JPH05310781A - Improved production of crystal of l-alpha-aspartyl-l-phenylalanine methyl ester - Google Patents

Improved production of crystal of l-alpha-aspartyl-l-phenylalanine methyl ester

Info

Publication number
JPH05310781A
JPH05310781A JP12054192A JP12054192A JPH05310781A JP H05310781 A JPH05310781 A JP H05310781A JP 12054192 A JP12054192 A JP 12054192A JP 12054192 A JP12054192 A JP 12054192A JP H05310781 A JPH05310781 A JP H05310781A
Authority
JP
Japan
Prior art keywords
tank
aspartyl
methyl ester
crystallization
crystallizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12054192A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichiki
寛 市木
Riyouichi Taneda
綾一 種田
Yoshitsugu Jinno
嘉嗣 神野
Hiroyuki Ito
洋之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP12054192A priority Critical patent/JPH05310781A/en
Publication of JPH05310781A publication Critical patent/JPH05310781A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain crystal of L-alpha-aspartyl-L-phenylalanine methyl ester having excellent filtering characteristics and dehydrating properties in high yield, economically and advantageously by using a crystallizing device equipped with a cooler, an agitating element of specific constitution and baffle plats of specific constitution. CONSTITUTION:First, a first member 1 composed of a flat plate to sweet the bottom part of a crystallizing tank 5 is fixed to a revolving shaft 4 at one end in the horizontal direction of the plate and a member 2 which is a bar second member 2 extending from the revolving shaft 4 toward the inner wall of the tank and has one end fixed to the revolving shaft 4 is arranged above the first member 1. Further, a stirring rod or laminar third member 3 which extends in the vertical direction in a liquid and stirs a solution is attached to the first member 1 and/or the second member 2 to constitute an agitating element 6. By using a crystallizing device equipped with a cooler, the agitating element 6 and plural baffle plates 8 set on the side wall face of the crystallizing tank 5 from the bottom to the top along the axial direction at intervals, a solution of L-alpha-aspartyl-L-phenylalanine methyl ester is continuously treated at <= its crystallization temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はα−L−アスパルチル−
L−フェニルアラニンメチルエステル(以下、APMと
略称する)の晶析分離方法に関するものである。
FIELD OF THE INVENTION The present invention relates to α-L-aspartyl-
The present invention relates to a crystallization separation method of L-phenylalanine methyl ester (hereinafter abbreviated as APM).

【0002】[0002]

【従来の技術】APMは砂糖の約200倍の甘味を有す
るジペプチド系の甘味料として広く知られている。AP
Mは種々の方法により合成されるが、いずれの方法にお
いても最終的にはAPMを単離して最終製品とする際
に、粗製のAPMを精製する工程は不可欠である。この
精製工程は通常、水または含水低級アルコール(以下、
水および水を含む溶媒を水性媒体という)のAPM溶液
を冷却により再結晶精製するのが一般的である。得られ
た結晶は遠心分離器等の固液分離装置により分離、脱水
後、乾燥して製品とされる。
APM is widely known as a dipeptide sweetener having a sweetness about 200 times that of sugar. AP
M is synthesized by various methods, but in any method, a step of purifying a crude APM is indispensable when finally isolating APM to obtain a final product. This purification step is usually performed with water or a water-containing lower alcohol (hereinafter,
APM solution of water and a solvent containing water is referred to as an aqueous medium) is generally purified by recrystallization by cooling. The obtained crystals are separated by a solid-liquid separator such as a centrifuge, dehydrated, and dried to obtain a product.

【0003】通常、冷却晶析は、冷却伝熱面を有する攪
拌式晶析槽や外部循環型熱交換器を有する晶析槽でおこ
なわれるが、結晶性状を改善する目的で考案された強制
流動を与えることのない伝導伝熱のみで冷却を行う晶析
槽によっても行われることが、知られている(特開昭5
8−177952)。また、強制流動を与える方法にお
いて、APMの熱水性溶液と冷水性溶液を混合すること
によって晶析を行う方法も知られている(特開平3−7
2497)。
Usually, cooling crystallization is carried out in a stirring type crystallization tank having a cooling heat transfer surface or a crystallization tank having an external circulation type heat exchanger. Forced flow devised for the purpose of improving crystal properties. It is known that the cooling is performed by a crystallization tank that cools only by conduction heat transfer that does not give heat (Japanese Patent Laid-Open No. Sho 5).
8-177952). In addition, as a method of giving forced flow, a method of performing crystallization by mixing a hot aqueous solution and a cold aqueous solution of APM is also known (JP-A-3-7).
2497).

【0004】[0004]

【発明が解決しようとする課題】APMは通常の攪拌や
外部循環等の強制流動を伴う晶析槽により冷却晶析を行
う従来の方法では、濾過および脱水性の悪い微細結晶を
与える。また、この方法によれば、冷却伝熱面に結晶が
容易に析出して、スケーリングをおこし、伝熱効率を急
速に悪化させる欠点があった。
The conventional method of cooling and crystallization of APM in a crystallization tank accompanied by forced flow such as normal stirring and external circulation gives fine crystals having poor filtration and dehydration properties. Further, according to this method, there is a drawback that crystals are easily deposited on the cooling heat transfer surface to cause scaling, and the heat transfer efficiency is rapidly deteriorated.

【0005】このような問題を回避する方法として機械
的攪拌等の強制流動を与えることなく伝導伝熱によりA
PM水溶液を冷却し、擬似固相を形成させ、その後さら
に必要に応じて冷却する方法が提案されているが、この
方法によれば固液分離工程における濾過性、脱水性が改
善された結晶を得ることができるものの、伝導伝熱によ
る冷却を攪拌することなく、しかも擬似固相を形成した
のちも行うことから、冷却効率が極めて悪いので、通常
の晶析装置では、スケールが大きくなるに伴い、冷却に
著しく長時間を要し工業的には限界を生じる。したがっ
て、この先行技術では冷却時間を短縮するために、冷却
面から被冷却体への最大距離を規定し、それに見合った
特殊な装置を提唱している。このように特開昭58−1
77952号公報記載の方法は特殊な晶析装置を使用し
ない限り工業的な方法とはなりえない。
As a method for avoiding such a problem, A is achieved by conduction heat transfer without giving forced flow such as mechanical stirring.
A method has been proposed in which the PM aqueous solution is cooled to form a pseudo-solid phase and then further cooled if necessary. According to this method, crystals having improved filterability and dehydration property in the solid-liquid separation step are obtained. Although it can be obtained, cooling by conduction heat transfer is performed without stirring and after forming the pseudo-solid phase, the cooling efficiency is extremely poor. However, it takes a very long time to cool, and there is a limit industrially. Therefore, in this prior art, in order to shorten the cooling time, the maximum distance from the cooling surface to the object to be cooled is defined, and a special device suitable for it is proposed. As described above,
The method described in Japanese Patent No. 77952 cannot be an industrial method unless a special crystallization apparatus is used.

【0006】また、APMの熱水性溶液と冷水性溶液と
を強制流動下において混合して晶析を行い、さらに必要
に応じて冷却することにより、結晶性状を改善する方法
が提唱されているが、確かに、APMの熱水性溶液と冷
水性溶液とを混合して得られた結晶は、濾過性の良いも
のであるが、水性媒体が水の場合は、得られる結晶の量
は極僅かで経済性の面から工業的に有利な方法とは言え
ない。
Further, a method has been proposed in which a hot aqueous solution and a cold aqueous solution of APM are mixed under forced flow to perform crystallization, and further, if necessary, cooled to improve the crystal properties. However, it is true that the crystals obtained by mixing the hot aqueous solution and the cold aqueous solution of APM have good filterability, but when the aqueous medium is water, the amount of crystals obtained is extremely high. It is a little and not economically advantageous in terms of economy.

【0007】なおかつ、熱水性溶液と冷水性溶液を混合
後、APM結晶の収率を上げようとすれば、機械的攪拌
下に従来から行われている冷却晶析をする必要があり、
熱水性溶液と冷水性溶液を混合した後冷却晶析によって
得られる結晶は、通常の攪拌翼を使用するかぎり、濾過
性の悪い微細な結晶である。それに加えて、熱水性溶液
と冷水性溶液とを混合して得られた結晶さえも、冷却晶
析中に機械的攪拌によって、微細なものとなることが、
充分予想される。このことから、特開平3−72497
公報記載のAPM晶析方法は工業的に有利な方法とは言
えない。
In addition, after mixing the hot aqueous solution and the cold aqueous solution, in order to increase the yield of APM crystals, it is necessary to carry out the cooling crystallization which is conventionally performed under mechanical stirring.
The crystals obtained by mixing the hot aqueous solution and the cold aqueous solution and then cooling and crystallizing are fine crystals having poor filterability as long as an ordinary stirring blade is used. In addition to that, even crystals obtained by mixing a hot aqueous solution and a cold aqueous solution may become fine due to mechanical stirring during cooling crystallization,
Expected enough. From this fact, JP-A-3-72497
The APM crystallization method described in the publication cannot be said to be an industrially advantageous method.

【0008】[0008]

【発明を解決するための手段】本発明者等は、APMの
晶析において前述の問題点を解決すべく鋭意検討を重ね
た結果、濾過性、脱水性にすぐれた結晶を与え、且つ工
業的に有利なAPMの晶析方法を見出すに至った。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems in the crystallization of APM, and as a result, gave crystals excellent in filterability and dehydration, and were industrially used. The present inventors have found a crystallization method of APM that is advantageous for

【0009】すなわち、驚くべくことに、APMをその
溶液から晶出させる方法において、冷却装置および特定
の構成の晶析装置を用いて、APM溶液を晶析装置に連
続的に供給し、供給するAPM溶液の結晶晶出温度以下
になる温度に晶析装置内を冷却維持し、晶出した結晶を
含むスラリー液を連続的に抜き出すことによって得られ
た結晶は濾過性、脱水性に非常に優れたものであり、さ
らに、晶析槽の壁面に殆どスケーリングをおこすことな
く晶析を行うことができることを見出した。なお、晶析
装置内の冷却方法は特に限定されず、減圧による冷却や
晶析装置ジャケットに冷媒を循環することによる外部強
制冷却でもよく、またそれらを組み合わせるなど、晶析
装置内の温度をAPM溶液の結晶析出温度以下に維持出
来ればよい。
That is, surprisingly, in the method for crystallizing APM from the solution, the APM solution is continuously supplied to the crystallizer by using the cooling device and the crystallizer having a specific constitution. Crystals obtained by continuously cooling the inside of the crystallizer to a temperature not higher than the crystal crystallization temperature of the APM solution and continuously extracting the slurry liquid containing the crystallized crystals are very excellent in filterability and dehydration. It was also found that crystallization can be performed with almost no scaling on the wall surface of the crystallization tank. The method for cooling the inside of the crystallizer is not particularly limited, and cooling by decompression or external forced cooling by circulating a refrigerant through the jacket of the crystallizer may be used. It suffices if the temperature can be maintained below the crystal precipitation temperature of the solution.

【0010】前文中の特定の構成の晶析装置は請求項1
に定義しているが、大まかに言えば、槽および槽底部を
掃引する板、その上に設けられる縦方向または横方向に
それぞれ延びる棒状の部材、および邪魔板で構成される
ものである。
A crystallizer having a specific structure in the preamble is claimed in claim 1.
However, roughly speaking, it is composed of a plate for sweeping the tank and the bottom of the tank, a rod-shaped member provided on the plate for extending in the vertical direction or the horizontal direction, and a baffle plate.

【0011】本発明に用いる攪拌翼を説明する。攪拌翼
は槽の中心に設けられる回転軸に、その翼の一側で取り
付けられる。翼を構成する第1の部材は実質的には板
で、槽の底部を掃引する。板の下端と槽底の間隔は狭い
方が、好ましい。理由は明瞭でないが、槽底に向かう液
流が大きくならない方が好ましいようである。槽内壁に
面する端は、その内壁からある程度の間隔が望ましい。
内壁に向かう液流を形成させるためである。
The stirring blade used in the present invention will be described. The stirring blade is attached to a rotating shaft provided at the center of the tank on one side of the blade. The first member of the blade is essentially a plate and sweeps the bottom of the bath. It is preferable that the distance between the lower end of the plate and the bottom of the tank is narrow. Although the reason is not clear, it seems preferable that the liquid flow toward the bottom of the tank is not large. The end facing the inner wall of the tank is preferably spaced to some extent from the inner wall.
This is for forming a liquid flow toward the inner wall.

【0012】第2の部材は、第1の部材の上に設けられ
る回転軸から槽内壁に延びるほぼ棒状の部材材であり、
言い換えれば回転軸から延びる腕である。この部材は一
本に限るものでなく上下に多数並んでいてよい。その長
さの制限は第1の部材の長さの場合と同じであり、もっ
と短くしても構わない。この棒状部材の延びる方向は特
別に液面に平行でなければならないものでなく斜めにな
っていても実質的に液を横向きに切るように設けてあれ
ばよい。
The second member is a substantially rod-shaped member member extending from the rotary shaft provided on the first member to the inner wall of the tank,
In other words, it is an arm extending from the rotation axis. This member is not limited to one, and a plurality of members may be arranged vertically. The limitation of the length is the same as that of the length of the first member, and it may be shorter. The extending direction of the rod-shaped member is not particularly required to be parallel to the liquid surface, and may be provided so as to substantially cut the liquid laterally even if it is inclined.

【0013】第3の部材は、液内でほぼ上下方向に延び
て液を攪拌する棒または板状の部材で、液を攪拌する機
械的強度が保てるならば第1の部材または第2の部材の
いずれか一方のみに固定されているだけでも構わない。
この部材の方向もまた厳密さを求めるものでなく、ほぼ
上下方向に向いておればよく、槽内壁から回転軸方向に
向かう液流を横切る運動をするように第1の部材または
第2の部材を介して設けられていればよい。この部材も
複数であってもよい。
The third member is a rod-shaped or plate-shaped member that extends substantially vertically in the liquid and stirs the liquid. If the mechanical strength of stirring the liquid can be maintained, the first member or the second member. It may be fixed to only one of the above.
The direction of this member is also not required to be strict, and it is sufficient that the member is oriented substantially in the vertical direction. It may be provided via the. This member may be plural.

【0014】上記の三つの部材は、最も普通には同一平
面内に設けて全体として一枚の板で空間を持つ格子状の
ものを構成するものとなるが、全体としての一枚がねじ
れた一枚の曲面を構成していても一向に構わない。当然
のことながら邪魔板は、軸の回転を滑らかに行うことさ
え確保されば1以上の枚数であれば良いが工作の容易さ
からは2枚程度を対称に設けることである。
Most commonly, the above three members are provided in the same plane to form a lattice-like one having a space with one plate as a whole, but one plate as a whole is twisted. It does not matter even if one curved surface is formed. As a matter of course, the number of baffle plates may be one or more as long as it is ensured that the shaft can be smoothly rotated, but for facilitating the work, two baffles are provided symmetrically.

【0015】本発明でとりうる翼の形状を例示すれば第
2図から第6図の如くであり第7図から第9図は本発明
には用いないものである。なお第2の部材と第3の部材
について説明する。上記の説明においては、液面に平行
でとか、液を横向きに切るようにとかの言葉を用いてい
るがこれは説明を分かりやすくするためにわざと静止し
た液面を想定してその前提で表現している。しかし翼が
槽内で回転すれば必然的に槽内には槽底部の液が中心か
ら外周に向かう流れを起こし、これに呼応して槽内は外
周部で上昇、中心部で下降する液の対流が起こり循環す
る。循環流が激しくなれば液面は中心部が下になった放
物面を形成することになる。したがって、第2の部材や
第3の部材はその放物面に平行した向きだと第2図に示
すようになるが、これでもいっこうに差し支えない。さ
らに第2の部材と第3の部材は一体化して第5図に示し
たように一本の曲線の棒となっても差し支えない。
An example of the shape of the blade that can be used in the present invention is as shown in FIGS. 2 to 6, and FIGS. 7 to 9 are not used in the present invention. The second member and the third member will be described. In the above explanation, words such as parallel to the liquid surface or cutting the liquid horizontally are used, but this is expressed on the assumption that the liquid surface is intentionally assumed to be easy to understand. is doing. However, if the blades rotate in the tank, the liquid at the bottom of the tank inevitably causes a flow from the center to the outer circumference in the tank, and in response to this, the liquid inside the tank rises at the outer circumference and descends at the center. Circulation occurs due to convection. If the circulating flow becomes violent, the liquid surface will form a parabolic surface with the central part down. Therefore, the second member and the third member are shown in FIG. 2 when they are oriented parallel to the paraboloid, but this is not a problem. Furthermore, the second member and the third member may be integrated into a single curved rod as shown in FIG.

【0016】本発明においては、上述の攪拌翼を0.2
から1.5m/secの周速で回転させることによっ
て、析出した結晶をほとんど破砕することなく、濾過
性、脱水性に優れたAPM結晶を高収率で得ることがで
きた。また、通常の攪拌翼、例えば、パドル型やタービ
ン型等を使用した場合は、従来の冷却晶析に比べれば、
濾過性、脱水性において、ある程度良好な結晶が得られ
るが、晶析器内壁へのスケーリングを起こさないように
するためには、かなりの周速で回転させる必要があり、
析出した結晶をその剪断力で破砕してしまうので濾過
性、脱水性の優れた結晶を得るには限界を生じた。この
ことは、攪拌等の強制流動条件下では、結晶の性状の改
善をもたらすことが出来ないとされていたAPMの特異
な晶析挙動に照らし合わせる時、まことに驚くべき新事
実といえる。
In the present invention, the above-mentioned stirring blade is set to 0.2
Thus, by rotating at a peripheral speed of 1.5 m / sec, it was possible to obtain APM crystals excellent in filterability and dehydration in a high yield with almost no crushing of the precipitated crystals. Further, when using a normal stirring blade, for example, a paddle type or turbine type, compared to conventional cooling crystallization,
In terms of filterability and dewaterability, some good crystals are obtained, but in order to prevent scaling on the inner wall of the crystallizer, it is necessary to rotate at a considerable peripheral speed,
Since the precipitated crystals are crushed by the shearing force, there is a limit in obtaining crystals having excellent filterability and dehydratability. This is a surprising new fact in view of the peculiar crystallization behavior of APM, which was said to be unable to improve the properties of crystals under forced flow conditions such as stirring.

【0017】すなわち、本発明はα−L−アスパルチル
−L−フェニルアラニンメチルエステルの水溶液からA
PM結晶を得るにあたって、上述の特定の構成の晶析装
置を使用して、連続的に晶析を行うことを特徴とするα
−L−アスパルチル−L−フェニルアラニンメチルエス
テルの晶析方法を提供するものである。
That is, the present invention relates to an aqueous solution of α-L-aspartyl-L-phenylalanine methyl ester from A
In obtaining the PM crystal, crystallization is continuously performed using the crystallizer having the above-mentioned specific structure.
The present invention provides a crystallization method of -L-aspartyl-L-phenylalanine methyl ester.

【0018】本発明の実施態様を図1に示した模式図を
もとに説明する。APM溶解槽#1はAPMを60℃以
下の温度で約2〜4重量%溶解した溶液の貯槽であり、
その溶液が連続的に晶析槽#2へポンプ#4により供給
される。晶析槽#2は槽内に2本以上の邪魔板を有し、
図2〜6に示したような攪拌翼および冷却装置を備えて
いる。晶析槽#2には、溶解槽#1よりAPM溶液が連
続的に供給され、冷却装置によりAPM溶液の結晶晶出
温度以下に冷却され、APMの結晶を連続的に晶出す
る。
An embodiment of the present invention will be described based on the schematic diagram shown in FIG. APM dissolution tank # 1 is a storage tank for a solution in which about 2 to 4% by weight of APM is dissolved at a temperature of 60 ° C. or lower,
The solution is continuously supplied to crystallization tank # 2 by pump # 4. Crystallization tank # 2 has two or more baffles in the tank,
It is equipped with a stirring blade and a cooling device as shown in FIGS. The crystallization tank # 2 is continuously supplied with the APM solution from the dissolution tank # 1, and is cooled to a temperature below the crystallization temperature of the APM solution by a cooling device to continuously crystallize APM crystals.

【0019】APMの結晶が析出する温度は溶媒とその
溶液の濃度に深く関係しており、本発明に於ては、例え
ばAPMの水に対する溶解度は60℃で約5%、20℃
で約1%、5℃で約0.5%であり、溶解度以下の温度
に冷却すれば結晶を析出させる事が出来る。晶析した結
晶スラリーは晶析槽底部より連続的に析出し、遠心分離
機等の分離機器で結晶部と液を分離する。
The temperature at which APM crystals are precipitated is closely related to the concentration of the solvent and its solution. In the present invention, for example, the solubility of APM in water is about 5% at 60 ° C. and 20 ° C.
It is about 1% at 5 ° C. and about 0.5% at 5 ° C., and crystals can be precipitated by cooling to a temperature below the solubility. The crystallized crystal slurry is continuously precipitated from the bottom of the crystallization tank, and the crystal part and the liquid are separated by a separator such as a centrifuge.

【0020】[0020]

【発明の効果】本発明によれば、濾過性、脱水性の良好
な結晶を収率良く得ることができるので、晶析工程の経
済性はもちろんのこと、晶析工程以降においても経済的
に有利な工業的プロセスを提供する。すなわち、晶析工
程を連続化することで、短時間で晶析が行われることか
ら甘味を有しない5−ベンジル−3,6−ジオキソ−2
−ピペラジン酢酸メチルエステル(DKP)の生成を抑
制できる。且つ、装置の小型化がはかれ、また、特殊な
装置を使用する必要のないことから設備費の低減とな
り、固液分離工程においても濾過性の向上による設備の
合理化がはかれ、付着母液中のDKP等の不純物の洗浄
効果も著しく向上する。また、脱水性の向上により、乾
燥工程における乾燥負荷の低減が可能となる。
EFFECTS OF THE INVENTION According to the present invention, since crystals having good filterability and dehydration can be obtained in good yield, not only the economical efficiency of the crystallization step but also economically after the crystallization step is achieved. Provide an advantageous industrial process. That is, 5-benzyl-3,6-dioxo-2, which does not have a sweet taste, is obtained because crystallization is performed in a short time by continuing the crystallization process.
-The production of piperazine acetic acid methyl ester (DKP) can be suppressed. In addition, the equipment can be downsized, and the equipment cost can be reduced because there is no need to use a special equipment, and the equipment can be rationalized by improving the filterability even in the solid-liquid separation process. The cleaning effect of impurities such as DKP is significantly improved. Further, the improvement of the dehydration property makes it possible to reduce the drying load in the drying process.

【0021】また、本発明によれば、晶析槽にスケーリ
ングをほとんど生じないことから、スケーリングの除去
等の煩雑な操作をする必要がほとんどなくなる。以上か
ら明らかなように、本発明は、従来の晶析操作における
種々の欠点を改善し、濾過性、脱水性のすぐれた結晶を
高収率で与える工業的に極めて有利な晶析方法を提供す
るものである。
Further, according to the present invention, since scaling hardly occurs in the crystallization tank, there is almost no need to perform a complicated operation such as removal of scaling. As is clear from the above, the present invention provides various industrially advantageous crystallization methods that improve various drawbacks in the conventional crystallization operation and provide crystals with excellent filterability and dehydration in high yield. To do.

【0022】[0022]

【実施例】以下、本発明を実施例により更に詳しく説明
する。 実施例1 図1の装置により、試験を実施した。図中、#1はAP
M溶解槽(300l,ジャケット及びファウドラー攪拌
羽根付き),#2晶析器(300l,ジャケット及び攪
拌羽根付き),#3は濾過器(遠心分離器),#4及び
#5は移液ポンプ,#6は凝縮器,#7は真空ポンプで
ある。
EXAMPLES The present invention will now be described in more detail with reference to Examples. Example 1 A test was conducted using the apparatus shown in FIG. In the figure, # 1 is AP
M dissolution tank (300 l, with jacket and Faudler stirring blade), # 2 crystallizer (300 l, with jacket and stirring blade), # 3 is filter (centrifugal separator), # 4 and # 5 are transfer pumps, # 6 is a condenser, and # 7 is a vacuum pump.

【0023】#1原料槽にはジャケットに温水を循環
し、4%のAPM水溶液が常に60℃に保たれるように
し、必要量のAPMと温水を常に供給されるようにす
る。#2晶析器に、250kgのAPM水溶液を仕込
み、ジャケットからの外部冷却により、5℃まで晶析を
おこなった。#1から#2へAPM水溶液の供給を#2
内温が常に5℃に保たれるよう連続的に行った。#2は
晶析中もジャケットに冷媒を循環した。尚、#2晶析器
の攪拌羽根は図2を使用し、40rpmの回転数とし
た。#2の底部からは#1から供給される量と同量のA
PM結晶スラリーを連続的に析出した。この操作を5時
間連続で行った後の#2晶析器の晶析マス250kgを
#5遠心分離器によって、濾過、脱水を行ったところ、
わずか20分後にはケーキ水分が32%であった。尚、
APM回収率は86%であった。また、各晶析器内壁へ
のスケーリングはほとんど認められなかった。
Hot water is circulated in the jacket of the # 1 raw material tank so that the 4% APM aqueous solution is always maintained at 60 ° C., and the required amount of APM and hot water are constantly supplied. A # 2 crystallizer was charged with 250 kg of APM aqueous solution, and crystallized up to 5 ° C. by external cooling from the jacket. Supply the APM aqueous solution from # 1 to # 2
It was carried out continuously so that the internal temperature was always kept at 5 ° C. In # 2, the refrigerant circulated through the jacket during crystallization. The stirring blade of the # 2 crystallizer was as shown in FIG. 2, and the rotation speed was 40 rpm. The same amount of A supplied from # 1 from the bottom of # 2
The PM crystal slurry was continuously deposited. 250 kg of the crystallization mass of the # 2 crystallizer after this operation was continuously performed for 5 hours was filtered and dehydrated by a # 5 centrifuge.
After only 20 minutes, the water content of the cake was 32%. still,
The APM recovery rate was 86%. In addition, almost no scaling was observed on the inner wall of each crystallizer.

【0024】実施例2 #2晶析器の攪拌羽根(図2)の回転数を30rpmと
し、実施例1と同様な操作を行い、晶析マス250kg
を遠心分離器によって、濾過、脱水を行ったところ、2
0分後のケーキ水分は30%、APM回収率は86%で
あった。晶析器内壁へのスケーリングもほとんど認めら
れなかった。
Example 2 A stirring blade (FIG. 2) of the # 2 crystallizer was rotated at 30 rpm, and the same operation as in Example 1 was carried out.
Was filtered and dehydrated with a centrifuge.
The water content of the cake after 0 minutes was 30%, and the APM recovery rate was 86%. Almost no scaling was observed on the inner wall of the crystallizer.

【0025】実施例3 #2晶析器の攪拌羽根(図2)の回転数を50rpmと
し、冷却方法を減圧冷却と外部冷却の併用で行い、実施
例1と同様な操作で試験した。濾過、脱水では、20分
後のケーキ水分は30%となり、APMの回収率は87
%であった。晶析器内壁へのスケーリングもほとんど認
められなかった。
Example 3 A test was conducted in the same manner as in Example 1 by setting the rotation speed of the stirring blade (FIG. 2) of the # 2 crystallizer to 50 rpm and performing cooling using both reduced pressure cooling and external cooling. After filtration and dehydration, the water content of the cake after 20 minutes was 30%, and the recovery rate of APM was 87.
%Met. Almost no scaling was observed on the inner wall of the crystallizer.

【0026】実施例4 #2晶析器の攪拌羽根を図5として、実施例1と同様な
操作を行い、晶析マス250kgを遠心分離器によっ
て、濾過、脱水を行ったところ、20分後のケーキ水分
は32%、APM回収率は85%であった。晶析器内壁
へのスケーリングもほとんど認められなかった。
Example 4 Using the stirring blade of the # 2 crystallizer as shown in FIG. 5, the same operation as in Example 1 was carried out. 250 kg of the crystallization mass was filtered and dehydrated by a centrifugal separator, and after 20 minutes. Had a water content of 32% and an APM recovery rate of 85%. Almost no scaling was observed on the inner wall of the crystallizer.

【0027】実施例5 #2晶析器の攪拌羽根を図6として、実施例1と同様な
操作を行い、晶析マス250kgを遠心分離器によっ
て、濾過、脱水を行ったところ、20分後のケーキ水分
は31%、APM回収率は86%であった。晶析器内壁
へのスケーリングもほとんど認められなかった。
Example 5 Using the stirring blade of the # 2 crystallizer as shown in FIG. 6, the same operation as in Example 1 was performed, and 250 kg of the crystallization mass was filtered and dehydrated by a centrifugal separator, and after 20 minutes. Had a water content of 31% and an APM recovery rate of 86%. Almost no scaling was observed on the inner wall of the crystallizer.

【0028】比較例1 図7の攪拌羽根を用いて#2晶析器に4%APM水溶液
を250kg仕込み、60℃から5℃まで、晶析器ジャ
ケットに冷媒を循環させることにより、冷却晶析を行っ
た。この時の攪拌羽根の回転数は200rpmとした。
晶析途中、スラリーが流動しない部分が発生し、排出時
に内壁への付着が大であった。その後の濾過、脱水に2
時間かけても水分は60%以上であった。また、濾過洩
れもあり、回収率は60%であった。
Comparative Example 1 250 kg of a 4% APM aqueous solution was charged into a # 2 crystallizer using the stirring blade shown in FIG. 7, and a cooling crystallization was performed by circulating a refrigerant through the crystallizer jacket from 60 ° C. to 5 ° C. I went. The rotation speed of the stirring blade at this time was 200 rpm.
During the crystallization, there was a portion where the slurry did not flow, and a large amount was attached to the inner wall when discharged. 2 for subsequent filtration and dehydration
The water content was 60% or more over time. In addition, there was a filtration leak, and the recovery rate was 60%.

【0029】比較例2 #2晶析器の攪拌羽根を図9とし、回転数150rpm
として、実施例1と同様な操作を行った。晶析途中、#
3、#4晶析器内のスラリーが流動しない部分が発生
し、排出時に内壁への付着がかなりあった。その後の濾
過、脱水に1時間かけてもケーキ中の水分は55%であ
った。また、濾過洩れもあり、回収率は70%であっ
た。
Comparative Example 2 A stirring blade of a # 2 crystallizer is shown in FIG.
The same operation as in Example 1 was performed. During crystallization, #
There was a portion where the slurry did not flow in the No. 3 and No. 4 crystallizers, and there was considerable adhesion to the inner wall when discharged. The water content in the cake was 55% even after 1 hour of filtration and dehydration. In addition, there was a leakage of filtration, and the recovery rate was 70%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明する為の模式図である。FIG. 1 is a schematic diagram for explaining the present invention.

【図2】本発明の実施に用いる特定の攪拌翼を備える晶
析装置の断面図である。
FIG. 2 is a cross-sectional view of a crystallizer provided with a specific stirring blade used for implementing the present invention.

【図3】本発明の実施に用いる特定の攪拌翼を備える晶
析装置の断面図である。
FIG. 3 is a cross-sectional view of a crystallizer provided with a specific stirring blade used for carrying out the present invention.

【図4】本発明の実施に用いる特定の攪拌翼を備える晶
析装置の断面図である。
FIG. 4 is a cross-sectional view of a crystallizer provided with a specific stirring blade used for carrying out the present invention.

【図5】本発明の実施に用いる特定の攪拌翼を備える晶
析装置の断面図である。
FIG. 5 is a cross-sectional view of a crystallizer provided with a specific stirring blade used for carrying out the present invention.

【図6】本発明の実施に用いる特定の攪拌翼を備える晶
析装置の断面図である。
FIG. 6 is a cross-sectional view of a crystallizer provided with a specific stirring blade used for carrying out the present invention.

【図7】本発明の実施には用いない攪拌翼の形状を示す
図である。
FIG. 7 is a view showing a shape of a stirring blade that is not used for carrying out the present invention.

【図8】本発明の実施には用いない攪拌翼の形状を示す
図である。
FIG. 8 is a view showing a shape of a stirring blade that is not used for carrying out the present invention.

【図9】本発明の実施には用いない攪拌翼の形状を示す
図である。
FIG. 9 is a view showing a shape of a stirring blade which is not used for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1.第1の部材 2.第2の部材 3.第3の部材 4.回転軸 5.晶析槽 6.攪拌翼 7.ジャケット 8.邪魔板 1. First member 2. Second member 3. Third member 4. Rotation axis 5. Crystallizer 6. Stirrer 7. Jacket 8. Baffle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 L−α−アスパルチル−L−フェニルア
ラニンメチルエステルをその溶液から晶出させる方法に
おいて、冷却装置および下記で特定する構成の翼および
邪魔板を備えた晶析装置を使用し、L−α−アスパルチ
ル−L−フェニルアラニンメチルエステル溶液を晶析装
置に連続的に供給し、供給するL−α−アスパルチル−
L−フェニルアラニンメチルエステル溶液の結晶晶出温
度以下になる温度に晶析装置内を冷却維持し、晶出した
結晶を含むスラリー液を連続的に抜き出す、L−α−ア
スパルチル−L−フェニルアラニンメチルエステルの改
良された結晶製造法。 (イ)翼は晶析槽内の液を攪拌することができるように
少なくとも1枚が回転軸に固定されている。 (ロ)翼は次の三つの部材(ハ)(ニ)および(ホ)を
備えている。 (ハ)実質的に平板であり、板の横方向の一端で回転軸
に固定され、その固定端に対向して槽内壁に面する端は
その内壁から任意の長い間隔を保つまでに及び、下方向
は槽底から一定の短い間隔を保っている第1の部材。 (ニ)第1の部材より液面側に設けられ、第1の部材と
ほぼ平行する平面内で、回転軸と槽内壁との間に液面に
ほぼ平行する方向に延び、一端で回転軸に固定され、他
端は槽内壁から、任意の長い間隔を保つまで、延びてい
るほぼ棒状である第2の部材。 (ホ)第1の部材より液面側に設けられ、第1の部材ま
たは第2の部材のいずれかの一つには必ず固定されてお
り、液面にほぼ直交する平面内をほぼ上下方向に延びて
いる複数の棒または板状である第3の部材。 (ヘ)邪魔板は晶析槽側壁面に下部から上部まで軸方向
に沿って複数本、間隔をおきながら配設されている。
1. A method for crystallizing L-α-aspartyl-L-phenylalanine methyl ester from its solution, using a crystallizer equipped with a cooling device and blades and baffles having the configurations specified below. -Α-Aspartyl-L-phenylalanine methyl ester solution is continuously fed to the crystallizer, and L-α-aspartyl-
L-α-aspartyl-L-phenylalanine methyl ester, in which the inside of the crystallizer is kept cooled to a temperature not higher than the crystal crystallization temperature of the L-phenylalanine methyl ester solution, and the slurry liquid containing the crystallized crystals is continuously extracted. Improved crystal manufacturing method. (A) At least one blade is fixed to the rotating shaft so that the liquid in the crystallization tank can be stirred. (B) The wing is provided with the following three members (c), (d) and (e). (C) It is a substantially flat plate, and is fixed to the rotary shaft at one end in the lateral direction of the plate, and the end facing the fixed end and facing the inner wall of the tank extends until an arbitrary long distance is maintained from the inner wall, The first member in the downward direction maintains a constant short distance from the bottom of the tank. (D) Provided on the liquid surface side of the first member and extending in a direction substantially parallel to the liquid surface between the rotary shaft and the inner wall of the tank in a plane substantially parallel to the first member, the rotary shaft at one end And a second member that is fixed to the other end and extends from the inner wall of the tank until an arbitrary long distance is maintained. (E) It is provided on the liquid surface side of the first member and is always fixed to either one of the first member and the second member, and is substantially vertical in a plane substantially orthogonal to the liquid surface. A third member having a plurality of rods or plates extending to the. (F) A plurality of baffle plates are arranged on the side wall surface of the crystallization tank from the lower part to the upper part along the axial direction at intervals.
【請求項2】 請求項1の方法であって、第2の部材と
第3の部材が一体となって実質的にほぼ円弧である曲線
を含む一本の棒である部材である翼を用いるもの。
2. The method according to claim 1, wherein the wing is a member that is a single rod including a curve in which the second member and the third member are integrated and substantially substantially an arc. thing.
JP12054192A 1992-05-13 1992-05-13 Improved production of crystal of l-alpha-aspartyl-l-phenylalanine methyl ester Pending JPH05310781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12054192A JPH05310781A (en) 1992-05-13 1992-05-13 Improved production of crystal of l-alpha-aspartyl-l-phenylalanine methyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12054192A JPH05310781A (en) 1992-05-13 1992-05-13 Improved production of crystal of l-alpha-aspartyl-l-phenylalanine methyl ester

Publications (1)

Publication Number Publication Date
JPH05310781A true JPH05310781A (en) 1993-11-22

Family

ID=14788850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12054192A Pending JPH05310781A (en) 1992-05-13 1992-05-13 Improved production of crystal of l-alpha-aspartyl-l-phenylalanine methyl ester

Country Status (1)

Country Link
JP (1) JPH05310781A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294145C (en) * 1999-08-18 2007-01-10 纽思维特知识产权控股公司 Crystal of methyl ester of alpha-L-asparaginyl-L-phenylalanine
KR100924836B1 (en) * 2009-07-23 2009-11-03 삼전순약공업(주) The apparatus for crystallization of inorganic matter
JP2013507984A (en) * 2009-10-27 2013-03-07 ピュアバイオ アンド テック インコーポレイテッド Regenerative cell extraction unit and regenerative cell extraction system
JP2013507983A (en) * 2009-10-27 2013-03-07 ピュアバイオ アンド テック インコーポレイテッド Regenerative cell extraction system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294145C (en) * 1999-08-18 2007-01-10 纽思维特知识产权控股公司 Crystal of methyl ester of alpha-L-asparaginyl-L-phenylalanine
KR100924836B1 (en) * 2009-07-23 2009-11-03 삼전순약공업(주) The apparatus for crystallization of inorganic matter
JP2013507984A (en) * 2009-10-27 2013-03-07 ピュアバイオ アンド テック インコーポレイテッド Regenerative cell extraction unit and regenerative cell extraction system
JP2013507983A (en) * 2009-10-27 2013-03-07 ピュアバイオ アンド テック インコーポレイテッド Regenerative cell extraction system

Similar Documents

Publication Publication Date Title
EP0091787B1 (en) Process for crystallizing alpha-l-aspartyl-l-phenylalanine-methyl ester
JPH0377199B2 (en)
JPH05310781A (en) Improved production of crystal of l-alpha-aspartyl-l-phenylalanine methyl ester
JP2970107B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester
EP0399605B1 (en) Method for crystallizing alpha-L-aspartyl-L-phenylalanine methyl ester
EP0405273A2 (en) Method for producing readily soluble crystalline alfa-L-aspartyl-L-phenylalanine methyl ester
US5591886A (en) Process for the crystallizing L-α-aspartyl-L-phenylalanine methyl ester from the solution
JP2927070B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester
JP2919660B2 (en) Method for producing crystal of L-α-aspartyl-L-phenylalanine methyl ester
EP0733641A1 (en) Method for crystallizing alpha-l-aspartyl-l-phenylalanine methyl ester
EP0533222B1 (en) Method for crystallizing alpha-L-aspartyl-L-phenylalanine methyl ester
JPH05178889A (en) Method for crystallizing alpha-l-aspartyl-l-phenylalanine methyl ester
EP0523813B1 (en) Method for crystallizing alpha-L-aspartyl-L-phenylalanine methyl ester
US5659066A (en) Method for crystallizing α-L-aspartyl-L-phenylalanine methyl ester
JP3291747B2 (en) Crystallization method of α-L-aspartyl-L-phenylalanine methyl ester
JP2970109B2 (en) Concentration method of α-L-aspartyl-L-phenylalanine methyl ester solution
JPH05262789A (en) Crystallization of alpha-l-aspartyl-l-phenylalanine methyl ester
EP0976762A1 (en) Crystallization of Alpha-L-aspartyl-L-phenylalanine methyl ester
RU2098425C1 (en) Method of crystallization of alpha-l-aspartyl-l-phenylalanine methyl ester and crystalline alpha-l-aspartyl-l-phenylalanine methyl ester
RU2092490C1 (en) Method of crystallization of alpha-l-aspartyl-l-phenyl alanine methyl ethyl
JPH05309204A (en) Improved crystal production of l-alpha-aspartyl-l-phenylalanine methylester
US6100422A (en) Crystallization of alpha-L-aspartyl-L-phenylalanine methyl esther
JPH05186497A (en) Crystallization of alpha-l-aspartyl-l-phenylalanine methyl ester
JPH03106899A (en) Crystallization of alpha-l-aspartyl-l-phenylalanine methyl ester
JPH09249692A (en) Crystallization of alpha-l-aspartyl-l-phenylalanine methyl ester