JPH05312003A - Stationary blade of axial turbo machine - Google Patents

Stationary blade of axial turbo machine

Info

Publication number
JPH05312003A
JPH05312003A JP11875592A JP11875592A JPH05312003A JP H05312003 A JPH05312003 A JP H05312003A JP 11875592 A JP11875592 A JP 11875592A JP 11875592 A JP11875592 A JP 11875592A JP H05312003 A JPH05312003 A JP H05312003A
Authority
JP
Japan
Prior art keywords
blade
axial
flow
vane
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11875592A
Other languages
Japanese (ja)
Inventor
Yoshio Kano
芳雄 鹿野
Eiji Saito
英治 齋藤
Yoshiaki Yamazaki
義昭 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11875592A priority Critical patent/JPH05312003A/en
Publication of JPH05312003A publication Critical patent/JPH05312003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the stationary blade of a turbo machine having low loss in order to improve performance of the turbo machine. CONSTITUTION:Peripheral direction inclining angles theta of respective stationary blades 3 of a plurality of axial turbo machines which are arranged in an annular flow passage, are changed in radial direction, and each blade 3 is formed in an arc shape in axial direction. Also, an axial direction inclining angle delta is also changed in radial direction, and each blade 3 is formed in an arc shape in a meridium plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蒸気タービン,ガスター
ビン及び軸流圧縮機などの軸流形ターボ機械の静翼に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stationary blade of an axial flow type turbomachine such as a steam turbine, a gas turbine and an axial flow compressor.

【0002】[0002]

【従来の技術】静翼の構造を変えて段落内部の流れの改
善を図っている従来技術には、例えば、蒸気タービン低
圧段に用いられているような、静翼を動翼回転方向に単
純に傾けて静翼根元部の反動度を改善する試みがなされ
ている。これについては例えば論文前刷集プロシーデン
グ オブ ザ アドヴァンス イン スチーム タービ
ン テクノロジー フォー パワー ジェネレーション
(Proc. of the Advancesin Steam Turbine Technology
for Power Generation PWRーVol.10 ASME PowerDivisio
n)に掲載されている論文名アニン ベスティゲーショ
ン オブ リーンド ノズル エフエクツ オン ロー
プレッシャ スチーム タービン エフィシィエンシ
ィーズ(An Investigation of Leaned Nozzle Effects
on LowPressure Steam Turbine Efficiencies)に記載さ
れている。また、静翼内部流れに発生する二次流れ渦に
よる損失を低減するために、静翼を軸方向から見てスパ
ン方向中央部で対称となるような弓型形状としたものが
ある。これについては、アスメ ペーパー(ASME Paper
No.90−GT−55)の論文名ザ インフルーエンス
オブ ブレード リーン オン タービン ロセズ
(The Influence ofBlade Lean on Turbine Losses)に
記載されている。更に、軸方向から見て非対称弓型形状
とした静翼は、特願平2−67115号明細書に示されてい
る。これら従来技術は、反動度の改善や二次流れ渦によ
る損失の低減に有効であるが、軸流形ターボ機械のより
一層の性能向上を図るには、より高性能の静翼構造が要
求されている。
2. Description of the Related Art In the prior art in which the structure of a stator vane is changed to improve the flow inside the paragraph, a stator vane, for example, used in a low-pressure stage of a steam turbine, is simply arranged in the rotating direction of the rotor blade. Attempts have been made to improve the recoil degree of the root portion of the vane by tilting it to. About this, for example, Proceedings of the Proceedings of the Advance in Steam Turbine Technology for Power Generation
(Proc. Of the Advancesin Steam Turbine Technology
for Power Generation PWR ー Vol.10 ASME PowerDivisio
n) Article name Anine Vestigation of Leaned Nozzle F Equts on Low Pressure Steam Turbine Efficients (An Investigation of Leaned Nozzle Effects
on LowPressure Steam Turbine Efficiencies). Further, in order to reduce the loss due to the secondary flow vortices generated in the internal flow of the vane, there is an arcuate shape in which the vane is symmetrical in the central portion in the span direction when viewed from the axial direction. For this, see ASME Paper
No. 90-GT-55), which is described in The Influence of Blade Lean on Turbine Losses. Further, a stator blade having an asymmetrical bow shape when viewed from the axial direction is disclosed in Japanese Patent Application No. 2-67115. These conventional techniques are effective in improving the degree of reaction and reducing the loss due to the secondary flow vortex, but in order to further improve the performance of the axial flow turbomachine, a higher performance stationary blade structure is required. ing.

【0003】[0003]

【発明が解決しようとする課題】一般に軸流形ターボ機
械の翼間流れでは、流体の粘性に起因した三次元流動現
象として二次流れ渦が発生する。すなわち、静翼や動翼
を支持する側壁上に発達する流速の遅い境界層流れとそ
の影響の無い流速の早い主流部が翼によって転向を受け
ると流体に作用する遠心力の違いにより半径方向の流れ
が発生し、結果として翼間流れに一対の渦を形成する。
この二次流れ渦は損失発生の原因となるため、極力その
発生を防止することが望ましい。この二次流れ渦は、例
えば、側壁境界層の吸い込みなどによっても軽減できる
ことは周知であるが、実際のターボ機械に適用するのは
構造が複雑になり現実的でない。
Generally, in the flow between blades of an axial flow type turbomachine, a secondary flow vortex is generated as a three-dimensional flow phenomenon due to the viscosity of the fluid. In other words, when a boundary layer flow with a low flow velocity that develops on the side walls that support the stationary blades and rotor blades and a main flow part with a low flow velocity that does not affect it and is deflected by the blades, the difference in centrifugal force acting on the fluid causes Flow is generated, and as a result, a pair of vortices is formed in the inter-blade flow.
Since this secondary flow vortex causes loss, it is desirable to prevent it as much as possible. It is well known that this secondary flow vortex can be reduced by, for example, suction of the sidewall boundary layer, but it is not realistic to apply it to an actual turbomachine because of its complicated structure.

【0004】本発明の目的は、このような翼間流れに発
生する二次流れ渦の強さを軽減し、高性能なターボ機械
を実現するための静翼構造を提供することにある。
An object of the present invention is to provide a vane structure for reducing the strength of secondary flow vortices generated in such an inter-blade flow and realizing a high performance turbomachine.

【0005】[0005]

【課題を解決するための手段】本発明の第一は軸流形タ
ーボ機械の静翼の周方向傾き角θを半径方向に変化させ
軸方向から見て弓状になるようにし、前記静翼の軸方向
傾き角δも半径方向に変化させ、子午面で弓状になるよ
うにしたことを特徴とする。
The first aspect of the present invention is to change the circumferential inclination angle θ of a stationary blade of an axial flow type turbomachine in a radial direction so that the stationary blade has an arcuate shape when viewed from the axial direction. The axial inclination angle δ of is also changed in the radial direction so that the meridian plane becomes arcuate.

【0006】本発明の第二は静翼の周方向傾き角θと軸
方向傾き角δの半径方向分布を翼スパン中央部に対して
対称とならないように設定し、静翼の弓型形状を軸方向
から見ても、子午面で見ても翼スパン中央部に対して対
称とならないことを特徴とする。
In the second aspect of the present invention, the radial distribution of the circumferential inclination angle θ and the axial inclination angle δ of the stationary blade is set so as not to be symmetric with respect to the central portion of the blade span, and the stationary blade has an arched shape. It is characterized in that it is not symmetrical with respect to the central part of the blade span either when viewed in the axial direction or when viewed in the meridian plane.

【0007】本発明の第三は周方向傾き角θの半径方向
分布を翼圧力面方向に突き出るような弓型形状になるよ
うに分布させ、軸方向傾き角δの半径方向分布を翼前縁
方向に突き出るような弓型形状になるように分布させた
ことを特徴とする。
In the third aspect of the present invention, the radial distribution of the circumferential tilt angle θ is distributed so as to have an arcuate shape protruding in the blade pressure surface direction, and the radial distribution of the axial tilt angle δ is set to the blade leading edge. It is characterized in that it is distributed so as to have an arched shape protruding in the direction.

【0008】[0008]

【作用】静翼の周方向傾き角θの半径方向分布を翼圧力
面方向に突き出るような弓型形状にすると、周知のよう
に側壁近傍の流れは、側壁方向に押しつけられるように
なり、側壁境界層の発達を抑制すると同時に翼間流れに
発生する二次流れ渦を減少させる効果がある。このこと
は、実験的にも確認されている。しかし、それと同時
に、側壁近傍の流れの流れ角を設計点から軸方向に偏向
させることも確認されており、周方向傾き角θを大きく
することは流出角の観点からは好ましいことではない。
この欠点を克服するために、周方向傾き角θの半径方向
分布を翼圧力面方向に突き出るような弓型形状にすると
同時に、軸方向傾き角δの半径方向分布を翼前縁方向に
突き出るような弓型形状になるように分布させれば、流
れをより側壁側に押しつけ、しかも周方向の傾きではな
いので、流出角を大きく変化させること無く、側壁境界
層の発達を抑制すると同時に翼間流れに発生する二次流
れ渦を減少させることができる。すなわち、側壁近傍の
翼形状に着目すると、軸方向傾き角δの半径方向分布を
翼前縁方向に突き出るような弓型形状になるように分布
させた場合、翼の曲がり部から下流の翼面は、側壁から
中央部にかけて上流側に傾くことになり、流れに対して
は、側壁方向へ押しつけるような流路を形成する。この
流路形状は流出角の偏向を伴わず、流れを側壁方向へ押
しつけるため、静翼流出部の流れを良好に保ったまま、
側壁境界層の発達を抑制すると同時に翼間流れに発生す
る二次流れ渦を減少させる。
When the radial distribution of the circumferential inclination angle θ of the stationary blade is made to have an arched shape protruding in the blade pressure surface direction, as is well known, the flow near the side wall is pressed against the side wall. It has the effect of suppressing the development of the boundary layer and at the same time reducing secondary flow vortices generated in the inter-blade flow. This has been confirmed experimentally. However, at the same time, it has been confirmed that the flow angle of the flow near the side wall is deflected in the axial direction from the design point, and it is not preferable to increase the circumferential inclination angle θ from the viewpoint of the outflow angle.
In order to overcome this drawback, the radial distribution of the circumferential inclination angle θ is made to have an arched shape protruding in the blade pressure surface direction, and at the same time, the radial distribution of the axial inclination angle δ is projected in the blade leading edge direction. If it is distributed so as to have a bow shape, the flow will be pushed toward the side wall side, and since it is not the inclination in the circumferential direction, the development of the side wall boundary layer is suppressed and the development of the side wall boundary layer is suppressed without greatly changing the outflow angle. Secondary flow vortices generated in the flow can be reduced. That is, paying attention to the blade shape near the side wall, when the radial distribution of the axial inclination angle δ is distributed so as to have an arched shape protruding toward the blade leading edge direction, the blade surface downstream from the curved portion of the blade is Is inclined toward the upstream side from the side wall to the central portion, and forms a flow path that presses the flow toward the side wall. This flow path shape pushes the flow in the direction of the side wall without deflection of the outflow angle, so that the flow in the vane outflow part is kept good,
It suppresses the development of the sidewall boundary layer and at the same time reduces the secondary flow vortices generated in the inter-blade flow.

【0009】[0009]

【実施例】以下、本発明の第1の実施例を図1,図2に
より説明する。図1は本発明の静翼を下流側の軸方向か
らみた時の静翼3の傾きを示す図であり、図2は本発明
の静翼を子午面で見た場合の図である。図1より明らか
なように、周方向傾き角θの半径方向分布を翼圧力面方
向に突き出るような弓型形状になるように分布させてい
る。それと同時に、図2より明らかなように、軸方向傾
き角δの半径方向分布を翼前縁5方向に突き出るような
弓型になるように分布させている。したがって、本発明
の静翼の流路は、図1に示されるように、流れを側壁方
向に押しつけるような形状となる。また、図2による流
路形状の変化を示すために、図3に静翼を側壁から離れ
るにつれて上流側へ移動した場合の翼面傾斜を示す。図
2に示すように、軸方向傾き角δの半径方向分布を翼前
縁方向に突き出るような弓型とすることで、静翼の曲が
り部から下流側にかけての翼面は、やはり、流れを側壁
方向に押しつけるような形状となる。この結果、側壁に
発達する境界層や翼間流路に発生する二次流れ渦を抑制
するような翼間流れを実現することができる。しかも、
翼前縁方向に突き出るような弓型とすることで、流出角
に大きな影響を与えずにより強い側壁に発達する境界層
や翼間流路に発生する二次流れ渦の抑制作用が生じる。
この結果、静翼で発生する流れの損失分布は、図4に示
すように低減される。図4において、aは従来の静翼で
弓状形状をしていない静翼、bは周方向にのみ弓状とし
た従来の静翼、cは、本発明の静翼で、周方向にも軸方
向にも弓状とした場合の翼長方向の損失分布である。図
4から明らかなように、本発明の静翼損失が最も小さい
ことが分かる。図5は、静翼流出部の流れ角の翼長方向
分布を示す図であり、aは従来の静翼で弓状をしていな
い静翼、bは周方向にのみ弓状とした従来の静翼、cは
本発明の静翼で、周方向にも軸方向にも弓状とした場合
の翼長方向の流出角分布である。bの周方向にのみ弓状
とした従来の静翼では、aの従来の静翼で弓状をしてい
ない静翼の流出角分布と異なっているが、cの本発明の
静翼の流出角分布とbの周方向にのみ弓状とした従来の
静翼の流出角分布はほとんど同じであることがわかり、
周方向にも軸方向にも弓状とした本発明によれば、流出
角を周方向にのみ弓状とした従来の静翼の流出角をほと
んど同じにしたままで、流れの損失を低減することがで
きる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing the inclination of the vane 3 when the vane of the present invention is viewed from the axial direction on the downstream side, and FIG. 2 is a diagram of the vane of the present invention seen from the meridian plane. As is clear from FIG. 1, the radial distribution of the inclination angle θ in the circumferential direction is distributed so as to have an arched shape protruding in the direction of the blade pressure surface. At the same time, as is clear from FIG. 2, the radial distribution of the inclination angle δ in the axial direction is distributed so as to have an arched shape protruding toward the blade leading edge 5. Therefore, the flow path of the vane of the present invention is shaped so as to press the flow in the side wall direction, as shown in FIG. Further, in order to show the change of the flow path shape according to FIG. 2, FIG. 3 shows the blade surface inclination when the stationary blade is moved to the upstream side as it is separated from the side wall. As shown in FIG. 2, by making the radial distribution of the axial tilt angle δ into an arc shape that projects toward the blade leading edge direction, the blade surface from the bent portion to the downstream side of the stationary blade is The shape is such that it is pressed against the side wall. As a result, it is possible to realize the inter-blade flow that suppresses the secondary flow vortices generated in the boundary layer that develops on the side wall and the inter-blade flow path. Moreover,
The arched shape that protrudes toward the leading edge of the blade has the effect of suppressing the secondary flow vortices generated in the boundary layer that develops on the stronger side wall and in the inter-blade passage without significantly affecting the outflow angle.
As a result, the flow loss distribution generated in the vanes is reduced as shown in FIG. In FIG. 4, a is a conventional stationary blade that is not arcuate in shape, b is a conventional stationary blade that is arcuate only in the circumferential direction, and c is the stationary blade of the present invention that is also in the circumferential direction. This is the loss distribution in the blade length direction when the shape is also arcuate in the axial direction. As is clear from FIG. 4, the vane loss of the present invention is the smallest. FIG. 5 is a diagram showing the distribution of the flow angle of the vane outflow portion in the blade length direction, where a is a conventional vane which is not arcuate, and b is an arcuate only in the circumferential direction. The stationary vane, c is the stationary vane of the present invention, and is the outflow angle distribution in the blade length direction when the blade is arcuate in both the circumferential direction and the axial direction. In the conventional vane having the arcuate shape only in the circumferential direction of b, the outflow angle distribution of the conventional vane having no arcuate shape is different from that of the conventional vane of a, but the outflow of the vane of the present invention of c is different. It can be seen that the angular distribution and the outflow angle distribution of a conventional vane that is arcuate only in the circumferential direction of b are almost the same,
According to the present invention in which the outflow angle is arcuate only in the circumferential direction and the axial direction, the loss of flow is reduced while the outflow angle of the conventional vane in which the outflow angle is arcuate only in the circumferential direction is almost the same. be able to.

【0010】実際のターボ機械の翼間流れでは、翼スパ
ン方向中央部で上半分と下半分の流れが対称になること
はほとんどない。このような流れに対処するための本発
明の実施例を以下に示す。
In the actual flow between blades of a turbomachine, the flow in the upper half and the flow in the lower half are rarely symmetrical at the central portion in the blade span direction. An embodiment of the present invention for coping with such a flow will be shown below.

【0011】本発明の第2の実施例を図6,図7に示
す。本実施例は、翼根元部の側壁境界層や二次流れが大
きい場合に対処できるようにしたものであり、図6は図
1と同様、本発明の静翼を下流側の軸方向からみた時の
静翼の傾きを示す図であり、図7は図2と同様、本発明
の静翼を子午面で見た場合の図である。図6,図7に示
すように、翼根元部の側壁境界層や二次流れが大きい場
合には、翼根元方向の周方向の傾き、および軸方向の傾
きを大きくすることで、静翼翼間流れの全体的な性能を
良好にすることができる。
A second embodiment of the present invention is shown in FIGS. This embodiment is designed to deal with the case where the side wall boundary layer at the blade root portion and the secondary flow are large, and FIG. 6 shows the stationary blade of the present invention as seen from the axial direction on the downstream side, like FIG. It is a figure which shows the inclination of the stationary blade at the time, and FIG. 7 is a figure when the stationary blade of this invention is seen in a meridian surface like FIG. As shown in FIGS. 6 and 7, when the sidewall boundary layer at the blade root portion and the secondary flow are large, the inclination in the circumferential direction in the blade root direction and the inclination in the axial direction are increased, so that The overall performance of the flow can be good.

【0012】本発明の第3の実施例を図8,図9に示
す。本実施例は、翼先端部の側壁境界層や二次流れが大
きい場合に対処できるようにしたものであり、図8は図
1と同様、本発明の静翼を下流側の軸方向からみた時の
静翼の傾きを示す図であり、図9は図2と同様、本発明
の静翼を子午面で見た場合の図である。図8,図9に示
すように、翼先端部の側壁境界層や二次流れが大きい場
合には、翼先端方向の周方向の傾き、および、軸方向の
傾きを大きくすることで、静翼翼間流れの全体的な性能
を良好にすることができる。
A third embodiment of the present invention is shown in FIGS. This embodiment is designed to deal with the case where the side wall boundary layer at the blade tip portion and the secondary flow are large, and FIG. 8 shows the stator blade of the present invention as seen from the axial direction on the downstream side, like FIG. FIG. 9 is a view showing the inclination of the stationary blade at the time, and FIG. 9 is a view of the stationary blade of the present invention seen from the meridional plane, as in FIG. 2. As shown in FIGS. 8 and 9, when the sidewall boundary layer at the blade tip portion and the secondary flow are large, the inclination of the blade tip in the circumferential direction and the inclination of the axial direction are increased to increase the stationary blade blade. The overall performance of the interflow can be improved.

【0013】[0013]

【発明の効果】本発明によれば、周方向傾き角θの半径
方向分布を翼圧力面方向に突き出るような弓型形状にす
ると同時に、軸方向傾き角δの半径方向分布を翼前縁方
向に突き出るような弓型になるように分布させること
で、周方向傾き角θの半径方向分布を翼圧力面方向に突
き出るような弓型にするだけの静翼形状に比べ、流れを
より側壁側に押しつけ、しかも流出角を大きく変化させ
ること無く、側壁境界層の発達を抑制すると同時に翼間
流れに発生する二次流れ渦を減少させることができ、低
損失のターボ機械の静翼流路形状を実現することができ
る。
According to the present invention, the radial distribution of the inclination angle θ in the circumferential direction is made into an arc shape so as to project in the direction of the blade pressure surface, and at the same time, the radial distribution of the inclination angle δ of the axial direction is changed in the blade leading edge direction. By distributing so that the radial distribution of the circumferential tilt angle θ projects toward the blade pressure surface, the flow is more lateral It is possible to suppress the development of the side wall boundary layer and reduce the secondary flow vortices that occur in the blade-to-blade flow, while suppressing the development of the side wall boundary layer, and to reduce the flow angle of the static blade in a low-loss turbomachine. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の静翼を下流側の軸方向
からみた時の静翼の傾きを示す説明図。
FIG. 1 is an explanatory view showing the inclination of a stationary blade when the stationary blade of the first embodiment of the present invention is viewed from the axial direction on the downstream side.

【図2】本発明の静翼を子午面で見た場合の説明図。FIG. 2 is an explanatory view of the vane of the present invention seen from the meridian plane.

【図3】静翼を側壁から離れるに連れて上流側へ移動し
た場合の翼面の説明図。
FIG. 3 is an explanatory view of a blade surface when the stationary blade moves to the upstream side as it separates from the side wall.

【図4】静翼で発生する流れの損失分布の説明図。FIG. 4 is an explanatory diagram of a flow loss distribution generated in a stationary blade.

【図5】静翼流出角分布の説明図。FIG. 5 is an explanatory diagram of a vane outflow angle distribution.

【図6】本発明の第2の実施例の静翼を下流側の軸方向
からみた時の静翼の傾きを示す説明図。
FIG. 6 is an explanatory view showing the inclination of the vane when the vane of the second embodiment of the present invention is viewed from the axial direction on the downstream side.

【図7】本発明の静翼を子午面で見た場合の説明図。FIG. 7 is an explanatory view of the vane of the present invention seen from the meridian plane.

【図8】本発明の第3の実施例の静翼を下流側の軸方向
からみた時の静翼の傾きを示す説明図。
FIG. 8 is an explanatory view showing the inclination of the vane when the vane of the third embodiment of the present invention is viewed from the axial direction on the downstream side.

【図9】本発明の静翼を子午面で見た場合の説明図。FIG. 9 is an explanatory view of the vane of the present invention seen from the meridian plane.

【符号の説明】 1…上部ダイヤフラム、2…下部ダイヤフラム、3…静
翼、4…動翼回転方向、5…静翼前縁、6…静翼後縁、
7…流れ方向、8…側壁での静翼、9…側壁から離れた
静翼。
[Explanation of reference numerals] 1 ... upper diaphragm, 2 ... lower diaphragm, 3 ... stator blade, 4 ... moving blade rotation direction, 5 ... stator blade leading edge, 6 ... stator blade trailing edge,
7 ... flow direction, 8 ... stationary vane on side wall, 9 ... stationary vane away from side wall.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】環状流路内に複数個配置された軸流形ター
ボ機械の静翼において、前記静翼を周方向傾き角θを半
径方向に変化させ、軸方向から見て弓状になるように
し、軸方向傾き角δも半径方向に変化させて子午面で弓
状になるようにしたことを特徴とする軸流形ターボ機械
の静翼。
1. A stator vane of an axial flow type turbomachine, wherein a plurality of vanes are arranged in an annular flow path, and the vanes are arcuate when viewed from the axial direction by changing a circumferential inclination angle θ in the radial direction. The axial vane of the axial flow turbomachine is characterized in that the axial tilt angle δ is also changed in the radial direction so that the meridian surface has an arcuate shape.
【請求項2】環状流路内に複数個配置された軸流形ター
ボ機械の静翼において、前記静翼の周方向傾き角θと軸
方向傾き角δの半径方向分布を翼スパン中央部に対して
対称とならないように設定し、前記静翼の弓型形状を軸
方向から見ても、子午面で見ても前記翼スパン中央部に
対して対称とならないようにしたことを特徴とする軸流
形ターボ機械の静翼。
2. A stator blade of an axial flow type turbomachine, wherein a plurality of stator blades are arranged in an annular passage, and a radial distribution of a circumferential inclination angle θ and an axial inclination angle δ of the stator blades is distributed in a blade span central portion. It is set so as not to be symmetric with respect to each other, and the arcuate shape of the vane is not symmetrical with respect to the central portion of the blade span even when viewed from the axial direction and the meridian plane. Stator blade of axial flow turbomachine.
【請求項3】請求項2において、周方向傾き角θの半径
方向分布を翼圧力面方向に突き出るような弓型形状にな
るように分布させ、軸方向傾き角δの半径方向分布を翼
前縁方向に突き出るような弓型形状になるように分布さ
せた軸流形ターボ機械の静翼。
3. The radial distribution of the circumferential tilt angle θ according to claim 2, wherein the radial distribution of the circumferential tilt angle θ is distributed so as to have an arched shape protruding in the blade pressure surface direction, and the radial distribution of the axial tilt angle δ is set in front of the blade. Stator blades of axial flow turbomachines distributed in an arc shape that protrudes in the edge direction.
JP11875592A 1992-05-12 1992-05-12 Stationary blade of axial turbo machine Pending JPH05312003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11875592A JPH05312003A (en) 1992-05-12 1992-05-12 Stationary blade of axial turbo machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11875592A JPH05312003A (en) 1992-05-12 1992-05-12 Stationary blade of axial turbo machine

Publications (1)

Publication Number Publication Date
JPH05312003A true JPH05312003A (en) 1993-11-22

Family

ID=14744258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11875592A Pending JPH05312003A (en) 1992-05-12 1992-05-12 Stationary blade of axial turbo machine

Country Status (1)

Country Link
JP (1) JPH05312003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103206A1 (en) * 2001-05-24 2002-12-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Low noise fan stationary blade
US6905307B2 (en) * 2001-08-10 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Stationary vanes for turbines and method for making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103206A1 (en) * 2001-05-24 2002-12-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Low noise fan stationary blade
US6726445B2 (en) 2001-05-24 2004-04-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Reduced noise fan stationary blade
US6905307B2 (en) * 2001-08-10 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Stationary vanes for turbines and method for making the same

Similar Documents

Publication Publication Date Title
US5525038A (en) Rotor airfoils to control tip leakage flows
KR100518200B1 (en) Vane wheel for radial turbine
JP5059991B2 (en) Stator blade with narrow waist
JP2753382B2 (en) Axial flow turbine vane device and axial flow turbine
US20020197156A1 (en) Aerofoil for an axial flow turbomachine
JP2002371802A (en) Shroud integrated type moving blade in gas turbine and split ring
JPH0681603A (en) Stationary blade structure of axial flow type turbo machine
JPH0610610A (en) Turbine blade assembly
JP2002213202A (en) Gas turbine blade
JP3397599B2 (en) Axial turbine blade group
JPH05312003A (en) Stationary blade of axial turbo machine
JPH1061405A (en) Stationary blade of axial flow turbo machine
JPH01318790A (en) Flashing vane of multistage pump
JPH11148497A (en) Moving blade of axial flow compressor
JP2000204903A (en) Axial turbine
JP2017015080A (en) Bulged nozzle for control of secondary flow and optimal diffuser performance
JPH07332007A (en) Turbine stationary blade
JPH11173104A (en) Turbine rotor blade
JPH07253001A (en) Integral shroud moving blade
WO2018155652A1 (en) Axial flow rotary machine
JPH0777009A (en) Stator blade of axial-flow turbo machine
JP3423850B2 (en) Axial turbine
JP2000104501A (en) Turbine moving blade, gas turbine and steam turbine
JP2003120202A (en) Radial turbine rotor blade
JPH1077802A (en) Axial flow turbine blade