性を、
解析する装置としては、第3図に示すように被検物体l
に光2を照射し、散乱光3を開口角の大きなレンズ4を
通し、更に配光による影響を減少させ・るために積分球
5を介して、光検出器(例えば、フォトマル、ビンフォ
ト等)の感光面6に導いていた。しかし、この場合、散
乱角が開口角よりも大きいと、はみ出した散乱成分はレ
ンズに入射することが。できず、測定が不可能であった
。そのはみ出した散乱成分を検出するために被検物体近
傍に透過型の拡散面を置き、その背後に光検出器を置く
手法も工夫されたが、拡散板の特性、光検出器の設置方
法などの問題があり、高精度、高感度の測定は困難であ
った。
[Prior art] Conventionally, light scattering has been used to determine the physical properties of the surface and interior of an object.
As shown in Fig. 3, the analysis device is
2, the scattered light 3 is passed through a lens 4 with a large aperture angle, and in order to further reduce the influence of light distribution, it is passed through an integrating sphere 5 to a photodetector (e.g., photomultiply, binphoto, etc.). ) was guided to the photosensitive surface 6. However, in this case, if the scattering angle is larger than the aperture angle, the protruding scattered components may enter the lens. It was not possible to measure it. In order to detect the protruding scattered components, a method has been devised in which a transmission-type diffusion surface is placed near the test object and a photodetector is placed behind it, but the characteristics of the diffusion plate, the method of installing the photodetector, etc. This has made it difficult to measure with high accuracy and sensitivity.

[発明が解決しようとする問題点] 本発明は、上記に鑑みて、従来型の光散乱測定では困難
とされて(・°た散乱角の大きな光散乱成分も含めて高
精度、高感度に測定することを解決すべき問題点とする
ものである。
[Problems to be Solved by the Invention] In view of the above, the present invention aims to achieve high accuracy and high sensitivity, including light scattering components with large scattering angles, which are difficult to measure with conventional light scattering measurements. Measurement is a problem to be solved.

[問題点を解決するための手段] 本発明において、問題点を解決するために講じられた手
段は、被検物体に断続的な光を照射する断続光照射手段
と、その照射光により被検物体の物性に従って該物体の
表面から断続的に出射される散乱光を吸収し、熱エネル
ギーに変換する光−熱変換媒体と、その光−熱変換媒体
近傍に生じた温度変化に基づく屈折率分布を検出する光
熱偏向検出手段と、検出された光熱偏向信号から前記熱
エネルギーを計測する熱変化計測手段とを備えることを
特徴とする。
[Means for Solving the Problems] In the present invention, the means taken to solve the problems include an intermittent light irradiation means that irradiates the test object with intermittent light, and a test object that uses the irradiation light to A light-to-heat conversion medium that absorbs scattered light intermittently emitted from the surface of the object according to the physical properties of the object and converts it into thermal energy, and a refractive index distribution based on the temperature change that occurs near the light-to-heat conversion medium. The present invention is characterized in that it includes a photothermal deflection detection means for detecting a photothermal deflection signal, and a thermal change measuring means for measuring the thermal energy from the detected photothermal deflection signal.

断続光照射手段としては公知の光源とチ1ツバが使用さ
れ、光−熱′変換媒体としては被測定散乱光の波長に対
して大なる吸収特性を持ち、かつ熱伝導性の良い光吸収
物質が好ましく、例えば、カーボン及びカーボンを主体
とした混合物を用いれば、広範囲の波長域をカバーする
ことができる。あらかじめ光吸収物質の分波吸収特性を
測定しておくことにより、出力信号の補正を行い、波長
ごとの感度ムラを補正することができる。光吸収物質の
表面形状としては、散乱光の波長よりやや大きめの凹凸
をつけておくことにより、完全拡散性を向上させ、散乱
角の影響を除去できるばかりでなく、吸収効率を上げる
ことができる。
A well-known light source and a chip are used as the intermittent light irradiation means, and a light-absorbing material that has large absorption characteristics for the wavelength of the scattered light to be measured and has good thermal conductivity is used as the light-to-heat conversion medium. For example, if carbon and a mixture mainly composed of carbon are used, a wide wavelength range can be covered. By measuring the spectral absorption characteristics of the light-absorbing material in advance, it is possible to correct the output signal and correct sensitivity unevenness for each wavelength. By adding irregularities to the surface of the light-absorbing material that are slightly larger than the wavelength of the scattered light, it is possible to not only improve complete diffusivity and eliminate the effects of the scattering angle, but also increase absorption efficiency. .

被検物体としては、固体に限らず、液体でもよく、また
液体表面上に照射光を当てることによって、液面上゛単
分子いわゆるLB膜(ラングミュア・プロジェット膜)
の展開状況、吸着分子界面近傍の液体中の微粒子の評価
にも応用できる。
The object to be tested is not limited to solids, but may also be liquids, and by applying irradiation light onto the liquid surface, a monomolecular so-called LB film (Langmuir-Prodgett film) can be formed on the liquid surface.
It can also be applied to the evaluation of microparticles in the liquid near the adsorbed molecule interface.

[作 用] 第4図は、本発明による光散乱計測装置の基本構成図で
ある。第4図において、被検物体1に断続的な光2を照
射すると、被検物体内の光による散乱光3が被検物体表
面より種々の出射角で断続的に出射される。これらの散
乱光3は、光吸収物質7に照射されると、吸収されて断
続的なエネルギー信号8となり、エネルギー信号検出手
段9へ導かれる。光吸収物質7は、任意の入射角に対し
て光エネルギーを熱エネルギー等へ変換可能なので、光
吸収物質7の大きさ、及び位置を適当に設定すれば、散
乱角の大きな場合にも容易に検出することができる。こ
のようにして得られた断続的なエネルギー信号は、音響
的反応を示す現象である光°音響効果等を利用して高感
度に検出することができる。
[Function] FIG. 4 is a basic configuration diagram of the light scattering measuring device according to the present invention. In FIG. 4, when a test object 1 is irradiated with intermittent light 2, scattered light 3 due to light within the test object is intermittently emitted from the surface of the test object at various exit angles. When these scattered lights 3 are irradiated onto a light-absorbing substance 7, they are absorbed and become intermittent energy signals 8, which are guided to an energy signal detection means 9. The light-absorbing material 7 can convert light energy into heat energy etc. for any incident angle, so if the size and position of the light-absorbing material 7 are appropriately set, it can be easily converted even when the scattering angle is large. can be detected. The intermittent energy signal obtained in this way can be detected with high sensitivity by using the photoacoustic effect, which is a phenomenon that indicates an acoustic response.

′第5図は、光音響効果の基本原理図である。第5′□
′b□″−おいて、光音響効果は4つのプロセスから成
)jr、、(□、、物質が光を吸収することにより、エ
ネルギーが物質中を伝播する状態をしめす、プロセスA
は、断続的に変調される入射光ビーム3が吸収物質に当
って吸収される過程を示す、プロセスBは、このエネル
ギーが無放射緩和過程により断続的な熱となり、物質中
を熱波として伝播する過程を示す、プロセスCは、物質
表面に達した熱波が物質に接する気体を断続的に熱し、
音波を発生する場合を示し、プロセスDは、物質を伝わ
る熱波が弾性波に変換され、例えば試料M内を伝播する
場合を示す0本発明は、上記のプロセスCの段階におい
て熱せられた気体中に発生する屈折率分布を検出しよう
とするもので、エネルギー信号検出手段としてはポジシ
ョンセンサを備えた光熱偏向手段を使用するものである
'Figure 5 is a diagram of the basic principle of the photoacoustic effect. 5th □
'b□''-, the photoacoustic effect consists of four processes) jr, , (□,, Process A, which shows the state in which energy propagates through a substance when the substance absorbs light.
Process B shows the process in which an intermittently modulated incident light beam 3 hits an absorbing material and is absorbed. Process B shows that this energy becomes intermittent heat through a non-radiative relaxation process and propagates through the material as a heat wave. Process C is a process in which heat waves that reach the surface of a material intermittently heat the gas that is in contact with the material.
Process D shows a case in which a sound wave is generated, and Process D shows a case in which a thermal wave that propagates through a substance is converted into an elastic wave and propagates in, for example, a sample M. The purpose is to detect the refractive index distribution occurring inside the sensor, and a photothermal deflection means equipped with a position sensor is used as the energy signal detection means.

本発明の解析の対象となる散乱としては、散乱光が波長
シフトの伴わないいわゆる弾性散乱と、波長シフトの伴
えラマン散乱、プリルアン散乱などの非弾性散乱とがあ
る0弾性および非弾性散乱光を共に用いる解析としては
、例えば、所定の径に絞った光を透明結晶体に照射し、
そのすべての散乱光を情報源とする方法を挙げることが
できる。この場合の散乱光にはすべての波長成分の光が
含まれており、被検物体表面及び内部の屈折率変動や微
粒子の存在を知見する方法として簡便である。
Scattering to be analyzed by the present invention includes so-called elastic scattering in which the scattered light is not accompanied by a wavelength shift, and inelastic scattering in which the scattered light is accompanied by a wavelength shift such as Raman scattering and Prillouin scattering. For example, an analysis that uses both the
One method is to use all of the scattered light as an information source. The scattered light in this case includes light of all wavelength components, and is a simple method for determining refractive index fluctuations and the presence of fine particles on the surface and inside of the object to be measured.

非弾性散乱による解析については、例えばレーザー光に
代表されるような単色の光を利用して生じるラマン散乱
(あるいはレーザーラマン分光)を解析すれば、被検物
体内部の微小部分における分子構造論的な情報を得るこ
とができる6例えば、格子振動の変化に起因する散乱光
周波数変化により相転移の解析、特に、被検物体の温度
を変えて本発明の解析法を用いることにより、相転移の
局所的変化に関して種々の情報を得ることができる。
Regarding analysis using inelastic scattering, for example, by analyzing Raman scattering (or laser Raman spectroscopy) generated using monochromatic light such as laser light, it is possible to analyze molecular structure theory in minute parts inside the test object. For example, phase transition analysis can be obtained by changing the frequency of scattered light caused by changes in lattice vibrations. In particular, by using the analysis method of the present invention while changing the temperature of the test object, it is possible to obtain phase transition information. Various information can be obtained regarding local changes.

更に、プリルアン散乱によるものでは、被検物体内のフ
ォノンと照射光との相互作用による波長シフトを伴った
散乱光を情報源とするので、これを分光して解析すれば
、例えば結晶試料の相転移、高分子物質のガラス転移の
解析に効果的である。
Furthermore, in Prillouin scattering, the information source is scattered light with a wavelength shift caused by the interaction between phonons within the test object and the irradiated light, so if this is analyzed spectrally, it is possible to determine, for example, the phase of a crystal sample. It is effective for analyzing transition and glass transition of polymeric materials.

[実施例] 以下、本発明を、実施例と図面によって詳細に説明する
[Examples] Hereinafter, the present invention will be explained in detail with reference to Examples and drawings.

第1図は本発明を実施した光散乱計測装置の好適な一例
を示す構成図で、前記プロセスCにおいて、光吸収物質
表面の温度変化による表面近傍の屈折率変化を光ビーム
の偏向として検出する実施例である。第1図において、
光散乱計測装置を構成する断続光照射手段としては公知
の光源とチ:1−/パ10が使用され、光−熱変換媒体
は前記光吸収物質7で形成され、熱エネルギーによる光
熱偏向を検出する光熱偏向検出手段l!と、検出された
光熱偏向量から前記熱エネルギーの量を計測する熱変化
計測手段としてのロックインアンプ12とが備えられて
いる。前記チョッパlOにより断続された照射光ビーム
2は、レンズI3によって、被検物体1に導かれ、その
散乱光3は光吸収物質7で吸収されて断続的な熱となり
、吸収物質表面近傍の屈折率を変化させて、その領域に
おける光の通過方向を偏向させ、光熱偏向検出手段!l
で電気信号に変換される。この光熱偏向検出手段l!か
らの信号はロックインアンプ12に送られ、測定光ビー
ムを断続するチョッパ10からの参照信号に基づいて周
波数同期検波され、その結果がレコーダI4に出力され
る。このようにして検出された光熱偏向信号の強度は、
吸収物質に照射される散乱光強度の増大とともに増加し
、その関係も理論的に確認されている。従って、散乱光
強度を定量的1計測することが可能になる。
FIG. 1 is a configuration diagram showing a preferred example of a light scattering measuring device embodying the present invention. In the process C, a change in refractive index near the surface due to a temperature change on the surface of a light-absorbing substance is detected as a deflection of a light beam. This is an example. In Figure 1,
As the intermittent light irradiation means constituting the light scattering measuring device, a known light source and CHI:1-/PA10 are used, and the light-to-heat conversion medium is formed of the light absorbing material 7, and the light-to-heat deflection due to thermal energy is detected. Photothermal deflection detection means l! and a lock-in amplifier 12 as a thermal change measuring means for measuring the amount of thermal energy from the detected amount of photothermal deflection. The irradiation light beam 2 interrupted by the chopper 1O is guided to the object 1 by the lens I3, and the scattered light 3 is absorbed by the light absorbing material 7 and becomes intermittent heat, which is refracted near the surface of the absorbing material. A photothermal deflection detection means that changes the rate and deflects the direction of light passage in that area! l
is converted into an electrical signal. This photothermal deflection detection means l! The signal is sent to the lock-in amplifier 12, where it is subjected to frequency synchronous detection based on the reference signal from the chopper 10 that cuts off the measurement light beam, and the result is output to the recorder I4. The intensity of the photothermal deflection signal detected in this way is
It increases as the intensity of scattered light irradiated to the absorbing substance increases, and this relationship has also been confirmed theoretically. Therefore, it becomes possible to quantitatively measure the scattered light intensity.

なお、入射光強度をモニターし、照射光強度変動を除去
すれば、計測は一層安定する。また、被検物体の光照射
位置を移動させることにより、光散乱分布を計測するこ
ともできる。被検物体への光照射は、第1図の方向だけ
でなく、任意の方向から照射してもよい。
Note that measurement becomes more stable if the incident light intensity is monitored and fluctuations in the irradiated light intensity are removed. Moreover, the light scattering distribution can also be measured by moving the light irradiation position of the test object. The light may be irradiated onto the object to be inspected not only from the direction shown in FIG. 1 but also from any arbitrary direction.

第2図は、本実施例における光熱偏向検出手段の一例を
示す構造図である。第2図においては、散乱光は、透明
な平板7aを透過し、その平板7a表面上に存在する吸
収物質7により吸収され、断続的な熱を発生する。この
熱により吸収物質表面近傍の屈折率が変化し、その領域
を通過するプローブ用光ビーム15は、その方向が断続
的に変化する。このプローブ用光ビーム15は、レーザ
ー等の指向性がよく、ビーム径が小さいものが好ましく
、図中では、光源1Bから発射し、ミラー17により屈
折させられて吸収物質近傍を通過するように配置されて
いる。このプローブ用光ビーム15の偏向による位置ず
れをポジションセンサ18テ検出し、電気信号に変換し
、ロックインアンプ12へ送ることにより散乱光強度が
計測される。
FIG. 2 is a structural diagram showing an example of the photothermal deflection detection means in this embodiment. In FIG. 2, the scattered light passes through a transparent flat plate 7a and is absorbed by the absorbing substance 7 present on the surface of the flat plate 7a, generating intermittent heat. This heat changes the refractive index near the surface of the absorbing material, and the direction of the probe light beam 15 passing through that region changes intermittently. The probe light beam 15 is preferably a laser beam or the like with good directivity and a small beam diameter. In the figure, the probe light beam 15 is emitted from a light source 1B, is refracted by a mirror 17, and is arranged so as to pass near an absorbing substance. has been done. A position sensor 18 detects the positional deviation due to the deflection of the probe light beam 15, converts it into an electrical signal, and sends it to the lock-in amplifier 12, thereby measuring the intensity of the scattered light.

第6図は、光熱偏向検出手段の別な一例を示す構造図で
ある。第6図において、光熱偏向検出手段は、プローブ
用光ビーム15!および15yを吸収物質7の表面上で
マトリクス状に通過させて、それぞれの位置における偏
向量を対応するポジションセンサ18xおよびtoyで
検出するもので、吸収物質面上の温度分布、すなわち散
乱光の配光分布を得ることができる。プローブ用光ビー
ム15は、回動ミラー等を利用して走査してもよいし、
2、また、各対応する位置にそれぞれ別の光源を哄、定
し、一度に測定してもよい0.〉、 なお、光ビームを偏向させる領域に、温度変さ化に対す
る屈折率変化の大きな物質を満たすことによって、わず
かな温度変化で大きな屈折率変化を有する加熱領域が、
形成され、光ビームの進路を大きく変化させることがで
き、高感度な測定ができる。
FIG. 6 is a structural diagram showing another example of the photothermal deflection detection means. In FIG. 6, the photothermal deflection detection means includes a probe light beam 15! and 15y are passed in a matrix on the surface of the absorbing material 7, and the amount of deflection at each position is detected by the corresponding position sensor 18x and toy. Light distribution can be obtained. The probe light beam 15 may be scanned using a rotating mirror or the like, or
2.Alternatively, separate light sources may be set at each corresponding position and measured at once. 〉, By filling the region where the light beam is deflected with a material whose refractive index changes significantly with changes in temperature, a heated region with a large refractive index change due to a small temperature change can be created.
The path of the light beam can be changed significantly, allowing for highly sensitive measurements.

第7図は、光吸収率が各物質ごとに異なることを示すグ
ラフである。第4図の基本構成図において示された光吸
収物質7の波長特性を、第7図に示されている波長入が
異なるものを用いれば、それぞれ対応する波長の散乱光
強度を計測することができ、非弾性散乱の測定が可能に
なる。
FIG. 7 is a graph showing that the light absorption rate differs for each substance. If the wavelength characteristics of the light absorbing material 7 shown in the basic configuration diagram of FIG. 4 are different from those shown in FIG. 7 with different wavelength inputs, it is possible to measure the scattered light intensity of each corresponding wavelength. This makes it possible to measure inelastic scattering.

また、第8図に示すように、光吸収物質7に散乱光が吸
収される手前にフィルタ18を配置し、散乱光の測定波
長域を制御しても同様の計測が可能になる。
Furthermore, as shown in FIG. 8, similar measurements can be made by placing a filter 18 before the scattered light is absorbed by the light absorbing substance 7 and controlling the measurement wavelength range of the scattered light.

第911よ、光吸収物質7の後方に反射板20を配置す
ることによって、吸収層の実効的厚みを局に減少するこ
とにより、高感度、高精度光散乱計測を可能にした例で
ある。
No. 911 is an example in which highly sensitive and highly accurate light scattering measurement is made possible by arranging a reflecting plate 20 behind the light absorbing material 7 to drastically reduce the effective thickness of the absorbing layer.

第10図は、本発明を液面上単分子膜による光散乱に適
用した実施例である。第10図において、照射光2は液
体21の液面下から入射し、液体界面で全反射する角度
で入射させである。全反射界面上では、光エネルギーは
、エバネッセント波として液面上単分子膜22へ伝わり
、光散乱3が生じる。
FIG. 10 shows an example in which the present invention is applied to light scattering by a monomolecular film on a liquid surface. In FIG. 10, the irradiation light 2 is incident from below the surface of the liquid 21, and is incident at an angle such that it is totally reflected at the liquid interface. On the total reflection interface, the light energy is transmitted as an evanescent wave to the monomolecular film 22 on the liquid surface, and light scattering 3 occurs.

液面上に配置した光吸収物質7及びエネルギー信号検出
手段9で、前記各方法に基づいて検出するこ′とにより
、この単分子膜22及び吸収物質7による光散乱特性を
検出することができる。
The light scattering characteristics of the monomolecular film 22 and the absorbing material 7 can be detected by detecting the light absorbing material 7 placed on the liquid surface and the energy signal detecting means 9 based on each of the methods described above. .

第11図は、LB膜成膜装置における液面下の光散乱特
性を評価する実施例である。液体2!中の散乱因子23
による散乱光を測定することにより、単分子展開液の状
態を検知することができ、この情報をもとに成膜制御も
可能となる。
FIG. 11 is an example of evaluating the light scattering characteristics below the liquid surface in the LB film forming apparatus. Liquid 2! scattering factor 23 in
By measuring the scattered light, the state of the single molecule developing solution can be detected, and film formation can be controlled based on this information.

なお、照射光ビーム径を必要に応じて絞り、被検物体内
にお4する散乱光相互間の影響を取り除き、照射光束を
被検物体内の所定面に沿って走査させることによって、
各部情報をパターン化することもできる。そして、こう
して得られる電気信号及び走査信号を計算機処理し、デ
ィスプレイ表示することによって、微視的情報をパター
ン化してとらえることができる。
In addition, by narrowing down the irradiation light beam diameter as necessary, removing the influence of the scattered light beams within the object to be inspected, and scanning the irradiation light beam along a predetermined surface within the object to be inspected,
It is also possible to pattern information on each part. Then, by computer processing the electrical signals and scanning signals obtained in this way and displaying them on a display, microscopic information can be captured in a patterned manner.

[発明の効果] 以上説明したとおり、本発明によれば、従来は計測が困
難とされていた散乱角の大きな光散乱成分を含め、弾性
散乱及び非弾性散乱の光散乱を。
[Effects of the Invention] As explained above, according to the present invention, light scattering including elastic scattering and inelastic scattering, including light scattering components with large scattering angles that were conventionally difficult to measure.

高感度かつ高精度に測定できる。その為、被検物体内の
屈折率変動や微粒子の存在を検知することができるばか
りでなく、分子構造論的な情報を得ることがで−き、ま
た、LB膜成膜−置に応用することも可能になって、物
性の解析にきわめて大きな貢献をするものである。
Can measure with high sensitivity and precision. Therefore, it is not only possible to detect refractive index fluctuations and the presence of fine particles within the test object, but also to obtain information on molecular structure. This makes it possible to make an extremely large contribution to the analysis of physical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は実施例の光
熱偏向検出手段の縦断面図、第3図は従来例の構成図、
第4図は本発明の構成図、第5図は光音響効果の原理図
、第6図は光熱偏向検出手段の別個の構成図、第7図は
光−熱変換媒体の吸収特性図、第8図〜第11図は各媒
体及び検出手段の縦断□面図である。 l・・・被検物体、2・・・照射光ビーム、3・・・散
乱光、7・・・光−熱変換媒体、lO・・・断続光照射
手段、11・・・光熱偏向検出手段、12・・1熱変化
計測手段。 15・・・プローブ用光ビーム、 18・・・ポジションセンサ。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of the photothermal deflection detection means of the embodiment, and FIG. 3 is a configuration diagram of a conventional example.
Fig. 4 is a block diagram of the present invention, Fig. 5 is a diagram of the principle of the photoacoustic effect, Fig. 6 is a separate block diagram of the photothermal deflection detection means, Fig. 7 is a diagram of the absorption characteristics of the light-to-heat conversion medium, and Fig. 8 to 11 are longitudinal sectional views of each medium and the detection means. 1... Test object, 2... Irradiation light beam, 3... Scattered light, 7... Light-thermal conversion medium, lO... Intermittent light irradiation means, 11... Photothermal deflection detection means , 12...1 Heat change measuring means. 15... Light beam for probe, 18... Position sensor.

Claims (1)

【特許請求の範囲】[Claims] 1)被検物体に断続的な光を照射する断続光照射手段と
、その照射光により被検物体の物性に従って該物体の表
面から断続的に出射される散乱光を吸収し、熱エネルギ
ーに変換する光−熱変換媒体と、その光−熱変換媒体近
傍に生じた温度変化に基づく屈折率分布を検出する光熱
偏向検出手段と、検出された光熱偏向信号から前記熱エ
ネルギーを計測する熱変化計測手段とを備えることを特
徴とする光散乱計測装置。
1) Intermittent light irradiation means that irradiates intermittent light onto a test object, and the irradiation light absorbs scattered light that is intermittently emitted from the surface of the test object according to the physical properties of the test object, and converts it into thermal energy. a light-to-heat conversion medium, a photothermal deflection detection means for detecting a refractive index distribution based on a temperature change occurring near the light-to-heat conversion medium, and a thermal change measurement device for measuring the thermal energy from the detected photothermal deflection signal. A light scattering measurement device comprising: means.
JP59259075A 1984-12-10 1984-12-10 Apparatus for measuring scattering of light Pending JPS61137047A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59259075A JPS61137047A (en) 1984-12-10 1984-12-10 Apparatus for measuring scattering of light
US06/804,108 US4682897A (en) 1984-12-10 1985-12-03 Light scattering measuring apparatus
DE19853543363 DE3543363A1 (en) 1984-12-10 1985-12-07 DEVICE FOR MEASURING LIGHT SCATTERING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259075A JPS61137047A (en) 1984-12-10 1984-12-10 Apparatus for measuring scattering of light

Publications (1)

Publication Number Publication Date
JPS61137047A true JPS61137047A (en) 1986-06-24

Family

ID=17328972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259075A Pending JPS61137047A (en) 1984-12-10 1984-12-10 Apparatus for measuring scattering of light

Country Status (1)

Country Link
JP (1) JPS61137047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209524A (en) * 2006-02-09 2007-08-23 Koito Ind Ltd Vehicle seat
JP6786027B1 (en) * 2020-03-04 2020-11-18 三菱電機株式会社 Biological composition measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209524A (en) * 2006-02-09 2007-08-23 Koito Ind Ltd Vehicle seat
JP6786027B1 (en) * 2020-03-04 2020-11-18 三菱電機株式会社 Biological composition measuring device
WO2021176583A1 (en) * 2020-03-04 2021-09-10 三菱電機株式会社 Biological component measurement device

Similar Documents

Publication Publication Date Title
EP0165711B1 (en) Method and apparatus for detecting thermal waves
US7665364B2 (en) Method and apparatus for remote sensing of molecular species at nanoscale utilizing a reverse photoacoustic effect
US4679946A (en) Evaluating both thickness and compositional variables in a thin film sample
US6639678B1 (en) Apparatus and method for nondestructive monitoring of gases in sealed containers
JPH0333222B2 (en)
JPS6239705B2 (en)
US4682897A (en) Light scattering measuring apparatus
US8300223B2 (en) Measurement device for the distribution of chemical concentration
JPH09318535A (en) Light absorption spectrum measuring method of solution by laser induced photothermic displacement spectroscopy
JPH0731112B2 (en) Method and apparatus for detecting particulate matter
JPS6390740A (en) Method and device for dispersoid analysis
JPS6238345A (en) Method and instrument for analyzing solid particles
CA2108961A1 (en) Spectrocopic imaging system with ultrasonic detection of absorption of modulated electromagnetic radiation
JPS60119440A (en) Method of analyzing sample and sample carrier for said method
JPS61137047A (en) Apparatus for measuring scattering of light
KR101215362B1 (en) Apparatus and method for detecting photothermal effect
JPS61137048A (en) Apparatus for measuring scattering of light
JPS61137045A (en) Apparatus for measuring light scattering
JPS61137046A (en) Apparatus for measuring scattering of light
JPS61137044A (en) Apparatus for measuring light scattering
CN106338470B (en) A kind of light field travelling-wave cavity enhancing surface plasma resonance sensing equipment
JPH01132936A (en) Method and apparatus for analyzing film
Rose et al. Combustion diagnostics by photo-deflection spectroscopy
JPS6166150A (en) Immunoreaction measuring method
JP4315083B2 (en) Optical measuring apparatus and optical measuring method