JPH05310423A - Production of zns crystal having controlled particle diametfr - Google Patents

Production of zns crystal having controlled particle diametfr

Info

Publication number
JPH05310423A
JPH05310423A JP14480192A JP14480192A JPH05310423A JP H05310423 A JPH05310423 A JP H05310423A JP 14480192 A JP14480192 A JP 14480192A JP 14480192 A JP14480192 A JP 14480192A JP H05310423 A JPH05310423 A JP H05310423A
Authority
JP
Japan
Prior art keywords
zns
crystal
iodine
reaction
zns crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14480192A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwata
浩史 岩田
Satoshi Suzuki
聡 鈴木
Yasushi Sasaki
康 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14480192A priority Critical patent/JPH05310423A/en
Publication of JPH05310423A publication Critical patent/JPH05310423A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a ZnS crystal having large crystal particle size and suitable as an infrared transmission material. CONSTITUTION:Iodine vapor is introduced together with raw material gas consisting of H2S and Zn vapor into a reaction zone in the synthesis of polycrystalline ZnS on the surface of a substrate by the reaction of H2S+Zn=ZnS+H2. The feeding rate of iodine may be changed during the CVD reaction. The particle diameter of the produced ZnS crystal increases nearly proportional to the feeding rate of iodine. The process gives a ZnS crystal having particle size almost comparable to that of commercially available infrared transmission material such as ZnSe and CdS and excellent infrared transmission properties and scratch resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた赤外線透過特性
を有するZnS多結晶を製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing ZnS polycrystals having excellent infrared transmission properties.

【0002】[0002]

【従来の技術】赤外線光学の発展に伴い、赤外線用のレ
ンズや窓用材料の開発が進められている。この種の材料
としては、CaF2 等のハロゲン系結晶が従来から使用
されている。しかし、ハロゲン系の結晶は、潮解性があ
り、また非常に脆い欠点をもっている。
2. Description of the Related Art With the development of infrared optics, the development of infrared lenses and window materials has been promoted. As a material of this type, a halogen-based crystal such as CaF 2 has been conventionally used. However, the halogen-based crystal has a deliquescent property and is extremely brittle.

【0003】他方、II−VI族化合物のZnSe,Z
nS,CdS等は、赤外線透過特性に優れているもの
の、結晶作製が非常に困難であることから、これまであ
まり使用されていなかった。しかし、CVD法の採用に
よって大型多結晶体の作製が可能になったことから、I
I−VI族化合物の多結晶体が次第に使用されるように
なってきている。なかでも、ZnSは、機械的強度が高
く、特に耐スクラッチ性に優れているので、ホコリの多
い場所や屋外等の厳しい環境でも使用できる長所を備え
ている。
On the other hand, ZnSe, Z which is a II-VI group compound
Although nS, CdS and the like are excellent in infrared ray transmission characteristics, they are very difficult to prepare crystals, and thus have not been used so far. However, the adoption of the CVD method has enabled the production of large-scale polycrystals.
Polycrystals of Group I-VI compounds are increasingly being used. Among them, ZnS has high mechanical strength and is particularly excellent in scratch resistance, and therefore has an advantage that it can be used in a severe environment such as a dusty place or outdoors.

【0004】[0004]

【発明が解決しようとする課題】しかし、CVD法で作
製したZnSは、ZnSeやCdSと異なり、CVD析
出したままの状態では可視光線を透過させない。そのた
め、光軸合せ等の面倒な作業が必要とされることから赤
外線透過材料としてZnSを使用した例は少なく、可視
光線を透過し且つ操作性に優れているZnSeが多用さ
れている。
However, unlike ZnSe and CdS, ZnS produced by the CVD method does not transmit visible light in the state where it is deposited by CVD. Therefore, since laborious work such as optical axis alignment is required, there are few examples of using ZnS as an infrared transmitting material, and ZnSe that transmits visible light and has excellent operability is widely used.

【0005】ZnSが可視光線を透過させない理由は、
ZnS固有の物性に起因するものではなく、析出させた
ZnS結晶粒が約10μmと小さく、結晶粒界における
光散乱が非常に大きいためである。そこで、ZnS結晶
粒を大型にすることができれば、耐久性に優れた赤外線
透過材料として使用されることが予想される。
The reason why ZnS does not transmit visible light is
This is not due to the physical properties peculiar to ZnS, but because the precipitated ZnS crystal grains are as small as about 10 μm and the light scattering at the crystal grain boundaries is very large. Therefore, if the ZnS crystal grains can be made large, it is expected to be used as an infrared transmitting material having excellent durability.

【0006】たとえば、CVD法で析出したZnSをH
IP処理するとき、粒径100μm以上のサイズをもつ
ZnS結晶粒が得られる。得られたZnS結晶は、透明
化しており、一般に赤外線透過材料として市販されてい
るZnSe,CdS等の結晶に匹敵する粒径をもってい
る。しかし、CVDの後にHIP処理を必要とするた
め、工程が複雑化し、製造コストの上昇を招く。この
点、HIP処理等の後処理を必要とせずに大型のZnS
結晶を製造する方法が望まれている。
For example, ZnS deposited by the CVD method is converted into H
When the IP treatment is performed, ZnS crystal grains having a size of 100 μm or more are obtained. The obtained ZnS crystal is transparent and has a particle size comparable to that of a crystal of ZnSe, CdS or the like which is generally marketed as an infrared transmitting material. However, since the HIP process is required after the CVD, the process is complicated and the manufacturing cost is increased. In this respect, large ZnS without requiring post-treatment such as HIP treatment
A method of producing crystals is desired.

【0007】CVD法自体によって析出させるZnS結
晶の粒径を100μm以上にすることができれば、HI
P処理等の後処理を必要とすることなく、低い製造コス
トで性能の優れたZnS結晶を得ることが可能となる。
CVD法においては、一般的に反応温度を高くすること
により、得られる結晶の粒径が大きくなることが知られ
ている。しかし、反応温度の上昇に伴って気孔が発生し
易くなり、得られた結晶の特性を著しく劣化させる。そ
のため、反応温度の上昇によって大きな粒径の結晶を得
ることは、実用的に無理がある。
If the grain size of ZnS crystals to be deposited by the CVD method itself can be 100 μm or more, HI
It is possible to obtain a ZnS crystal with excellent performance at a low manufacturing cost without requiring post-treatment such as P treatment.
In the CVD method, it is generally known that increasing the reaction temperature increases the grain size of the obtained crystal. However, as the reaction temperature rises, pores are more likely to be generated, and the characteristics of the obtained crystal are significantly deteriorated. Therefore, it is practically impossible to obtain crystals with a large grain size by increasing the reaction temperature.

【0008】また、ZnSの優れた特性である高い機械
強度は、結晶粒の大きさにも起因している。そこで、単
に結晶粒径を大きくするばかりでなく、任意の位置で所
定の大きさの粒径をもったZnS結晶を作製することが
望ましい。たとえば、耐スクラッチ性を向上させるため
表面近傍を微細結晶粒とし、赤外線透過特性を向上させ
るため中心部を大型結晶粒とした結晶粒構造をもつZn
S結晶が得られれば、非常に優れた赤外線透過材料にな
ることが予想される。
The high mechanical strength, which is an excellent characteristic of ZnS, is also due to the size of crystal grains. Therefore, it is desirable not only to simply increase the crystal grain size, but also to prepare a ZnS crystal having a grain size of a predetermined size at an arbitrary position. For example, Zn having a crystal grain structure in which fine crystal grains are formed in the vicinity of the surface to improve scratch resistance, and large crystal grains are formed in the central portion to improve infrared ray transmission characteristics.
If S crystals are obtained, it is expected to become a very excellent infrared transparent material.

【0009】本発明は、このような要望に応えるべく案
出されたものであり、反応帯域に沃素を導入することに
よって結晶成長を促進させ、赤外線透過材料として好適
なZnS大型結晶をCVD法のみで製造することを目的
とする。
The present invention has been devised in order to meet such a demand, and by introducing iodine into the reaction zone to promote crystal growth, a large ZnS crystal suitable as an infrared transmitting material can be obtained only by the CVD method. It is intended to be manufactured in.

【0010】[0010]

【課題を解決するための手段】本発明のZnS結晶作製
方法は、その目的を達成するため、H2 S+Zn=Zn
S+H2 の反応により基板表面にZnS多結晶を合成す
る際、H2 S及びZn蒸気の原料ガスと共に沃素蒸気を
反応帯域に導入することを特徴とする。また、反応帯域
に導入する沃素の供給量をCVD反応の推移に応じて変
化させるとき、結晶構造が制御されたZnS結晶が得ら
れる。
In order to achieve the object, the method for producing a ZnS crystal according to the present invention is H 2 S + Zn = Zn
When synthesizing ZnS polycrystal on the substrate surface by the reaction of S + H 2 , iodine vapor is introduced into the reaction zone together with source gases of H 2 S and Zn vapor. Further, when the supply amount of iodine introduced into the reaction zone is changed according to the transition of the CVD reaction, ZnS crystal having a controlled crystal structure can be obtained.

【0011】[0011]

【作 用】本発明者等は、CVD法により作製されたZ
nS結晶の特性に及ぼす各種ガスの影響を調査した。そ
の結果、原料ガスに沃素を添加すると、結晶の粒径が著
しく大きくなると共に、得られたZnS結晶の中に沃素
がほとんど取り込まれていないことを知見した。そこ
で、CVD法で作製するZnS結晶粒の大きさに及ぼす
沃素の影響を詳しく調べたところ、ZnS結晶に含まれ
る沃素の濃度と結晶粒径の大きさにはほとんど相関関係
がなく、供給した沃素ガスの分圧PI2が大きいほどZn
S結晶に含まれる水素濃度が減少することを見い出し
た。
[Operation] The inventors of the present invention have made Z produced by the CVD method.
The effects of various gases on the properties of nS crystals were investigated. As a result, it was found that when iodine was added to the raw material gas, the grain size of the crystal was significantly increased, and iodine was hardly incorporated in the obtained ZnS crystal. Therefore, when the influence of iodine on the size of the ZnS crystal grains produced by the CVD method was investigated in detail, there was almost no correlation between the concentration of iodine contained in the ZnS crystal and the size of the crystal grain size, and the iodine supplied. The larger the partial pressure P I2 of the gas, the more Zn
It was found that the hydrogen concentration contained in the S crystal was reduced.

【0012】このことから、ZnS結晶の粒径を決定し
ているのは水素であり、通常はZnS結晶に取り込まれ
る水素が導入した沃素によって取り除かれ、結晶粒が大
きくなるものと推察される。ZnS結晶中の水素は、光
の波長約6.3μm付近に吸収を示す水素化物ZnH2
となり、赤外線透過特性を劣化させる。この水素又は水
素化物に起因する欠点も、沃素導入によってZnS結晶
から水素を除去することにより解消することができる。
From this, it is presumed that it is hydrogen that determines the grain size of the ZnS crystal, and the hydrogen that is normally incorporated in the ZnS crystal is removed by the introduced iodine and the crystal grain becomes large. Hydrogen in ZnS crystals is a hydride that absorbs light at a wavelength of about 6.3 μm ZnH 2
And deteriorates the infrared transmission characteristics. This defect due to hydrogen or hydride can be eliminated by removing hydrogen from the ZnS crystal by introducing iodine.

【0013】[0013]

【実施例】本実施例では、図1に示すCVD装置を使用
した。このCVD装置は、加熱帯域を三つに区分した加
熱炉1に石英製の反応器2を設置し、個々の加熱帯域を
それぞれ所定の温度に加熱保持する。反応器2には、Z
n蒸気導入用石英管3a,H2 S導入用石英管3b及び
沃素蒸気導入用石英管3cを臨ませている。
EXAMPLE In this example, the CVD apparatus shown in FIG. 1 was used. In this CVD apparatus, a quartz reactor 2 is installed in a heating furnace 1 having three heating zones, and each heating zone is heated and maintained at a predetermined temperature. In the reactor 2, Z
A quartz tube 3a for introducing n-vapor, a quartz tube 3b for introducing H 2 S, and a quartz tube 3c for introducing iodine vapor are exposed.

【0014】石英管3aの途中に設けた湯溜り4に、Z
n原料5を充填する。加熱によってガス化したZn蒸気
は、Arをキャリアガスとして石英管3aを経由し基板
6に送られる。他方の反応性ガスであるH2 Sは、石英
管3bを経由して基板6に供給される。沃素7は、ステ
ンレス鋼製の容器8に充填されており、容器8に巻き付
けたリボンヒータ9で所定の温度に加熱されガス化す
る。ガス化した沃素蒸気は、Arをキャリアガスとして
石英管3cを経由して基板6に送られる。
In the basin 4 provided in the middle of the quartz tube 3a, Z
n raw material 5 is filled. The Zn vapor gasified by heating is sent to the substrate 6 through the quartz tube 3a with Ar as a carrier gas. The other reactive gas, H 2 S, is supplied to the substrate 6 via the quartz tube 3b. The iodine 7 is filled in a stainless steel container 8 and heated to a predetermined temperature by a ribbon heater 9 wound around the container 8 to be gasified. The gasified iodine vapor is sent to the substrate 6 via the quartz tube 3c using Ar as a carrier gas.

【0015】反応温度923〜1023K,反応圧力6
650Pa,反応時間10時間,沃素のキャリアガス流
量100cc/分の条件下で沃素供給量を0〜0.02
5g/分の範囲で替えながらZnS結晶を作製した。
Reaction temperature 923 to 1023K, reaction pressure 6
Iodine supply amount of 0 to 0.02 under the conditions of 650 Pa, reaction time of 10 hours and iodine carrier gas flow rate of 100 cc / min.
ZnS crystals were prepared while changing the range of 5 g / min.

【0016】反応温度973Kで沃素無添加の場合に得
られたZnS結晶を図2に示す。このZnS結晶は、平
均粒径が約5μmであった。また、0.015g/分の
供給速度で沃素を導入した場合に得られたZnS結晶を
図3に示す。このZnS結晶は、200μmの平均粒径
をもっていた。この対比から明らかなように、沃素の導
入によって結晶粒が約50倍大きくなっていることが判
る。
FIG. 2 shows a ZnS crystal obtained when the reaction temperature was 973 K and iodine was not added. This ZnS crystal had an average particle size of about 5 μm. Further, FIG. 3 shows a ZnS crystal obtained when iodine was introduced at a supply rate of 0.015 g / min. This ZnS crystal had an average particle size of 200 μm. As is clear from this comparison, it is understood that the crystal grain size is increased about 50 times by the introduction of iodine.

【0017】同じ反応温度で沃素の供給量を変えながら
ZnS結晶を作製した。そして、得られたZnS結晶の
大きさと沃素供給量との関係を調査したところ、図4に
示す関係があることが判った。すなわち、ZnS結晶粒
の粒径は、沃素供給量にほぼ比例して大きくなってい
る。この結晶粒系と沃素供給量との関係は、反応温度を
変えてCVD反応を行わせた場合にも同様の傾向をもっ
ていた。
ZnS crystals were produced at the same reaction temperature while changing the amount of iodine supplied. When the relationship between the size of the obtained ZnS crystal and the iodine supply amount was investigated, it was found that there was the relationship shown in FIG. That is, the grain size of the ZnS crystal grains is increased almost in proportion to the iodine supply amount. The relationship between the crystal grain system and the amount of iodine supplied had a similar tendency when the CVD reaction was performed while changing the reaction temperature.

【0018】図4の結果は、沃素を反応帯域に導入する
ことによってZnS結晶の粒径を単に大きくすることだ
けでなく、沃素の供給量を制御することにより任意の粒
径をもつZnS結晶の作製が可能なことを示している。
しかも、沃素の供給量は、沃素の加熱条件及びキャリア
ガスの流量を調整することにより簡単に制御することが
できる。
The results shown in FIG. 4 indicate that not only the grain size of ZnS crystal is increased by introducing iodine into the reaction zone, but also the ZnS crystal having an arbitrary grain size is controlled by controlling the supply amount of iodine. It shows that it can be manufactured.
Moreover, the supply amount of iodine can be easily controlled by adjusting the heating condition of iodine and the flow rate of carrier gas.

【0019】そこで、沃素ガスの流量制御による作用を
確認するため、基板側半分及び表面側半分がそれぞれ大
型結晶及び微細結晶からなる結晶構造をもつZnS結晶
を次のように作製した。反応温度923K,反応圧力6
650Pa,沃素のキャリアガスとしてのAr流量10
0cc/分に反応条件を設定し、供給速度0.025g
/分で沃素を導入しながらCVD反応を3時間継続し
た。次いで、沃素を導入しない他は同じ反応条件の下
で、CVD反応を3時間継続し、合計6時間でZnSを
基板表面にCVD析出させた。
Therefore, in order to confirm the effect of controlling the flow rate of iodine gas, a ZnS crystal having a crystal structure in which the substrate side half and the surface side half consist of a large crystal and a fine crystal, respectively, was prepared as follows. Reaction temperature 923K, reaction pressure 6
650 Pa, Ar flow rate of 10 as iodine carrier gas
Set reaction conditions to 0 cc / min, feed rate 0.025 g
The CVD reaction was continued for 3 hours while introducing iodine at a flow rate of 1 / min. Next, the CVD reaction was continued for 3 hours under the same reaction conditions except that iodine was not introduced, and ZnS was deposited on the substrate surface by CVD in a total of 6 hours.

【0020】作製されたZnS結晶の組織を示した図5
から明らかなように、沃素導入によって大型化した結晶
粒の上に微細な結晶粒が積層されている。このことか
ら、沃素の導入及び供給量の制御によって、所定の位置
で所定の粒径をもつZnS結晶を作製できることが判
る。また、得られたZnS結晶は、基板側の大型結晶に
よって優れた赤外線透過特性を呈し、表面側の微細結晶
によって優れた耐スクラッチ性を呈するものであった。
FIG. 5 showing the structure of the prepared ZnS crystal.
As is apparent from the above, fine crystal grains are stacked on the crystal grains that have been enlarged by the introduction of iodine. From this, it is understood that a ZnS crystal having a predetermined grain size at a predetermined position can be produced by controlling the introduction and supply amount of iodine. Further, the obtained ZnS crystal exhibited excellent infrared ray transmission characteristics due to the large crystal on the substrate side, and exhibited excellent scratch resistance due to the fine crystal on the surface side.

【0021】なお、得られたZnS結晶に取り込まれる
沃素の量は、沃素の供給速度を変えてもほとんど変化し
なかった。すなわち、沃素供給量を0〜0.025g/
分の範囲で変えても、ZnS結晶に取り込まれた沃素の
量は、結晶粒径の大きさに拘らず約0.0002原子%
でほぼ一定していた。
The amount of iodine taken into the obtained ZnS crystal hardly changed even when the iodine supply rate was changed. That is, the iodine supply amount is 0 to 0.025 g /
Even if it is changed within the range of minutes, the amount of iodine taken into the ZnS crystal is about 0.0002 atomic% regardless of the size of the crystal grain size.
Was almost constant at.

【0022】[0022]

【発明の効果】以上に説明したように、本発明において
は、反応帯域に沃素を導入することにより所定の大きさ
をもつZnS結晶を作製している。得られたZnS結晶
は、HIP処理等を必要とせずに従来のZnSe,Cd
S等に匹敵する粒径をもったものとなり、優れた赤外線
透過特性を呈する。また、沃素供給量を制御することに
よって、たとえば下層部の結晶粒径を大きくし表層部の
結晶粒系を小さくする等のように結晶粒径を調整するこ
とが可能となり、赤外線透過特性及び機械的特性の双方
共に優れたZnS結晶が得られる。このように本発明に
よるとき、比較的簡単な操作によって高品質のZnS結
晶が高い歩留りで製造される。
As described above, in the present invention, ZnS crystal having a predetermined size is produced by introducing iodine into the reaction zone. The obtained ZnS crystal has a conventional ZnSe, Cd structure without requiring HIP treatment or the like.
It has a particle size comparable to that of S, etc., and exhibits excellent infrared transmission characteristics. Further, by controlling the iodine supply amount, the crystal grain size can be adjusted, for example, by increasing the crystal grain size in the lower layer portion and decreasing the crystal grain system in the surface layer portion. A ZnS crystal excellent in both physical properties can be obtained. Thus, according to the present invention, high quality ZnS crystals can be produced with a high yield by a relatively simple operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例で使用したCVD装置FIG. 1 is a CVD apparatus used in an embodiment of the present invention.

【図2】 沃素を導入することなく作製されたZnS結
晶の組織
FIG. 2 Structure of ZnS crystal prepared without introducing iodine

【図3】 沃素を導入して作製されたZnS結晶の組織FIG. 3 Structure of ZnS crystal prepared by introducing iodine

【図4】 ZnS結晶の粒径と沃素供給量との関係を表
すグラフ
FIG. 4 is a graph showing the relationship between the grain size of ZnS crystals and the iodine supply amount.

【図5】 CVD反応の途中で沃素の導入を中止した場
合に得られたZnS結晶の組織
FIG. 5: Structure of ZnS crystal obtained when the introduction of iodine was stopped during the CVD reaction

【符号の説明】[Explanation of symbols]

1 加熱炉 2 反応器 3a 石英管
(Zn蒸気導入用) 3b 石英管(H2 S導入用) 3c 石英管
(沃素蒸気導入用) 4 湯溜り 5 Zn原料 6 基板
7 沃素 8 容器 9 リボンヒータ
1 heating furnace 2 reactor 3a quartz tube (for introducing Zn vapor) 3b quartz tube (for introducing H 2 S) 3c quartz tube (for introducing iodine vapor) 4 hot water pool 5 Zn raw material 6 substrate
7 iodine 8 container 9 ribbon heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 H2 S+Zn=ZnS+H2 の反応によ
り基板表面にZnS多結晶を合成する際、H2 S及びZ
n蒸気の原料ガスと共に沃素蒸気を反応帯域に導入する
ことを特徴とする粒径が制御されたZnS結晶の作製方
法。
1. When synthesizing ZnS polycrystal on the substrate surface by the reaction of H 2 S + Zn = ZnS + H 2 , H 2 S and Z
A method for producing a ZnS crystal having a controlled particle size, which comprises introducing iodine vapor into a reaction zone together with a source gas of n vapor.
【請求項2】 反応帯域に導入する沃素の供給量をCV
D反応の途中で変更することを特徴とする請求項1記載
のZnS結晶の作製方法。
2. The supply amount of iodine introduced into the reaction zone is CV
The method for producing a ZnS crystal according to claim 1, wherein the method is changed during the D reaction.
JP14480192A 1992-05-11 1992-05-11 Production of zns crystal having controlled particle diametfr Withdrawn JPH05310423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14480192A JPH05310423A (en) 1992-05-11 1992-05-11 Production of zns crystal having controlled particle diametfr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14480192A JPH05310423A (en) 1992-05-11 1992-05-11 Production of zns crystal having controlled particle diametfr

Publications (1)

Publication Number Publication Date
JPH05310423A true JPH05310423A (en) 1993-11-22

Family

ID=15370784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14480192A Withdrawn JPH05310423A (en) 1992-05-11 1992-05-11 Production of zns crystal having controlled particle diametfr

Country Status (1)

Country Link
JP (1) JPH05310423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387525C (en) * 2004-12-24 2008-05-14 北京有色金属研究总院 Equipment and technique for fabricating large size CVD ZnS material in high evenness
WO2023226243A1 (en) * 2022-05-26 2023-11-30 福建省龙德新能源有限公司 Method for preparing lithium hexafluorophosphate by dry method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387525C (en) * 2004-12-24 2008-05-14 北京有色金属研究总院 Equipment and technique for fabricating large size CVD ZnS material in high evenness
WO2023226243A1 (en) * 2022-05-26 2023-11-30 福建省龙德新能源有限公司 Method for preparing lithium hexafluorophosphate by dry method

Similar Documents

Publication Publication Date Title
EP0935013B1 (en) SiC product and manufacturing method thereof
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
EP1969622B1 (en) Semiconductor device and method of manufacture thereof
US5937316A (en) SiC member and a method of fabricating the same
US4948482A (en) Method for forming silicon nitride film
US5587013A (en) Methods of synthesizing and polishing a flat diamond film and free-standing diamond film
JPH08151296A (en) Method for forming single crystal diamond film
JPH05310423A (en) Production of zns crystal having controlled particle diametfr
US20210285125A1 (en) Method of manufacture of single crystal synthetic diamond material
JPH08151295A (en) Production of substrate for vapor synthesis of single crystal diamond film
US3690846A (en) Method of manufacturing semiconducting compounds by vapor growth method
EP0132618B1 (en) Process for preparing znse single crystal
Snail et al. Diamond growth in turbulent oxygen‐acetylene flames
US4487640A (en) Method for the preparation of epitaxial films of mercury cadmium telluride
US5232868A (en) Method for forming a thin semiconductor film
JPH0393695A (en) Polycrystal diamond and production thereof
RU2046843C1 (en) Method of producing polycrystalline zinc selenide
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JP2003034867A (en) TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JPS60169562A (en) Manufacture of composite material
JPS59169993A (en) Synthesis of diamond
JPS62245201A (en) Chemical phase synthesizing method for crystal stock having curvature
JPH1059794A (en) Pyrolyzed boron nitride container and its production
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803