JPS61137045A - Apparatus for measuring light scattering - Google Patents

Apparatus for measuring light scattering

Info

Publication number
JPS61137045A
JPS61137045A JP59259073A JP25907384A JPS61137045A JP S61137045 A JPS61137045 A JP S61137045A JP 59259073 A JP59259073 A JP 59259073A JP 25907384 A JP25907384 A JP 25907384A JP S61137045 A JPS61137045 A JP S61137045A
Authority
JP
Japan
Prior art keywords
light
heat
scattering
intermittent
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59259073A
Other languages
Japanese (ja)
Inventor
Kenji Saito
謙治 斉藤
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Yoshinori Tomita
佳紀 富田
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59259073A priority Critical patent/JPS61137045A/en
Priority to US06/804,108 priority patent/US4682897A/en
Priority to DE19853543363 priority patent/DE3543363A1/en
Publication of JPS61137045A publication Critical patent/JPS61137045A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the scattering of light containing a light scattering component having a large scattering angle with high accuracy, by irradiating intermittent light and absorbing the scattered light thereof to convert the same to heat energy while converting said energy to an electric signal by a thermocouple to measure the quantity of heat energy. CONSTITUTION:Light incident as shown by the arrow is converted to intermittent irradiation beam 2 by a chopper 10 and said beam 2 is converged by a lens 13 to irradiate matter 1 to be inspected. Scattered light 3 is absorbed by an absorbing substance 7 to be converted to intermittent heat which is, in turn, detected as an electric signal by a heat detection means 11 consisting of two thermocouples 15a, 15b, heat conductors 16, 17 and a detection signal processing part 18. This electric signal is sent to a lock-in amplifier 12 and measured beam is subjected to frequency synchronous detection on the basis of the reference signal from the chopper 10 and the result thereof is recorded on a recorder 14.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光散乱を利用して物体表面及び物体内の物性
を解析する装置に関し、特に、その散乱光を熱エネルギ
ーに変換して測定する装置に関すス − [従来の技術] 従来、光散乱を利用して物体表面及び物体内の物性を解
析する装置としては、・第3図に示すように被検物体l
に光2を照射し、散乱光3を開口角の大きなレンズ4を
通し、更に配光による影響を減少させるために積分球5
を介して、光検出器(例工ば、フォトマル、ピンフォト
等)の感光面6に導いていた。しかし、この場合、散乱
角が開口角よりも大きいと、はみ出した散乱成分はレン
ズに入射することができず、測定が不可能であった。そ
のはみ出した散乱成分を検出するために被検物体近傍に
透過型の拡散面を置き、その背後に光検出器を置く手法
も工夫されたが、拡散板の特性、光検出器の設置方法な
どの問題がありt高精度、高感度の測定は困難であった
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an apparatus that uses light scattering to analyze physical properties on the surface of an object and inside an object, and in particular, to a device that uses light scattering to analyze the physical properties of an object surface and inside an object, and in particular, converts the scattered light into thermal energy for measurement. [Prior art] Conventionally, as a device for analyzing the physical properties of an object surface and inside an object using light scattering, as shown in Fig. 3,
The scattered light 3 is passed through a lens 4 with a large aperture angle, and an integrating sphere 5 is used to further reduce the influence of light distribution.
The light was guided to the photosensitive surface 6 of a photodetector (eg, Photomaru, Pinphoto, etc.) through the photodetector. However, in this case, if the scattering angle was larger than the aperture angle, the protruding scattered components could not enter the lens, making measurement impossible. In order to detect the protruding scattered components, a method has been devised in which a transmission-type diffusion surface is placed near the test object and a photodetector is placed behind it, but the characteristics of the diffusion plate, the method of installing the photodetector, etc. Due to these problems, it was difficult to measure with high accuracy and sensitivity.

[発明が解決しよらとする問題点] 本発明は、上記に鑑みて、従来型の光散乱測定では困難
とされていた散乱角の大きな光散乱成分も含めて高精度
、高感度に測定することを解決すべき一一点とするもの
である。
[Problems to be Solved by the Invention] In view of the above, the present invention measures with high precision and high sensitivity, including light scattering components with large scattering angles, which are difficult to measure with conventional light scattering measurements. This is the single point that needs to be resolved.

[問題点を解決するための手段] 本発明において1問題点を解決するために講じられた手
段は、被検物体に断続的な光を照射する断続光照射手段
と、その照射光により被検物体の物性に従って該物体の
表面から断続的に出射される散乱光を吸収し、熱エネル
ギーに変換する光−熱変換媒体と、その光−熱変換媒体
中に生じた温度変化を熱電対により電気信号に変換する
熱検出手段と、その電気信号から前記熱エネルギーの量
を計測する熱変化計測手段とを備えることを特徴とする
[Means for Solving the Problems] The means taken to solve one problem in the present invention include an intermittent light irradiation means for irradiating an object to be examined with intermittent light, and a means for irradiating an object to be examined with intermittent light. A light-to-heat conversion medium absorbs scattered light intermittently emitted from the surface of the object according to the physical properties of the object and converts it into thermal energy, and a thermocouple converts the temperature change caused in the light-to-heat conversion medium into electrical energy. It is characterized by comprising a heat detecting means for converting into a signal, and a thermal change measuring means for measuring the amount of the thermal energy from the electric signal.

断続光照射手段としては公知の光源とチョッパが使用さ
れ、光−熱変換媒体としては被測定散乱光の波長に対し
て大なる吸収特性を持ち、かつ熱伝導性の良い光吸収物
質が好ましく、例えば、カーボン及びカーボンを主体と
した混合物を用いれば、広範囲の波長域をカバーするこ
とができる。あらかじめ光吸収物質の分波吸収特性を測
定しておくことにより、出力信号の補正を行い、波長ご
との感度ムラを補正することができる。光吸収物質の表
面形状としては、散乱光の波長よりやや大きめの凹凸を
つけておくことにより、完全拡散性を向上させ、散乱角
の影響を除去できるばかりでなく、吸収効率を上げるこ
とができる。
A known light source and a chopper are used as the intermittent light irradiation means, and the light-to-heat conversion medium is preferably a light-absorbing material that has large absorption characteristics for the wavelength of the scattered light to be measured and has good thermal conductivity. For example, if carbon and a mixture mainly composed of carbon are used, a wide wavelength range can be covered. By measuring the spectral absorption characteristics of the light-absorbing material in advance, it is possible to correct the output signal and correct sensitivity unevenness for each wavelength. By adding irregularities to the surface of the light-absorbing material that are slightly larger than the wavelength of the scattered light, it is possible to not only improve complete diffusivity and eliminate the effects of the scattering angle, but also increase absorption efficiency. .

被検物体としては、固体に限らず、液体でもよく、また
液体表面上に照射光を当てることによって、液面上単分
子いわゆるLB膜(ラングミュア・プロジェット膜)の
展開状況、吸着分子界面近傍の液体中の微粒子の評価に
も応用できる。
The object to be tested is not limited to solids, but may also be liquids, and by shining light onto the liquid surface, the state of development of a single molecule so-called LB film (Langmuir-Prodgett film) on the liquid surface, and the vicinity of the adsorbed molecule interface can be detected. It can also be applied to the evaluation of fine particles in liquids.

[作 用] 第4図は、本発明による光散乱計測装置の基本構成図で
ある。第4図において、被検物体1に断続的な光2を照
射すると、被検物体内の光による散乱光3が被検物体表
面より種々の出射角で断続的に出射される。これらの散
乱光3は、光吸収物質7に照射されると、吸収されて断
続的なエネルギー信号8となり、エネルギー信号検出手
段9へ導かれる。光吸収物質7は、任意の入射角に対し
て光エネルギーを熱エネルギー等へ変換可能なので、光
吸収物質7の大きさ、及び位置を適当に設定すれば、散
乱角の大きな場合にも容易に検出することができる。こ
のようにして得られた断続的なエネルギー信号は、音響
的反応を示す現象である光音響、効果等を利用して高感
度に検出することができる。
[Function] FIG. 4 is a basic configuration diagram of the light scattering measuring device according to the present invention. In FIG. 4, when a test object 1 is irradiated with intermittent light 2, scattered light 3 due to light within the test object is intermittently emitted from the surface of the test object at various exit angles. When these scattered lights 3 are irradiated onto a light-absorbing substance 7, they are absorbed and become intermittent energy signals 8, which are guided to an energy signal detection means 9. The light-absorbing material 7 can convert light energy into heat energy etc. for any incident angle, so if the size and position of the light-absorbing material 7 are appropriately set, it can be easily converted even when the scattering angle is large. can be detected. The intermittent energy signal obtained in this way can be detected with high sensitivity by using photoacoustics, an effect, etc., which is a phenomenon that shows an acoustic response.

第5図は、光音響効果の基本原理図である。第5図にお
いて、光音響効果は4つのプロセスから成り、物質が光
を吸収することにより、エネルギーが物質中を伝播する
状態をしめす、プロセスAは、断続的に変調される入射
光ビーム3が吸収物質に当って吸収される過程を示す、
プロセスBは、このエネルギーが無放射緩和過程により
断続的な熱となり、物質中を熱波として伝播する過程を
示す、プロセスCは、物質表面に達した熱波が物質に接
する気体を断続的に熱し、音波を発生する場合を示し、
プロセスDは、物質を伝わる熱波が弾性波に変換され、
例えば試料M内を伝播する場合を示す0本発明は、上記
のプロセスBの段階において、光吸収物質7表面の温度
変化を検出しようとするもので、エネルギー信号検出手
段としては熱電対による熱検出手段を使用するものであ
る。
FIG. 5 is a diagram showing the basic principle of the photoacoustic effect. In FIG. 5, the photoacoustic effect consists of four processes, and shows a state in which energy propagates through a material when the material absorbs light. Shows the process of being absorbed by hitting an absorbing substance,
Process B shows the process in which this energy becomes intermittent heat through a non-radiative relaxation process and propagates through the material as heat waves. Process C shows the process in which the heat waves that reach the surface of the material intermittently spread the gas in contact with the material. Shows the case of heating and generating sound waves,
In process D, thermal waves traveling through a substance are converted into elastic waves,
For example, the present invention attempts to detect the temperature change on the surface of the light absorbing substance 7 at the stage of the above-mentioned process B, and the energy signal detection means is a thermal detection using a thermocouple. It uses means.

本発明の解析の対象となる散乱としては、散乱光が波長
シフトの伴わないいわゆる弾性散乱と、波長シフトの伴
うラマン散乱、プリルアン散乱などの非弾性散乱とがあ
る0弾性および非弾性散乱光を共に用いる解析としては
、例えば、所定の径に絞っ、た光を透明結晶体に照射し
、そのすべての散乱光を情報源とする方法を挙げること
ができる。この場合の散乱光にはすべての波長成分の光
が含まれており、被検物体表面及び内部の屈折率変動や
微粒子の存在を知見する方法として簡便である。
Scattering to be analyzed by the present invention includes so-called elastic scattering in which the scattered light does not involve a wavelength shift, and inelastic scattering in which the scattered light involves a wavelength shift such as Raman scattering and Prillouin scattering. An example of an analysis that can be used together is, for example, a method in which a transparent crystal is irradiated with light focused to a predetermined diameter and all of the scattered light is used as an information source. The scattered light in this case includes light of all wavelength components, and is a simple method for determining refractive index fluctuations and the presence of fine particles on the surface and inside of the object to be measured.

非弾性散乱による解析については1例えばレーザー光に
代表されるような単色の光を利用して生じるラマン散乱
(あるいはレーザーラマン分光)を解析すれば、被検物
体内部の微小部分における分子構造論的な情報を得るこ
とができる0例えば、格子振動の変化に起因する散乱光
周波数変化により相転移の解析、特に、被検物体の温度
を変えて本発明の解析法を用いることにより、相転移の
局所的変化に関して種々の情報を得ることができる。
Regarding analysis using inelastic scattering, 1. For example, by analyzing Raman scattering (or laser Raman spectroscopy) generated using monochromatic light such as laser light, it is possible to analyze the molecular structure of minute parts inside the object being examined. For example, phase transition analysis can be obtained by changing the frequency of scattered light caused by changes in lattice vibrations. In particular, by changing the temperature of the test object and using the analysis method of the present invention, it is possible to obtain phase transition information. Various information can be obtained regarding local changes.

更に、プリルアン散乱によるものでは、被検物体内のフ
ォノンと照射光との相互作用による波長シフトを伴った
散乱光を情報源とするので、これを分光して解析すれば
、例えば結晶試料の相転移、高分子物質のガラス転移の
解析に効果的である。
Furthermore, in Prillouin scattering, the information source is scattered light with a wavelength shift caused by the interaction between phonons within the test object and the irradiated light, so if this is analyzed spectrally, it is possible to determine, for example, the phase of a crystal sample. It is effective for analyzing transition and glass transition of polymeric materials.

[実施例] 以下、本発明を、実施例と図面によって詳細に説明する
[Examples] Hereinafter, the present invention will be explained in detail with reference to Examples and drawings.

第1図は、本発明を実施した光散乱計測装置の好適な一
例を示す構成図で、前記プロセスBにおいて、吸収物質
表面の温度変化を直接熱電対を用いて検出する実施例で
ある。第1図において、光散乱計測装置を構成する断続
光照射手段としては公知の光源とチゴッパ10が使用さ
れ、光−熱変換媒体は前記吸収物質7で形成され、吸収
物質の温度変化を熱電対により電気信号に変換して検出
する熱検出手段11と、その電気信号から熱エネルギー
量を演算する熱変化計測手段としてのロックインアンプ
12とを備えている。前記チョッパ10により断続され
た照射光ビーム2は、レンズ13によって、被検物体l
に導かれ、その散乱光3は吸収物質7で吸収されて断続
的な熱となり、熱検出手段11により電気信号として検
出される。この電気信号はロックインアンプ12に送ら
れ、測定光ビームを断続するチョッパ10からの参照信
号に基づいて周波数同期検波され、その結果はレコーダ
14に出力される。このようにして検出された熱電気信
号の強度は、吸収物質に照射される散乱光強度に比例す
ることが理論的にも確認されている。
FIG. 1 is a configuration diagram showing a preferred example of a light scattering measurement device embodying the present invention, and is an example in which temperature changes on the surface of an absorbing substance are directly detected using a thermocouple in the process B. In FIG. 1, a known light source and a chigopper 10 are used as the intermittent light irradiation means constituting the light scattering measurement device, and the light-to-heat conversion medium is formed of the absorbing material 7, and the temperature change of the absorbing material is detected by a thermocouple. The heat detecting means 11 converts the electric signal into an electric signal and detects it, and the lock-in amplifier 12 serves as a thermal change measuring means that calculates the amount of thermal energy from the electric signal. The irradiation light beam 2 interrupted by the chopper 10 is directed to the object l by the lens 13.
The scattered light 3 is absorbed by the absorbing substance 7 and becomes intermittent heat, which is detected by the heat detection means 11 as an electric signal. This electrical signal is sent to a lock-in amplifier 12, where it is subjected to frequency synchronous detection based on a reference signal from a chopper 10 that cuts off the measurement light beam, and the result is output to a recorder 14. It has been theoretically confirmed that the intensity of the thermoelectric signal detected in this way is proportional to the intensity of the scattered light irradiated onto the absorbing substance.

従って、散乱光強度を定量的に計測することが可能にな
る。
Therefore, it becomes possible to quantitatively measure the scattered light intensity.

第2図は、本実施例における熱検出手段の一例を示す構
造図である。第2図において、熱検出手段は2つの熱電
対15a及び15bを備え、吸収物質7により発生した
熱は熱伝導体1Bを介して第1の熱電対15aで検出さ
れ、一方で、参照用熱電導体17における温度が第2の
熱電対15bで検出され、両者の差信号を検出信号処理
部18で求めてロックインアンプ12へ信号を送る構造
になっている。
FIG. 2 is a structural diagram showing an example of the heat detection means in this embodiment. In FIG. 2, the heat detection means comprises two thermocouples 15a and 15b, the heat generated by the absorbing material 7 is detected by the first thermocouple 15a via the thermal conductor 1B, while the reference thermocouple The temperature in the conductor 17 is detected by the second thermocouple 15b, and a difference signal between the two is obtained by the detection signal processing section 18 and sent to the lock-in amplifier 12.

第6図は、本実施例における熱検出手段の別な一例を示
す構造図である。第6図においては、吸収物質7の各位
置にされされ熱電対を並べ、熱分布を同時に測定可能と
したもので、散乱方の各配光角に応じた強度分布を求め
ることができる。
FIG. 6 is a structural diagram showing another example of the heat detection means in this embodiment. In FIG. 6, thermocouples placed at each position of the absorbing material 7 are arranged so that the heat distribution can be measured simultaneously, and it is possible to determine the intensity distribution according to each light distribution angle of the scattering direction.

第7図は、光吸収率が各物質ごとに異なることを示すグ
ラフである。第4図の基本構成図において示された光吸
収物質7の波長特性を、第7図に示されている波長入が
異なるものを用いれば、それぞれ対応する波長の散乱光
強度を計測することができ、非弾性散乱の測定が可能に
なる。
FIG. 7 is a graph showing that the light absorption rate differs for each substance. If the wavelength characteristics of the light absorbing material 7 shown in the basic configuration diagram of FIG. 4 are different from those shown in FIG. 7 with different wavelength inputs, it is possible to measure the scattered light intensity of each corresponding wavelength. This makes it possible to measure inelastic scattering.

また、第8図に示すように、吸収物質7に散乱光が吸収
される手前にフィルタ19を配置し、散乱光の測定波長
域を制御しても同様の計測が可能になる。フ、イルタと
して偏光フィルタを用いれば、散乱光の偏光特性を得る
ことも可能になる。
Furthermore, as shown in FIG. 8, a similar measurement can be made by arranging a filter 19 before the scattered light is absorbed by the absorbing substance 7 and controlling the measurement wavelength range of the scattered light. If a polarizing filter is used as a filter, it is also possible to obtain polarization characteristics of scattered light.

第9図は、吸収物質7の後方に反射板2oを配置するこ
とによって、吸収層の実効的厚みを号に減少することに
より、高感度、高精度光散乱計測を可能にした例である
FIG. 9 shows an example in which highly sensitive and highly accurate light scattering measurement is made possible by arranging a reflecting plate 2o behind the absorbing material 7, thereby reducing the effective thickness of the absorbing layer to an order of magnitude.

第10図は、本発明を液面上単分子膜による光散乱に適
用した実施例である。第10図において、照射光2は液
体21の液面下から入射し、液体界面で全反射する角度
で入射させである。全反射界面上では、光エネルギーは
、エバネッセント波として液面上単分子膜22及び吸収
物質7へ伝わり、これらにより光散乱3が生じる。液面
上に配置したエネルギー信号検出手段9で、前記各方法
に基づいて検出することにより、この単分子膜22及び
吸収物質7による光散乱特性を検出することができる。
FIG. 10 shows an example in which the present invention is applied to light scattering by a monomolecular film on a liquid surface. In FIG. 10, the irradiation light 2 is incident from below the surface of the liquid 21, and is incident at an angle such that it is totally reflected at the liquid interface. On the total reflection interface, the light energy is transmitted as an evanescent wave to the monomolecular film 22 on the liquid surface and the absorbing substance 7, which causes light scattering 3. The light scattering characteristics due to the monomolecular film 22 and the absorbing substance 7 can be detected by performing detection using the energy signal detection means 9 placed above the liquid surface based on each of the methods described above.

第11図は、LB膜成膜装置における液面下の光散乱特
性を評価する実施例である。液体21中の散乱因子23
による散乱光を測定することにより、単分子展開液の状
態を検知することができ、この情報をもとに成膜制御も
可能となる。
FIG. 11 is an example of evaluating the light scattering characteristics below the liquid surface in the LB film forming apparatus. Scattering factor 23 in liquid 21
By measuring the scattered light, the state of the single molecule developing solution can be detected, and film formation can be controlled based on this information.

なお、照射光ビーム径を必要に応じて絞り、被検物体内
における散乱光相互間の影響を取り除き、照射光束を被
検物体内の所定面に沿って走査させること′によって、
各部情報をパターン化することもできる。そして、こう
して得られる電気信号及び走査信号を計算機処理し、デ
ィスプレイ表示することによって、微視的情報をパター
ン化してとらえることができる。
In addition, by narrowing down the irradiation light beam diameter as necessary, removing the influence of scattered light between each other within the object to be inspected, and scanning the irradiation light beam along a predetermined surface within the object to be inspected,
It is also possible to pattern information on each part. Then, by computer processing the electrical signals and scanning signals obtained in this way and displaying them on a display, microscopic information can be captured in a patterned manner.

[発明の効果] 以上説明したとおり1本発明によれば、従来は計測が困
難とされていた散乱角の大きな光散乱成分を含め、弾性
散乱及び非弾性散乱の光散乱を、高感度かつ高精度に測
定できる。その為、被検物体内の屈折率変動や微粒子の
存在を検知することができるばかりでなく、分子構造論
的な情報を得ることができ、また、LB膜成膜装置に応
用することも可能になって、物性の解析にきわめて大き
な貢献をするものである。
[Effects of the Invention] As explained above, according to the present invention, elastic and inelastic light scattering, including light scattering components with large scattering angles that were conventionally difficult to measure, can be measured with high sensitivity and high sensitivity. Can be measured accurately. Therefore, it is not only possible to detect refractive index fluctuations and the presence of fine particles within the test object, but also to obtain molecular structural information, and it can also be applied to LB film deposition equipment. This makes an extremely large contribution to the analysis of physical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は実施例の熱
検出手段の縦断面図、第3図は従来例の構成図、第4図
は本発明の構成図、第5図は光音響効果の原理図、第6
図は熱検出手段の別個の構造図、第7図は光−熱変換媒
体の吸収特性図、第8図〜第11図は各媒体及び検出手
段の縦断面図である。 l・・・被検物体、2・・・照射光ビーム、3・・・散
乱光、7・・・光−熱変換媒体、10・・・断続光照射
手段、11・・・熱検出手段、12・・・熱変化計測手
段、14・・・レコーダ、15・・・熱伝導体、!8・
・・熱電対。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a vertical sectional view of a heat detection means of the embodiment, FIG. 3 is a configuration diagram of a conventional example, FIG. 4 is a configuration diagram of the present invention, and FIG. The figure is a diagram of the principle of photoacoustic effect, part 6.
The figures are separate structural diagrams of the heat detection means, FIG. 7 is an absorption characteristic diagram of the light-to-heat conversion medium, and FIGS. 8 to 11 are longitudinal sectional views of each medium and the detection means. l... Test object, 2... Irradiation light beam, 3... Scattered light, 7... Light-heat conversion medium, 10... Intermittent light irradiation means, 11... Heat detection means, 12...Thermal change measuring means, 14...Recorder, 15...Thermal conductor! 8・
··thermocouple.

Claims (1)

【特許請求の範囲】[Claims] 1)被検物体に断続的な光を照射する断続光照射手段と
、その照射光により被検物体の物性に従って該物体の表
面から断続的に出射される散乱光を吸収し、熱エネルギ
ーに変換する光−熱変換媒体と、その光−熱変換媒体中
に生じた温度変化を熱電対により電気信号に変換する熱
検出手段と、その電気信号から前記熱エネルギーの量を
計測する熱変化計測手段を備えることを特徴とする光散
乱計測装置。
1) Intermittent light irradiation means that irradiates intermittent light onto a test object, and the irradiation light absorbs scattered light that is intermittently emitted from the surface of the test object according to the physical properties of the test object, and converts it into thermal energy. a light-to-heat conversion medium, a heat detection means for converting a temperature change occurring in the light-to-heat conversion medium into an electric signal using a thermocouple, and a heat change measurement means for measuring the amount of thermal energy from the electric signal. A light scattering measuring device comprising:
JP59259073A 1984-12-10 1984-12-10 Apparatus for measuring light scattering Pending JPS61137045A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59259073A JPS61137045A (en) 1984-12-10 1984-12-10 Apparatus for measuring light scattering
US06/804,108 US4682897A (en) 1984-12-10 1985-12-03 Light scattering measuring apparatus
DE19853543363 DE3543363A1 (en) 1984-12-10 1985-12-07 DEVICE FOR MEASURING LIGHT SCATTERING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259073A JPS61137045A (en) 1984-12-10 1984-12-10 Apparatus for measuring light scattering

Publications (1)

Publication Number Publication Date
JPS61137045A true JPS61137045A (en) 1986-06-24

Family

ID=17328944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259073A Pending JPS61137045A (en) 1984-12-10 1984-12-10 Apparatus for measuring light scattering

Country Status (1)

Country Link
JP (1) JPS61137045A (en)

Similar Documents

Publication Publication Date Title
EP0165711B1 (en) Method and apparatus for detecting thermal waves
US5376793A (en) Forced-diffusion thermal imaging apparatus and method
US4679946A (en) Evaluating both thickness and compositional variables in a thin film sample
Eyerer Thermal wave remote and nondestructive inspection of polymers.
JPH0333222B2 (en)
US5344236A (en) Method for evaluation of quality of the interface between layer and substrate
JPS62233711A (en) Method and device for optically detecting surface state of material
JPS6239705B2 (en)
US20060222047A1 (en) Method and apparatus for localized infrared spectrocopy and micro-tomography using a combination of thermal expansion and temperature change measurements
US4682897A (en) Light scattering measuring apparatus
JPH09318535A (en) Measurement of optical absorption spectra of solutions by laser-induced photothermal displacement spectroscopy
CA2108961A1 (en) Spectrocopic imaging system with ultrasonic detection of absorption of modulated electromagnetic radiation
JPS60119440A (en) Method of analyzing sample and sample carrier for said method
US11768165B2 (en) Method for characterising and monitoring the homogeneity of metal parts manufactured by laser sintering
Wu et al. Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect
CN111272881A (en) Laser ultrasonic system and method for non-contact detection of thermal diffusivity of nano-film
JPS61137048A (en) Apparatus for measuring scattering of light
KR101215362B1 (en) Apparatus and method for detecting photothermal effect
JPS61137047A (en) Apparatus for measuring scattering of light
JPS61137045A (en) Apparatus for measuring light scattering
JPS61137046A (en) Apparatus for measuring scattering of light
JPS61137044A (en) Apparatus for measuring light scattering
JPS6166150A (en) Immunoreaction measuring method
JP2000252338A (en) Method and system for evaluating semiconductor
Minato et al. Infrared absorption measurement using the photothermal deflection effect of thallium bromide iodide (KRS-5): Examination of basic characteristics