JPH05311366A - Member made of titanium alloy excellent in fatigue strength and its manufacture - Google Patents

Member made of titanium alloy excellent in fatigue strength and its manufacture

Info

Publication number
JPH05311366A
JPH05311366A JP11635592A JP11635592A JPH05311366A JP H05311366 A JPH05311366 A JP H05311366A JP 11635592 A JP11635592 A JP 11635592A JP 11635592 A JP11635592 A JP 11635592A JP H05311366 A JPH05311366 A JP H05311366A
Authority
JP
Japan
Prior art keywords
titanium alloy
fatigue strength
crystals
needle
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11635592A
Other languages
Japanese (ja)
Inventor
Tomonori Haniyuda
智紀 羽生田
Sadayuki Nakamura
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11635592A priority Critical patent/JPH05311366A/en
Publication of JPH05311366A publication Critical patent/JPH05311366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To form the structure of only the inside of a titanium alloy member into a one of rough planar crystals or acicular crystals and to improve its fatigue strength by heating the inside of a titanium alloy member in which the structure of the whole body is formed of a fine equiaxial one while its surface is cooled. CONSTITUTION:A titanium alloy is subjected to hot working at a relatively low temp. to form its structure into a fine equiaxial one. On the other hand, even if working is executed, at the time of executing cooling from a high temp., the structure of acicular crystals or planar crystals is formed by transformation occurring in the process. The inside of a pipe having 20mm diameter is heated to 1150 deg.C for 5sec by a thermocouple, and the outside is charged to a sintered alumina segmental die and is cooled to 550 deg.C, by which the equiaxial structure on the surface layer is hanged into the one of acicular crystals on the inside at the point of 0.15mm, and its fatigue strength is regulated to 720MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタン合金製の機械構
造部材において、疲労強度のすぐれたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium alloy machine structural member having excellent fatigue strength.

【0002】[0002]

【従来の技術】Ti−6Al−4V合金を代表とするチ
タン合金は、軽量で高強度という利点を買われて、種々
の機械構造部材の製造に使用されている。
2. Description of the Related Art Titanium alloys typified by Ti-6Al-4V alloys are used for manufacturing various mechanical structural members because of their advantages of light weight and high strength.

【0003】その用途の多くはレシプロエンジンのコン
ロッドのように繰り返し応力の加わるものであるから、
部材は疲労強度が高いことが望まれる。 ところが、現
在製作されるチタン合金製部材の疲労強度は、必ずしも
満足できるものではない。
Since most of its uses are repeatedly stressed like a connecting rod of a reciprocating engine,
It is desired that the member has high fatigue strength. However, the fatigue strength of titanium alloy members currently manufactured is not always satisfactory.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、疲労
強度の向上したチタン合金製部材と、その製造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a titanium alloy member having improved fatigue strength and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明の疲労強度のすぐ
れたチタン合金製部材は、チタン合金を材料とし所望の
形状をもつ部材において、表層部の組織が微細な等軸晶
であり、内部の組織が粗い板状晶または針状晶であるこ
とを特徴とする。
A titanium alloy member having excellent fatigue strength according to the present invention is a member made of titanium alloy and having a desired shape, in which the surface layer has a fine equiaxed crystal structure. The texture of is a rough plate crystal or needle crystal.

【0006】「表層部」とは、部材の表面からの深さが
50〜200μm程度である領域を指す。
The "surface layer portion" refers to a region having a depth of about 50 to 200 μm from the surface of the member.

【0007】上記の疲労強度のすぐれたチタン合金製部
材を製造する本発明の方法は、チタン合金に塑性変形の
生じる加工を行なって、所望の形状を有するとともに全
体の組織が微細な等軸晶である部材とし、この部材に、
その表面を冷却しながら通電して内部を加熱することに
より、表層部の等軸晶組織を維持したまま内部を粗い板
状晶または針状晶の組織に変えることからなる。
According to the method of the present invention for producing a titanium alloy member having excellent fatigue strength, the titanium alloy is processed to cause plastic deformation so that the titanium alloy has a desired shape and the whole structure is a fine equiaxed crystal. And a member that is
By heating the inside by energizing while cooling the surface, the inside is transformed into a rough plate-like crystal or acicular crystal structure while maintaining the equiaxed crystal structure of the surface layer portion.

【0008】表面を冷却する手段は、種々可能である。
最も簡単には、冷風の吹きつけや冷水の流下がそれら
であるが、比較的複雑な形状をもつ部材の場合に全表面
をできるだけ均一に冷却するためには、部材を適宜の容
器内で粉体中に埋没させておいたり、さらにこの粉体を
容器の外側から冷却する、というような手法が有用であ
る。 部材を大量に生産する場合には、その外形に合致
させた割型を熱伝導度の高いアルミニウムや銅で用意
し、部材に接する面にセラミックスのコーティングを施
して、電気的には絶縁するが熱的には比較的高い伝導度
を保った冷却用治具を製造し、使用するとよい。
Various means are available for cooling the surface.
The simplest of these is blowing cold air or flowing cold water, but in the case of a member having a relatively complicated shape, in order to cool the entire surface as uniformly as possible, the member should be powdered in an appropriate container. Techniques such as immersing the powder in the body or cooling the powder from the outside of the container are useful. When mass-producing members, prepare a split mold that matches the outer shape of aluminum or copper with high thermal conductivity, and apply a ceramic coating to the surface in contact with the members to insulate them electrically. It is advisable to manufacture and use a cooling jig that has a relatively high thermal conductivity.

【0009】本発明は、等軸の(α+β)組織を形成す
るTi合金のすべてに適用できる。現在実用されている
チタン合金においてこの条件をみたすものは、前記した
Ti−6Al−4V合金に加えて、Ti−3Al−2.
5V,Ti−5Al−2.5Fe,Ti−5Al−2.
5Sn合金などがある。
The present invention can be applied to all Ti alloys forming an equiaxed (α + β) structure. Among the titanium alloys currently in practical use, those satisfying this condition include Ti-3Al-2.
5V, Ti-5Al-2.5Fe, Ti-5Al-2.
5Sn alloy and the like.

【0010】[0010]

【作用】これらのチタン合金は、比較的低い温度で熱間
加工することにより、微細な等軸晶組織となる。 一
方、加工を行なっても高温から冷却すると、その過程で
起る変態によって針状晶や板状晶の組織ができる。 T
i−6Al−4V合金でいえば、900℃で鍛造を開始
し700℃で終了した場合、組織は図1に示すような等
軸晶であり、1100℃で鍛造し1000℃で終了した
場合、組織は図2に示すような針状晶となる。
FUNCTION These titanium alloys become a fine equiaxed crystal structure by hot working at a relatively low temperature. On the other hand, if the alloy is cooled from a high temperature even if it is processed, a needle-like crystal or plate-like crystal structure is formed by the transformation that occurs in the process. T
Speaking of i-6Al-4V alloy, when forging is started at 900 ° C. and finished at 700 ° C., the structure is an equiaxed crystal as shown in FIG. 1, and when forged at 1100 ° C. and finished at 1000 ° C., The structure becomes acicular crystals as shown in FIG.

【0011】一般にチタン合金において、等軸晶の組織
は疲労破壊の起点となる亀裂が発生しにくい。 そこ
で、通常はこの組織を得るように加工条件を選択してい
るが、はじめに記したように、疲労強度は十分高いとは
いえない。 その理由は、いったん亀裂が発生すると、
その伝播は速やかであって部材の破壊につながりやすい
ことにある。 これに対して、粗い板状晶や針状晶の組
織は、亀裂は発生しやすいが、伝播しにくい傾向があ
る。
Generally, in a titanium alloy, the equiaxed structure is unlikely to cause cracks which are the starting points of fatigue fracture. Therefore, the working conditions are usually selected so as to obtain this structure, but as described at the beginning, the fatigue strength is not sufficiently high. The reason is that once a crack occurs,
The propagation is rapid and easily leads to the destruction of the member. On the other hand, the rough plate-like crystal or needle-like crystal structure is likely to cause cracks but tends to be difficult to propagate.

【0012】本発明は、こうした組織の挙動のちがいに
注目して、表面は亀裂の発生しにくい微細な等軸晶組織
とし、内部は亀裂の伝播しにくい粗い板状晶または針状
晶の組織とし、両者の補完によって全体として疲労強度
を向上させたものである。
In the present invention, paying attention to such a difference in behavior of the structure, the surface has a fine equiaxed crystal structure in which cracks hardly occur, and the inside has a rough plate-like or needle-like structure in which cracks hardly propagate. The fatigue strength as a whole is improved by complementing both.

【0013】このような組織の組み合わせを実現するに
は、まず全体の組織を塑性加工により微細な等軸晶と
し、次に表面の組織はそのまま保存して、内部だけ粗い
板状晶または針状晶にするために、高温に加熱して冷却
する手順をふむ。 表面の冷却下に通電加熱すること
が、これを実現する手段である。
In order to realize such a combination of structures, first, the whole structure is made into a fine equiaxed crystal by plastic working, then the surface structure is preserved as it is, and only the inside is rough plate-like crystals or needle-like crystals. In order to crystallize, the procedure of heating to high temperature and cooling is included. Electrical heating while cooling the surface is a means of achieving this.

【0014】上記の説明から容易に理解されるように、
通電加熱により内部が到達すべき温度は、そこから冷却
する過程で変態が生じるものでなければならず、表面は
もとの組織に変化が生じない温度領域内に保たなければ
ならない。 それらの温度は合金組成によって若干の差
異があるから、実操業の条件はそれぞれの場合に応じ
て、必要ならば若干の実験を行なって決定すべきであ
る。
As will be readily understood from the above description,
The temperature that the inside should reach by the electric heating must be such that transformation occurs in the process of cooling from there, and the surface must be kept within a temperature range where the original structure does not change. Since the temperatures thereof are slightly different depending on the alloy composition, the conditions of actual operation should be determined depending on the case by conducting some experiments if necessary.

【0015】[0015]

【実施例】重量で、Al:6.04%、V:4.07
%、O:0.14%、N:0.002%およびH:0.
002%を含有し、残部がTiからなるTi−6Al−
4V合金を、プラズマ溶解とそれに続く真空アーク二次
溶解により製造した。 鋳塊を圧延して鍛造し、直径2
0mmの丸棒とした。 鍛造温度(開始→終了)を900
→700℃としたとき(試料「A0」とする)の組織は
図1に示すとおりであり、1100→1000℃とした
とき(試料「B0」とする)のそれは図2に示すとおり
であった。
Example: By weight, Al: 6.04%, V: 4.07
%, O: 0.14%, N: 0.002% and H: 0.
Ti-6Al- containing 002% and the balance being Ti
The 4V alloy was produced by plasma melting followed by vacuum arc secondary melting. The ingot is rolled and forged to a diameter of 2
It was a 0 mm round bar. Forging temperature (start → end) 900
When the temperature was changed to 700 ° C. (sample “A0”), the structure was as shown in FIG. 1, and when the temperature was changed from 1100 to 1000 ° C. (sample “B0”), the structure was shown in FIG. 2. ..

【0016】上記の丸棒を機械加工して、直径8mmに削
った。 試料A0の数本をとり、その一端から軸方向に
中心に向って孔をあけ、内部に熱電対を入れるとともに
表面にも熱電対を接触させ、表1に示す方法で表面を冷
却しながら、通電して内部を高温に加熱した。 表面お
よび中心の温度と加熱時間とを、冷却方法とともに表1
に示す。
The above round bar was machined to a diameter of 8 mm. Taking several samples A0, opening a hole from one end thereof toward the center in the axial direction, inserting a thermocouple inside and contacting the thermocouple with the surface, while cooling the surface by the method shown in Table 1, Electricity was applied to heat the inside to a high temperature. Table 1 shows the temperature of the surface and the center and the heating time together with the cooling method.
Shown in.

【0017】 表 1 No. 冷却方法 表面温度 中心温度 加熱時間 A1 焼結アルミナ割型中 550℃ 1150℃ 5秒間 A2 BN粉末中に埋没 650℃ 1150℃ 10秒間 A3 送 風 750℃ 1110℃ 30秒間 A4 送 風 1050℃ 1220℃ 60秒間 上記の試料A0およびB0を直径8mmに切削したもの、
ならびにA1〜4の各試料の表面を研摩して平滑試験片
とし、小野式回転曲げ疲れ試験を行なった。組織と組織
の遷移位置(表面からの深さ)を、疲れ強さの値ととも
に、表2に示す。
Table 1 No. Cooling method Surface temperature Center temperature Heating time A1 Sintered alumina split mold 550 ° C. 1150 ° C. 5 seconds A2 BN embedded in powder 650 ° C. 1150 ° C. 10 seconds A3 air blow 750 ° C. 1110 ° C. 30 seconds A4 air blow 1050 ° C. 1220 ° C. 60 The above samples A0 and B0 cut into a diameter of 8 mm,
The surface of each of the samples A1 to A4 was polished into smooth test pieces, and the Ono-type rotary bending fatigue test was performed. Table 2 shows the structure and the transition position of the structure (depth from the surface) together with the value of fatigue strength.

【0018】 表 2 区 分 試料No. 表層組織 内部組織 遷移位置 疲れ強さ mm MPa 実施例 A1 等軸晶 針状晶 0.15 720 A2 等軸晶 針状晶 0.10 680 A3 等軸晶 針状晶 0.05 650 比較例 A 等軸晶 等軸晶 − 585 B 針状晶 針状晶 − 505 A4 針状晶 針状晶 − 495Table 2 section Sample No. Surface structure Internal structure Transition position Fatigue strength mm MPa Example A1 equiaxed needle-like crystal 0.15 720 A2 equiaxed needle-like crystal 0.10 680 A3 equiaxed needle-like crystal 0.05 650 Comparative example A equiaxed equiaxed-585 B needle Needle-like crystals-505 A4 Needle-like crystals Needle-like crystals-495

【0019】[0019]

【発明の効果】本発明のチタン合金製部材は、表層部が
微細な等軸晶であって破壊の起点となる亀裂の生じにく
い組織であり、内部が粗い板状晶または針状晶であって
亀裂が伝播しにくい組織であるため、全体が等軸晶組織
である従来の部材とくらべて、疲労強度が向上してい
る。
INDUSTRIAL APPLICABILITY The titanium alloy member of the present invention has a structure in which the surface layer portion is a fine equiaxed crystal and a crack which is a starting point of fracture is hard to occur, and the inside is a rough plate crystal or needle crystal. Since the structure is such that cracks do not easily propagate, the fatigue strength is improved as compared with the conventional member having an equiaxed crystal structure as a whole.

【0020】この改良された部材は、表面冷却下の通電
による内部加熱という、簡単で制御しやすい方法で製造
することができる。
The improved member can be manufactured by a simple and easily controlled method of internal heating by energizing under surface cooling.

【0021】本発明は、前記したコンロッドのような、
繰り返し応力の加わる部材はもちろんのこと、転造ボル
トのような製品に対しても適用でき、機械の信頼性と耐
久力を増す上で役立つ。
The present invention, like the connecting rod described above,
It can be applied not only to members to which repeated stress is applied, but also to products such as rolling bolts, which is useful for increasing the reliability and durability of the machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のチタン合金製部材の表層部の組織
(等軸晶)を示す、顕微鏡視野の模写図(倍率480
倍)。
FIG. 1 is a copy of a microscope field of view (magnification: 480) showing the structure (equiaxed crystal) of the surface layer of a titanium alloy member of the present invention.
Times).

【図2】 本発明のチタン合金製部材の内部の組織(針
状晶)を示す、顕微鏡視野の模写図(倍率480倍)。
FIG. 2 is a copy of a microscope field of view (magnification: 480 times) showing the internal structure (acicular crystals) of the titanium alloy member of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン合金を材料とし所望の形状をもつ
部材において、表層部の組織が微細な等軸晶であり、内
部の組織が粗い板状晶または針状晶であることを特徴と
する疲労強度のすぐれたチタン合金製部材。
1. A member made of a titanium alloy and having a desired shape, wherein the surface layer has a fine equiaxed crystal structure and the internal structure has a rough plate crystal or needle crystal structure. Titanium alloy member with excellent fatigue strength.
【請求項2】 チタン合金に塑性変形の生じる加工を行
なって、所望の形状を有するとともに全体の組織が微細
な等軸晶である部材とし、この部材に、その表面を冷却
しながら通電して内部を加熱することにより、表層部の
等軸晶組織を維持したまま内部を粗い板状晶または針状
晶の組織に変えることからなる疲労強度のすぐれたチタ
ン合金製部材の製造方法。
2. A titanium alloy is processed to cause plastic deformation to obtain a member having a desired shape and having a fine equiaxed crystal structure as a whole, and this member is energized while cooling its surface. A method for producing a titanium alloy member excellent in fatigue strength, which comprises heating the inside to change the inside into a coarse plate-like or needle-like structure while maintaining the equiaxed crystal structure of the surface layer portion.
JP11635592A 1992-05-08 1992-05-08 Member made of titanium alloy excellent in fatigue strength and its manufacture Pending JPH05311366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11635592A JPH05311366A (en) 1992-05-08 1992-05-08 Member made of titanium alloy excellent in fatigue strength and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11635592A JPH05311366A (en) 1992-05-08 1992-05-08 Member made of titanium alloy excellent in fatigue strength and its manufacture

Publications (1)

Publication Number Publication Date
JPH05311366A true JPH05311366A (en) 1993-11-22

Family

ID=14684909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11635592A Pending JPH05311366A (en) 1992-05-08 1992-05-08 Member made of titanium alloy excellent in fatigue strength and its manufacture

Country Status (1)

Country Link
JP (1) JPH05311366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174709A (en) * 2007-12-25 2009-08-06 Yamaha Motor Co Ltd Fracture split-type connecting rod, internal combustion engine, transportation apparatus, and production method for fracture split-type connecting rod
CN111705280A (en) * 2020-08-03 2020-09-25 贵州大学 Dual-phase titanium alloy component with long fatigue life and method for improving fatigue life of dual-phase titanium alloy component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174709A (en) * 2007-12-25 2009-08-06 Yamaha Motor Co Ltd Fracture split-type connecting rod, internal combustion engine, transportation apparatus, and production method for fracture split-type connecting rod
CN111705280A (en) * 2020-08-03 2020-09-25 贵州大学 Dual-phase titanium alloy component with long fatigue life and method for improving fatigue life of dual-phase titanium alloy component

Similar Documents

Publication Publication Date Title
CN1025358C (en) Turbine blades and manufacture method thereof
US8685298B2 (en) Method for hot shaping a workpiece and agent for reducing the heat emission
CA2706289C (en) Method for producing a forging from a gamma titanium aluminum-based alloy
JP2003532791A (en) Metal object having fine and homogeneous structure and surface condition, and method of manufacturing the same
JPH04232234A (en) Production of product from doping material containing alloy on basis of titanium aluminide
KR20160033096A (en) Method for Manufacturing a Titanium-Aluminum Alloy Part
JP5829213B2 (en) Stress relaxation heat treatment of titanium alloy parts
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
US7115177B2 (en) Method for the treatment of metallic materials
Pilchak et al. The effect of friction stir processing on the mechanical properties of investment cast and hot isostatically pressed Ti-6Al-4V
JP2789759B2 (en) Ti alloy engine valve
CN106987789A (en) Improve the heat treatment method that SLM shapes TC4 strength plastic's matching performances
JP2002178167A (en) Joining method for ti alloy and ti-al-base intermetallic compound and engine valve formed by this method
JPH05311366A (en) Member made of titanium alloy excellent in fatigue strength and its manufacture
JP4259863B2 (en) Method for manufacturing high load capacity member made of TiAl alloy
CN107008882A (en) The manufacture method of alloy pig
US20090159161A1 (en) METHOD FOR FABRICATING A THICK Ti64 ALLOY ARTICLE TO HAVE A HIGHER SURFACE YIELD AND TENSILE STRENGTHS AND A LOWER CENTERLINE YIELD AND TENSILE STRENGTHS
JPH10156473A (en) Hot working method of tial base intermetallic compound
JP2006016691A (en) Heat treatment method and heat treatment apparatus for solid alloy material
JPH05279835A (en) Production of titanium alloy valve
JPH07278692A (en) Production of high-si-content al alloy die casting member having high strength
JP3721454B2 (en) Cylinder head surface treatment method
Tang et al. Investigation into the local continuous heating calibration process of a 304 stainless steel pipe by electrically assisted roll bending
JPH04351241A (en) Method for plastic-working hard to-work material
JP3322899B2 (en) Manufacturing method of titanium alloy