JPH0531122B2 - - Google Patents

Info

Publication number
JPH0531122B2
JPH0531122B2 JP56198246A JP19824681A JPH0531122B2 JP H0531122 B2 JPH0531122 B2 JP H0531122B2 JP 56198246 A JP56198246 A JP 56198246A JP 19824681 A JP19824681 A JP 19824681A JP H0531122 B2 JPH0531122 B2 JP H0531122B2
Authority
JP
Japan
Prior art keywords
film
polarizing
adhesives
polyester
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56198246A
Other languages
Japanese (ja)
Other versions
JPS5898709A (en
Inventor
Toshihiko Sugimoto
Takao Matsui
Tatsuya Kubozono
Kaoru Aizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP56198246A priority Critical patent/JPS5898709A/en
Publication of JPS5898709A publication Critical patent/JPS5898709A/en
Publication of JPH0531122B2 publication Critical patent/JPH0531122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明性、耐湿熱性、寸法安定性及び耐
熱性に優れる偏光板に関するものである。 近時、卓上電子計算機、デジタル時計などの液
晶表示装置に用いられている偏光板は、一般に偏
光フイルムの両面に表面保護層が形成され、偏光
フイルムの寿命を長く保つようにされている。 これまで、表面保護層を形成し得る素材とし
て、文献或いは特許公報においては、光学的透明
性を有するものであれば、多くのガラス又はプラ
スチツクフイルムが使用できると記載されている
が、実際的にはセルロース系フイルム又はポリア
クリル系樹脂が実用化されているにすぎない。こ
れは光学的透明性に優れていることもさることな
がら、配向が少なく、貼り付け又は塗布硬化が容
易なことに起因している。 しかして、実用化されているセルロース系或い
はポリアクリル系では、偏光板として必ずしも充
分な寸法安定性、耐湿熱性などを有するものでは
なく、殊に自動車の計器類或いは屋外の表示など
の苛酷な条件下では使用し難いという問題があ
る。一方、かかる耐湿熱性を改善する目的で、上
記の如く偏光フイルムの両面に表面保護層を形成
した偏光板の表面に、無軸或いは有軸の防湿用フ
イルムを貼り合せてなるものが提案されている。 しかして、このように偏光板の表面にさらに他
のフイルムを貼り合せることは、これを組み込ん
でなる液晶表示装置等において薄型化しようとす
る技術の流れに逆行するばかりか、貼り合せ工程
の増加によつて高価となつたり、保護層と防湿用
フイルムとの屈折率の差により表示の鮮明性が欠
けたりするという問題があり、これまでに実用化
されていないのが現状である。 本発明者達はかかる情況に鑑み、耐熱性、耐湿
熱性及び寸法安定性に優れ、しかも偏光フイルム
と組み合せたときに、位相差によつて着色したよ
うな性状を発現しない表面保護層としてのプラス
チツクフイルム層について鋭意研究した結果、
0.5〜200μmの位相差値を有する、一方向のみに
延伸してなるポリエステルフイルムが表面保護層
として好適であることを見い出し、本発明に至つ
たものである。 即ち本発明は、偏光フイルムの少なくとも一方
の表面に、下式の位相差値δが0.5〜200μmであ
る一方向のみに延伸してなるポリエステルフイル
ムが前記偏光フイルムの吸収軸とポリエステルフ
イルムの延伸軸とがほぼ直交及び(又は平行)に
接着剤層を介して貼り合されている偏光板を提供
するものである。 式 δ=Δn・d (式中δは入射偏光面とフイルムの長手方向軸と
の角度を45度に設定したときの位相差値、Δnは
複屈折値、dは厚み) 本発明の偏光板によれば、殊に耐熱、耐湿熱及
び寸法安定性に優れ、しかも機械的強度に優れる
ので、自動車の計器類や屋外表示などの苛酷な条
件下で使用しても偏光特性の低下がない液晶表示
装置が得られるものである。 本発明の実施に当つて用いられる偏光フイルム
は、ポリビニルアルコール系フイルム、部分ホル
マール化ポリビニルアルコール系フイルム、エチ
レン−酢酸ビニル共重合物ケン化物(EVOH)
フイルムの如き親水性高分子系フイルムに、沃素
及び/又は二色性染料の如き偏光素子を、吸着配
向せしめた沃素及び/又は二色性染料系偏光フイ
ルム、又はポリビニルアルコール系フイルムを脱
水処理するか或いはポリ塩化ビニル系フイルムを
脱塩塩酸処理するかしてポリエンを形成せしめ配
向してなるポリエン系偏光フイルムなどである。 該偏光フイルムの片面又は両面に接着剤層を介
して貼り合される一方向のみに延伸してなるポリ
エステルフイルムは、ポリエチレンテレフタレー
ト、ポリエチレンイソフタレート、ポリブチレン
テレフタレートなどのポリエステルからなるフイ
ルムを、縦軸又は横軸方向のみに少なくとも5
%、好ましくは50〜800%、実用的には100〜600
%延伸し、100℃で60分間〜240℃で5分間ヒート
セツトしてなる、厚さ約15〜1500μmのものであ
つて、且つセナルモ法(S′enarmont法)によつ
て測定される複屈折値とフイルム厚みとの積で表
わされる位相差の値が、0.5〜200μm、好ましく
は1〜150μmであることが必要である。 位相差値はδ=Δn.d(Δnは複屈折値、dは厚
み)の積によつて求められる。 偏光フイルムの片面又は両面には、前記の一方
向のみに延伸したポリエステルフイルムが接着剤
層を介して貼り合されるが、その貼り合せ状態
は、片面のみの場合は偏光フイルムの吸収軸とポ
リエステルフイルムの延伸軸とが直交又は平行と
なるように、また両面の場合でも吸収軸と延伸軸
とが直交又は平行するように、或いは上下のポリ
エステルフイルムの延伸軸が直交するように夫々
貼り合される。また片面のみにポリエステルフイ
ルムが貼り合せるタイプにおいては、要すれば他
方の面に無方向又はポリエステル以外の一方向の
みに延伸してなるプラスチツクフイルムを貼り合
せることができる。 なお偏光フイルムの吸収軸とポリエステルフイ
ルムの延伸軸とは、上述の如くほぼ直交及び(又
は)平行に貼り合されるものであるが、その貼り
合せズレ角度は1.5分〜5度の範囲であることが、
偏光特性及び機械的特性上好ましいものである。 偏光フイルムとポリエステルフイルムとの貼り
合せに使用される接着剤組成物は、接着特性以外
に、約2〜50μmの厚みにおいて光学的透明性を
有すると共に、含有成分によつて偏光フイルムの
偏光特性を消失又は低下させないものであること
が必要で、好適にはポリエステル系接着剤、ポリ
アクリル系接着剤、エポキシ系接着剤、シアノア
クリレート系接着剤、ポリウレタン系接着剤、ス
ピラン系接着剤などを挙げることができる。 しかして、両フイルムの貼り合せに際し、充分
な接着強度を得るために、両フイルムの貼り合せ
界面側を表面処理することは望ましいことであ
る。ポリエステルフイルムの表面処理法として
は、又パツタリング法、酸化火災法、或いはプラ
イマー処理法、アルカリ処理法などが使用でき、
偏光フイルムの表面処理法としては、シランカツ
プリング剤、ポリイソシアネート化合物などによ
るプライマー処理法などが使用できる。 なおポリエステルフイルムの表面(露出面)
に、シリコン系樹脂などを塗布して耐スクラツチ
処理したり、フツ化マグネシウムなどを蒸着など
の手段により形成して透明性を向上させたりする
ことは、偏光板の寿命を長くすると共に偏光特性
上好ましいものである。 本発明の偏光板は、表面保護層として位相差値
が0.5〜200μmのポリエステルフイルムを用いた
から、光学的透明性に優れると共に、耐熱性、耐
湿熱性及び寸法安定性を有するという特徴を有す
る。しかも、本発明の偏光板は保護層が単層であ
るので従来と同等又はその以下の厚さのものが得
られ、しかも工程の増加もなく、視認性が低下す
ることもないという実用上の利点を有する。 以下本発明の実施例を示す。 以下の実施例で用いる偏光フイルムは下記A又
はBの各れかである。 A:ポリビニルアルコール系フイルムに沃素を吸
着させ、約4倍延伸して配向してなる沃素偏光
フイルム。透過率40%、偏光度89%。 B:ポリビニルアルコール系フイルムを脱水処理
してポリエンを形成し、配向してなるポリエン
系偏光フイルム。透過率40%、偏光度90%。 実施例 1 偏光フイルム(A)の両面をポリイソシアネート化
合物で表面処理する。 一方、位相差値が1.1μmのポリエステルフイル
ム(厚み100μm、延伸倍率200%)の片面に、ポ
リエステル系接着剤溶液を塗布(厚み20μm)す
る。 次に前記フイルム(A)の処理面(両面)に、該フ
イルムの吸収軸とポリエステルフイルムの延伸軸
とが5分の角度で交わるように、接着剤層面を介
して貼り合せ、本発明の偏光板を得る。 実施例 2 実施例1において、フイルム(A)の吸収軸とポリ
エステルフイルムの延伸軸とを直交させて貼り合
せた以外は、実施例1と同様の操作にて偏光板を
得る。 実施例 3 第1表に示す位相差値、厚み及び延伸倍率を有
する一方向のみに延伸したポリエステルフイルム
に、エポキシ系接着剤溶液を塗布(厚み20μm)
し、これを偏光フイルム(B)の両面に、該フイルム
(B)の吸収軸とポリエステルフイルムの延伸軸とが
3分の角度で交わるように貼り合せ、本発明の偏
光板を得る。
The present invention relates to a polarizing plate that has excellent transparency, moist heat resistance, dimensional stability, and heat resistance. BACKGROUND ART In recent years, polarizing plates used in liquid crystal display devices such as desktop computers and digital watches generally have a surface protective layer formed on both sides of the polarizing film to maintain a long service life. Until now, literature and patent publications have stated that many glass or plastic films can be used as materials that can form a surface protective layer, as long as they have optical transparency. Only cellulose films or polyacrylic resins have been put into practical use. This is due to not only excellent optical transparency but also the fact that there is little orientation and it is easy to paste or cure the coating. However, the cellulose-based or polyacrylic-based materials that have been put into practical use do not necessarily have sufficient dimensional stability or moisture and heat resistance as polarizing plates, and are particularly suitable for use under harsh conditions such as automobile instruments or outdoor displays. There is a problem in that it is difficult to use at lower temperatures. On the other hand, for the purpose of improving such heat and humidity resistance, it has been proposed that a non-axial or axial moisture-proofing film is bonded to the surface of a polarizing plate in which a surface protective layer is formed on both sides of the polarizing film as described above. There is. However, laminating another film on the surface of the polarizing plate in this way not only goes against the trend of technology that is trying to make liquid crystal display devices, etc. that incorporate this film thinner, but also increases the lamination process. However, it has not been put into practical use so far because it is expensive and the display lacks clarity due to the difference in refractive index between the protective layer and the moisture-proof film. In view of these circumstances, the present inventors developed a plastic material as a surface protective layer that has excellent heat resistance, heat and humidity resistance, and dimensional stability, and does not exhibit colored properties due to retardation when combined with a polarizing film. As a result of intensive research on film layers,
The inventors have discovered that a polyester film stretched in only one direction and having a retardation value of 0.5 to 200 μm is suitable as a surface protective layer, leading to the present invention. That is, in the present invention, on at least one surface of a polarizing film, a polyester film stretched only in one direction and having a retardation value δ of the following formula of 0.5 to 200 μm is arranged so that the absorption axis of the polarizing film and the stretching axis of the polyester film The present invention provides a polarizing plate in which the two are bonded to each other substantially orthogonally and (or in parallel) via an adhesive layer. Formula δ=Δn・d (In the formula, δ is the retardation value when the angle between the incident polarization plane and the longitudinal axis of the film is set to 45 degrees, Δn is the birefringence value, and d is the thickness) Polarizing plate of the present invention According to , it is a liquid crystal that has excellent heat resistance, humidity and heat resistance, and dimensional stability, as well as excellent mechanical strength, so its polarization properties do not deteriorate even when used under harsh conditions such as in automobile instruments and outdoor displays. A display device is obtained. The polarizing film used in carrying out the present invention is a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or a saponified ethylene-vinyl acetate copolymer (EVOH).
A polarizing element such as iodine and/or dichroic dye is adsorbed and oriented on a hydrophilic polymer film such as a film, and an iodine and/or dichroic dye polarizing film or a polyvinyl alcohol film is dehydrated. Alternatively, there may be a polyene polarizing film made by subjecting a polyvinyl chloride film to a desalting hydrochloric acid treatment to form and orient polyene. A polyester film stretched only in one direction and bonded to one or both sides of the polarizing film via an adhesive layer is a film made of polyester such as polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, etc. or at least 5 in the horizontal direction only
%, preferably 50-800%, practically 100-600
% stretched and heat set at 100°C for 60 minutes to 240°C for 5 minutes, with a thickness of about 15 to 1500 μm, and the birefringence value measured by the S'enarmont method. It is necessary that the value of the phase difference expressed as the product of the film thickness and the film thickness is 0.5 to 200 μm, preferably 1 to 150 μm. The phase difference value is determined by the product of δ=Δn.d (Δn is the birefringence value and d is the thickness). A polyester film stretched in only one direction is bonded to one or both sides of the polarizing film via an adhesive layer, but in the case of only one side, the absorption axis of the polarizing film and the polyester film are bonded to each other. The films are bonded together so that the stretching axis of the film is perpendicular or parallel to each other, or even in the case of both sides, the absorption axis and the stretching axis are perpendicular or parallel to each other, or the upper and lower polyester films are laminated so that the stretching axes of the upper and lower polyester films are orthogonal to each other. Ru. In the case of a type in which a polyester film is attached to only one side, a plastic film stretched in no direction or in only one direction other than polyester can be attached to the other side, if necessary. It should be noted that the absorption axis of the polarizing film and the stretching axis of the polyester film are bonded together almost orthogonally and/or in parallel as described above, but the bonding deviation angle is in the range of 1.5 minutes to 5 degrees. That is,
This is preferable in terms of polarization properties and mechanical properties. In addition to adhesive properties, the adhesive composition used for bonding a polarizing film and a polyester film has optical transparency at a thickness of about 2 to 50 μm, and depending on the components contained, the adhesive composition can affect the polarizing properties of the polarizing film. It is necessary that the adhesive does not disappear or deteriorate, and suitable examples include polyester adhesives, polyacrylic adhesives, epoxy adhesives, cyanoacrylate adhesives, polyurethane adhesives, and spirane adhesives. I can do it. Therefore, in order to obtain sufficient adhesive strength when bonding both films together, it is desirable to perform a surface treatment on the bonding interface side of both films. As a surface treatment method for polyester film, puttering method, oxidation fire method, primer treatment method, alkali treatment method, etc. can be used.
As a surface treatment method for the polarizing film, a primer treatment method using a silane coupling agent, a polyisocyanate compound, etc. can be used. The surface of the polyester film (exposed surface)
In addition, coating the polarizing plate with a silicone resin to provide scratch resistance, or forming magnesium fluoride through vapor deposition to improve transparency will extend the life of the polarizing plate and improve its polarizing properties. This is preferable. Since the polarizing plate of the present invention uses a polyester film having a retardation value of 0.5 to 200 μm as a surface protective layer, it has excellent optical transparency, as well as heat resistance, moist heat resistance, and dimensional stability. Moreover, since the polarizing plate of the present invention has a single protective layer, it is possible to obtain a product with a thickness equal to or less than that of the conventional one, and there is no increase in the number of steps and there is no decrease in visibility, which is practical. has advantages. Examples of the present invention will be shown below. The polarizing film used in the following examples is either A or B below. A: An iodine polarizing film made by adsorbing iodine to a polyvinyl alcohol film and stretching it approximately 4 times for orientation. Transmittance 40%, degree of polarization 89%. B: A polyene polarizing film obtained by dehydrating a polyvinyl alcohol film to form polyene and orienting it. Transmittance 40%, degree of polarization 90%. Example 1 Both sides of the polarizing film (A) are surface-treated with a polyisocyanate compound. On the other hand, a polyester adhesive solution is applied (thickness: 20 μm) on one side of a polyester film (thickness: 100 μm, stretching ratio: 200%) having a retardation value of 1.1 μm. Next, the film (A) is bonded to the treated surfaces (both sides) via the adhesive layer so that the absorption axis of the film and the stretching axis of the polyester film intersect at an angle of 5 minutes. Get a board. Example 2 A polarizing plate was obtained in the same manner as in Example 1, except that the absorption axis of the film (A) and the stretching axis of the polyester film were bonded to each other at right angles. Example 3 An epoxy adhesive solution was applied to a polyester film stretched in only one direction having the retardation value, thickness, and stretching ratio shown in Table 1 (thickness: 20 μm)
Then apply this to both sides of the polarizing film (B).
The polarizing plate of the present invention is obtained by bonding so that the absorption axis of (B) and the stretching axis of the polyester film intersect at an angle of 3 minutes.

【表】 参考例 偏光フイルム(A)の両面に、無配向のトリアセテ
ートフイルム(厚み100μm)をエポキシ系接着
剤を用いて貼り合せ、偏光板を得る。 実施例1〜3及び参考例の試験結果を第2表に
示す。
[Table] Reference Example A non-oriented triacetate film (thickness 100 μm) is attached to both sides of the polarizing film (A) using an epoxy adhesive to obtain a polarizing plate. The test results of Examples 1 to 3 and Reference Examples are shown in Table 2.

【表】 第2表中の偏光度は、400〜700nmの光線領域
にて、50nmごとに、平行時と直交時との光透過
率を求め、その平均値から下式に基いて求めた。 (但、式中H0は平均平行透過率、H90は平均直交
透過率である。)
[Table] The degree of polarization in Table 2 was determined by calculating the light transmittance in parallel and perpendicular times in the light beam region of 400 to 700 nm every 50 nm, and using the average value thereof based on the formula below. (However, in the formula, H 0 is the average parallel transmittance and H 90 is the average orthogonal transmittance.)

Claims (1)

【特許請求の範囲】 1 偏光フイルムの少なくとも一方の表面に、下
式の位相差値δが0.5〜200μmである一方向にの
み延伸してなるポリエステルフイルムが前記偏光
フイルムの吸収軸と該ポリエステるフイルムの延
伸軸とがほぼ直交又は平行に接着剤層を介して貼
り合されている偏光板。 式 δ=Δn・d (式中δは入射偏光面とフイルムの長手方向軸と
の角度45度に設定したときの位相差値、Δnは複
屈折値、dは厚み) 2 接着剤層がポリエステル系接着剤、ポリアク
リル系接着剤、エポキシ系接着剤、シアノアクリ
ル系接着剤、ポリウレタン系接着剤、スピラン系
接着剤の群から選ばれた少なくとも一種の接着剤
組成物からなる特許請求の範囲第1項記載の偏光
板。
[Scope of Claims] 1. On at least one surface of the polarizing film, a polyester film stretched only in one direction and having a retardation value δ of the following formula of 0.5 to 200 μm is arranged between the absorption axis of the polarizing film and the polyester film. A polarizing plate in which the stretching axis of the film is bonded to each other through an adhesive layer so that the stretching axis is substantially perpendicular or parallel to the film. Formula δ=Δn・d (In the formula, δ is the retardation value when the angle between the incident polarization plane and the longitudinal axis of the film is set at 45 degrees, Δn is the birefringence value, and d is the thickness) 2. The adhesive layer is polyester Claim No. 1, comprising at least one adhesive composition selected from the group of adhesives, polyacrylic adhesives, epoxy adhesives, cyanoacrylic adhesives, polyurethane adhesives, and spiran adhesives. Polarizing plate according to item 1.
JP56198246A 1981-12-08 1981-12-08 Polarizing plate Granted JPS5898709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198246A JPS5898709A (en) 1981-12-08 1981-12-08 Polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198246A JPS5898709A (en) 1981-12-08 1981-12-08 Polarizing plate

Publications (2)

Publication Number Publication Date
JPS5898709A JPS5898709A (en) 1983-06-11
JPH0531122B2 true JPH0531122B2 (en) 1993-05-11

Family

ID=16387930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198246A Granted JPS5898709A (en) 1981-12-08 1981-12-08 Polarizing plate

Country Status (1)

Country Link
JP (1) JPS5898709A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026304A (en) * 1983-07-22 1985-02-09 Nitto Electric Ind Co Ltd Polarizing plate
JPS6176402U (en) * 1984-10-24 1986-05-22
US4659523A (en) * 1984-11-30 1987-04-21 American Hoechst Corporation Production of iodine stainable polyester polarizer film
EP0962484B1 (en) * 1998-05-18 2008-08-06 Toyo Boseki Kabushiki Kaisha Optical-use adhesive film
JPWO2008111581A1 (en) * 2007-03-12 2010-06-24 東亞合成株式会社 Optical film laminate and display device using the same
JP5292814B2 (en) * 2008-01-08 2013-09-18 東レ株式会社 Polyester-based laminated film and polarizing plate
JP5811431B2 (en) * 2009-09-11 2015-11-11 住友化学株式会社 Polarizing plate and liquid crystal display device
JP4888853B2 (en) 2009-11-12 2012-02-29 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
US9798189B2 (en) 2010-06-22 2017-10-24 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
WO2012157663A1 (en) 2011-05-18 2012-11-22 東洋紡株式会社 Liquid crystal display device, polarizing plate, and polarizer protection film
CN103649791B (en) 2011-05-18 2016-03-02 东洋纺株式会社 Be applicable to Polarizer and the liquid crystal indicator of 3-D view display reply liquid crystal indicator

Also Published As

Publication number Publication date
JPS5898709A (en) 1983-06-11

Similar Documents

Publication Publication Date Title
CN1216303C (en) Wide-angle polarizer and liquid crystal display device
JP3526830B2 (en) Wide viewing angle polarizing plate and liquid crystal display device
US4427741A (en) Polarizing film
US6829026B2 (en) Laminated phase retarder having a cholesteric liquid crystal layer, polarizing member and liquid crystal display device
JP5085627B2 (en) Birefringence optical film and optical compensation film including the same
JPH0473123B2 (en)
TW201428362A (en) Liquid crystal display device
JPH0339903A (en) Antidazzle polarizing plate made of polycarbonate
JPH037921B2 (en)
JP4363749B2 (en) Optical film
JPH0531122B2 (en)
KR102060795B1 (en) Anti-reflection layer and anti-mirroring layer-attached polarizing plate and manufacturing method thereof
TW518426B (en) Optical sheet, polarizer and liquid-crystal display device
JP2003050313A (en) Polarizing plate and liquid crystal display element
JP3004782B2 (en) Polarizing plate and liquid crystal display
JPS6179644A (en) Transparent laminated conductive film
JP2001272538A (en) Phase difference plate, optical compensating polarizing plate and liquid crystal display device
KR102063205B1 (en) Polarizing plate and light emitting diode display comprising the same
JP3165175B2 (en) Polarizing plate and liquid crystal display
JPH02158701A (en) Composite phase plate
JP2002311243A (en) Laminated retardation plate, polarizing plate and liquid crystal display device
JP3327410B2 (en) Polarizing plate and liquid crystal display
CN1412580A (en) Method for mfg. polaroid and liquid crystal display device
JP3525543B2 (en) Manufacturing method of polarizing plate
KR102601679B1 (en) Laminate, a polarizing plate including thereof and preparing method for the same