JPH05310418A - Amorphous lithium ion conductive solid electrolyte and its synthesis - Google Patents

Amorphous lithium ion conductive solid electrolyte and its synthesis

Info

Publication number
JPH05310418A
JPH05310418A JP4118690A JP11869092A JPH05310418A JP H05310418 A JPH05310418 A JP H05310418A JP 4118690 A JP4118690 A JP 4118690A JP 11869092 A JP11869092 A JP 11869092A JP H05310418 A JPH05310418 A JP H05310418A
Authority
JP
Japan
Prior art keywords
solid electrolyte
ion conductive
lithium ion
conductive solid
sis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4118690A
Other languages
Japanese (ja)
Other versions
JP3343936B2 (en
Inventor
Noboru Aotani
登 青谷
Shigeo Kondo
繁雄 近藤
Kazunori Takada
和典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14742766&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05310418(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11869092A priority Critical patent/JP3343936B2/en
Publication of JPH05310418A publication Critical patent/JPH05310418A/en
Application granted granted Critical
Publication of JP3343936B2 publication Critical patent/JP3343936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a solid electrolyte having high lithium ion conductivity by enhancing the concentration of movable ions and simultaneously vitrifying the solid electrolyte for increasing the ion conductivity of the solid electrolyte. CONSTITUTION:In amorphous lithium ion conductive solid electrolyte represented by the general formula aLi3PO4.bLi S2.cX (a+b+c=1; X is at least one sulfide selected from SiS2, GeS2, P2S5 and B2S3), the solid electrolyte having a composition range of a<0.3, b>0.3 and c>0.2 is employed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全固体電池、コンデン
サ、固体エレクトロクロミック表示素子等の固体電気化
学素子の電解質として利用されるリチウムイオン伝導性
固体電解質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion conductive solid electrolyte used as an electrolyte for solid-state electrochemical devices such as all-solid-state batteries, capacitors, and solid electrochromic display devices.

【0002】[0002]

【従来の技術】近年、リチウムイオン伝導性固体電解質
を用いたリチウム電池の全固体化に関する研究が盛んに
行われている。
2. Description of the Related Art In recent years, much research has been conducted on the solidification of lithium batteries using a lithium ion conductive solid electrolyte.

【0003】この様なリチウムイオン伝導性固体電解質
の一つとしてLi2 S・X(XはSiS2 ,GeS2
2 5 ,B2 3 のうち少なくとも一種の硫化物)系
硫化物ガラスが存在する。
As one of such lithium ion conductive solid electrolytes, Li 2 S.X (X is SiS 2 , GeS 2 ,
At least one sulfide-based sulfide glass of P 2 S 5 and B 2 S 3 is present.

【0004】Li2 S・X系硫化物ガラスは、XがSi
2 のLi2 S・SiS2 系において最も高い伝導率の
値を有し、その値は、5×10-4S/cm程度である。
In the Li 2 S.X-based sulfide glass, X is Si
Has a value of highest conductivity in Li 2 S · SiS 2 system S 2, the value is about 5 × 10 -4 S / cm.

【0005】また、さらに高いイオン伝導性を得るため
に、これら硫化物ガラスにヨウ化リチウム(LiI)あ
るいはリン酸リチウム(Li3 PO4 )を添加した擬3
成分系ガラスの提案が行われている。
Further, in order to obtain higher ionic conductivity, a pseudo-3 obtained by adding lithium iodide (LiI) or lithium phosphate (Li 3 PO 4 ) to these sulfide glasses.
Proposals for component glass have been made.

【0006】[0006]

【発明が解決しようとする課題】これら各種の固体電解
質の提案は、そのイオン伝導性を向上させることを目的
としている。伝導率は可動イオンの濃度と移動度の積に
比例するため、固体電解質の伝導率を向上させるために
は可動イオンの濃度を上げることが必要となる。例えば
LiS2 ・X(XはSiS2 ,GeS2 ,P2 5 ,B
2 3 のうち少なくとも一種の硫化物)2成分系ガラス
ではLi2 S成分を増やすことにより伝導率が向上す
る。
The proposals of these various solid electrolytes are aimed at improving their ionic conductivity. Since the conductivity is proportional to the product of the concentration of mobile ions and the mobility, it is necessary to increase the concentration of mobile ions in order to improve the conductivity of the solid electrolyte. For example, LiS 2 · X (X is SiS 2 , GeS 2 , P 2 S 5 , B
In at least one sulfide of 2 S 3 ) binary glass, the conductivity is improved by increasing the Li 2 S component.

【0007】しかしながら、これらの系でのガラス化領
域は限られており、Li2 Sの組成比を大きくするとガ
ラス形成が不可能となり逆に伝導率が低下する結果とな
る。
However, the vitrification region in these systems is limited, and when the composition ratio of Li 2 S is increased, glass formation becomes impossible and conversely the conductivity is lowered.

【0008】本発明は、以上の課題を解決し、より高い
リチウムイオン伝導性を有する固体電解質とその合成法
を提供することを目的とする。
An object of the present invention is to solve the above problems and provide a solid electrolyte having higher lithium ion conductivity and a method for synthesizing the solid electrolyte.

【0009】[0009]

【課題を解決するための手段】本発明の非晶質リチウム
イオン伝導性固体電解質は、一般式aLi3 PO4 ・b
Li2 S・cX(a+b+c=1、XはSiS2 ,Ge
2 ,P2 5 ,B23 のうち少なくとも一種の硫化
物)で表され、組成比a、b、c、がa<0.3かつb
>0.3かつc>0.2をみたすことを特徴とする。
The amorphous lithium ion conductive solid electrolyte of the present invention has the general formula aLi 3 PO 4 .b.
Li 2 S · cX (a + b + c = 1, X is SiS 2 , Ge
Is represented by S 2, at least one sulfide of P 2 S 5, B 2 S 3), the composition ratio a, b, c, but a <0.3 and b
It is characterized by satisfying> 0.3 and c> 0.2.

【0010】尚、前記一般式aLi3 PO4 ・bLi2
S・cX(a+b+c=1、XはSiS2 ,GeS2
2 5 ,B2 3 のうち少なくとも一種の硫化物)で
表される非晶質リチウムイオン伝導性固体電解質は、組
成比a、b、c、がa≦0.1かつb≧0.5かつc≧
0.3をみたす領域を用いることが好ましい。
The above general formula aLi 3 PO 4 .bLi 2
S · cX (a + b + c = 1, X is SiS 2 , GeS 2 ,
An amorphous lithium ion conductive solid electrolyte represented by at least one sulfide of P 2 S 5 and B 2 S 3 has a composition ratio a, b, c of a ≦ 0.1 and b ≧ 0. .5 and c ≧
It is preferable to use a region satisfying 0.3.

【0011】また、前記非晶質リチウムイオン伝導性固
体電解質は、Li3 PO4 とLi2SとX(XはSiS
2 ,GeS2 ,P2 5 ,B2 3 のうち少なくとも一
種の硫化物)の混合物を溶融し、その後急冷することに
より合成するのが好ましい。
The amorphous lithium ion conductive solid electrolyte is composed of Li 3 PO 4 , Li 2 S and X (X is SiS).
It is preferable that a mixture of 2 , GeS 2 , P 2 S 5 , and B 2 S 3 of at least one sulfide) is melted and then rapidly cooled to synthesize it.

【0012】[0012]

【作用】LiS2 ・X(XはSiS2 ,GeS2 ,P2
5 ,B2 3 のうち少なくとも一種の硫化物)擬2成
分系ガラスに第3成分としてLi3 PO4 を加えること
で、可動イオンであるリチウムイオンの濃度が大きなも
のとなり、伝導率が向上する。またさらに、Li3 PO
4 の成分であるPO4 3-はガラスネットワーク形成能を
有することから、2成分系ではガラス化が不可能であっ
たLi2 S成分が多い組成領域でもガラス化が可能とな
る。
Operation: LiS 2 · X (X is SiS 2 , GeS 2 , P 2
By adding Li 3 PO 4 as a third component to at least one sulfide (quasi-binary glass of S 5 and B 2 S 3 ) as a third component, the concentration of lithium ions, which are mobile ions, becomes large, and the conductivity increases. improves. Furthermore, Li 3 PO
Since PO 4 3−, which is the fourth component, has the ability to form a glass network, vitrification is possible even in a composition region containing a large amount of Li 2 S component, which was not possible in the two-component system.

【0013】一般式aLi3 PO4 ・bLi2 S・cX
(a+b+c=1、XはSiS2 ,GeS2 ,P
2 5 ,B2 3 のうち少なくとも一種の硫化物)を主
成分とするリチウムイオン伝導性固体電解質では、組成
比a、b、cがa<0.3かつb>0.3かつc>0.
2をみたす組成領域でガラス化が可能となり、高いイオ
ン伝導性を示す非晶質リチウムイオン伝導性固体電解質
を得ることができる。
The general formula aLi 3 PO 4 .bLi 2 S.cX
(A + b + c = 1, X is SiS 2 , GeS 2 , P
In a lithium ion conductive solid electrolyte containing at least one sulfide of 2 S 5 and B 2 S 3 as a main component, the composition ratios a, b and c are a <0.3 and b> 0.3 and c. > 0.
Vitrification is possible in the composition region satisfying 2, and an amorphous lithium ion conductive solid electrolyte exhibiting high ion conductivity can be obtained.

【0014】さらにこの組成領域の中でも、組成比a、
b、cがa≦0.1かつb≧0.5かつc≧0.3をみ
たす組成領域で可動イオンの濃度が高いものとなり、伝
導率が極大を示すことから、特に好ましく用いられる。
Further, within this composition region, the composition ratio a,
In the composition region where b and c satisfy a ≦ 0.1 and b ≧ 0.5 and c ≧ 0.3, the concentration of mobile ions becomes high and the conductivity shows a maximum, so that it is particularly preferably used.

【0015】aLi3 PO4 ・bLi2 S・cX(a+
b+c=1)を主成分とする化合物において、XがSi
2 であるときガラス化が容易にできることから、Xと
してSiS2 が特に好ましく用いられる。
ALi 3 PO 4 .bLi 2 S.cX (a +
In a compound containing b + c = 1) as the main component, X is Si
SiS 2 is particularly preferably used as X, because vitrification can be easily carried out when it is S 2 .

【0016】また、擬3成分系硫化物ガラスを作製する
には、一般に擬2成分系ガラスを母材として作製し、こ
れに第3成分を混合、溶融し、ガラスを作製するといっ
た2段階のプロセスをとる方法が一般的であるが、Li
3 PO4 ・Li2 S・X(XはSiS2 ,GeS2 ,P
2 5 ,B2 3 のうち少なくとも一種の硫化物)擬3
成分系ガラスを作製するには、PO4 3-がガラスネット
ワーク形成に寄与するために、このような2段階のプロ
セスをとる必要はなく、材料を一度に混合し、溶融した
後、急冷することで合成の際の工数を簡略化することが
できる。
In order to produce a quasi-three-component system sulfide glass, generally, a quasi-two-component system glass is prepared as a base material, and a third component is mixed and melted in this to produce a glass. The process is generally used, but Li
3 PO 4 · Li 2 S · X (X is SiS 2 , GeS 2 , P
At least one sulfide of 2 S 5 and B 2 S 3 ) Pseudo 3
In order to produce the component type glass, PO 4 3− contributes to the formation of the glass network, and thus it is not necessary to perform such a two-step process. The materials are mixed at once, melted, and then rapidly cooled. Can simplify the man-hours for the synthesis.

【0017】[0017]

【実施例】以下、本発明を具体的実施例により詳細に説
明するが、本発明は、これら実施例に限定されるもので
はない。
EXAMPLES The present invention will now be described in detail with reference to specific examples, but the present invention is not limited to these examples.

【0018】(実施例1)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・SiS2 で表される非晶質リチウムイオン伝導性固体
電解質を以下の方法で合成した。
Example 1 Among the amorphous lithium ion conductive solid electrolytes according to the present invention, Li 3 PO 4 .Li 2 S
An amorphous lithium ion conductive solid electrolyte represented by SiS 2 was synthesized by the following method.

【0019】母材としてLi2 S・SiS2 系硫化物ガ
ラスを合成し、これにLi3 PO4を添加して、aLi
3 PO4 ・bLi2 S・cSiS2 (a+b+c+=
1)を合成した。
Li 2 S.SiS 2 type sulfide glass was synthesized as a base material, and Li 3 PO 4 was added to this to obtain aLi.
3 PO 4 · bLi 2 S · cSiS 2 (a + b + c + =
1) was synthesized.

【0020】先ず、Li2 S・SiS2 系硫化物ガラス
の合成法を示すと、硫化リチウム(Li2 S)と硫化珪
素(SiS2 )を所定の組成となるように混合した材料
粉末をガラス状カーボン坩堝にいれ、これを、アルゴン
気流中950°Cで1.5時間溶融し反応させた後、液
体窒素中に投入して急冷し、Li2 S・SiS2 を合成
し母材とした。
First, a method of synthesizing a Li 2 S.SiS 2 type sulfide glass will be described. Lithium sulfide (Li 2 S) and silicon sulfide (SiS 2 ) are mixed so as to have a predetermined composition, and a material powder is mixed with glass. In a rectangular carbon crucible, which was melted and reacted at 950 ° C. for 1.5 hours in an argon stream, then put into liquid nitrogen and rapidly cooled to synthesize Li 2 S.SiS 2 as a base material. ..

【0021】次に、これらの母材を粉砕し、これにリン
酸リチウム(Li3 PO4 )をaLi3 PO4 ・bLi
2 S・cSiS2 (a+b+c=1)の所定の組成とな
るように加えて混合し、得られた材料粉末をガラス状カ
ーボン坩堝にいれ、これを、アルゴン気流中950°C
で1.5時間溶融し反応させた後、液体窒素中に投入し
て急冷し、aLi3 PO4 ・bLi2 S・cSiS
2 (a+b+c=1)リチウムイオン伝導性固体電解質
を合成した。
Next, these base materials were pulverized, and lithium phosphate (Li 3 PO 4 ) was added to this, aLi 3 PO 4 .bLi.
2 S · cSiS 2 (a + b + c = 1) was added and mixed so as to have a predetermined composition, and the obtained material powder was put into a glassy carbon crucible and placed in an argon stream at 950 ° C.
In After melted 1.5 hours, then quenched by poured into liquid nitrogen, aLi 3 PO 4 · bLi 2 S · cSiS
2 (a + b + c = 1) lithium ion conductive solid electrolyte was synthesized.

【0022】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域がみられた。ガラス化範囲
は図1に示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・SiS2 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35SiS2 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35Si
2 )とすることによりガラス化が可能であることがわ
かった。
As a result of the synthesis, a composition region in which the product vitrified and a composition region in which the product did not vitrify were observed. The vitrification range is a <0.3, b> 0.3, c> as shown in FIG.
In the range of 0.2, the composition does not vitrify the Li 2 S · SiS 2 quasi-two-component system, for example 0.65Li 2 S · 0.
Lithium phosphate was added to 35SiS 2 to obtain 0.05
Li 3 PO 4 · (0.65Li 2 S · 0.35Si
It was found that vitrification is possible by using S 2 ).

【0023】以上のようにして合成した固体電解質のイ
オン伝導率を、交流インピーダンス法により測定した。
The ionic conductivity of the solid electrolyte synthesized as described above was measured by the AC impedance method.

【0024】測定の結果、a≦0.1、b≧0.5、c
≧0.3の組成領域で特に高い伝導率を示し、2×10
-4〜7×10-4S/cmであった。伝導率が最大となる
組成は、0.03Li3 PO4 ・0.63Li2 S・
0.34SiS2 であった。
As a result of the measurement, a ≦ 0.1, b ≧ 0.5, c
Particularly high conductivity is exhibited in the composition region of ≧ 0.3, 2 × 10
It was −4 to 7 × 10 −4 S / cm. The composition that maximizes the conductivity is 0.03Li 3 PO 4 0.63Li 2 S
It was 0.34SiS 2 .

【0025】以上のように、本発明によると、Li2
・SiS2 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
The composition which was not vitrified in the SiS 2 pseudo binary system can be vitrified by adding lithium phosphate, and a solid electrolyte having a higher ionic conductivity can be obtained.

【0026】(実施例2)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・GeS2 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてGeS2 を用いた以外は実
施例1と同様の方法で合成した。
(Example 2) Amorphous lithium according to the present invention
Among the ion conductive solid electrolytes, Li3POFour・ Li2S
・ GeS2Amorphous lithium ion conductive solid represented by
Electrolyte, SiS 2GeS instead2Except using
It was synthesized in the same manner as in Example 1.

【0027】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域が見られた。ガラス化範囲
は図2で示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・GeS2 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35GeS2 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35Ge
2 )とすることによりガラス化が可能であることがわ
かった。
As a result of the synthesis, a composition region where the product vitrified and a composition region where the product did not vitrify were found. As shown in FIG. 2, the vitrification range is a <0.3, b> 0.3, c>
In the range of 0.2, the composition does not vitrify the Li 2 S · GeS 2 quasi-two-component system, for example 0.65Li 2 S · 0.
Lithium phosphate was added to 35 GeS 2 to obtain 0.05
Li 3 PO 4 · (0.65Li 2 S · 0.35Ge
It was found that vitrification is possible by using S 2 ).

【0028】以上のようにして合成した固体電解質のイ
オン伝導率を、交流インピーダンス法により測定した。
The ionic conductivity of the solid electrolyte synthesized as described above was measured by the AC impedance method.

【0029】測定の結果、a≦0.1かつb≧0.5か
つc≧0.3の組成領域で特に高い伝導率を示し、1×
10-4〜3×10-4S/cmとなった。伝導率が最大と
なる組成は、0.03Li3 PO4 ・0.63Li2
・0.34GeS2 であった。
As a result of the measurement, a particularly high conductivity is shown in the composition region of a ≦ 0.1 and b ≧ 0.5 and c ≧ 0.3, 1 ×
It was 10 −4 to 3 × 10 −4 S / cm. The composition that maximizes the conductivity is 0.03Li 3 PO 4 0.63Li 2 S
-It was 0.34 GeS 2 .

【0030】以上のように、本発明によると、Li2
・GeS2 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
-A composition that was not vitrified in the GeS 2 pseudo binary system can be vitrified by adding lithium phosphate, and a solid electrolyte having a higher ionic conductivity can be obtained.

【0031】(実施例3)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・P2 5 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてP2 5 を用いた以外は実
施例1と同様の方法で合成した。
Example 3 Amorphous lithium according to the present invention
Among the ion conductive solid electrolytes, Li3POFour・ Li2S
・ P2SFiveAmorphous lithium ion conductive solid represented by
Electrolyte, SiS 2Instead of P2SFiveExcept using
It was synthesized in the same manner as in Example 1.

【0032】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域が見られた。ガラス化範囲
は図3で示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・P2 5 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35P2 5 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35P
2 5 )とすることによりガラス化が可能であることが
わかった。
As a result of the synthesis, a composition region where the product vitrified and a composition region where the product did not vitrify were found. The vitrification range is a <0.3, b> 0.3, c> as shown in FIG.
It is in the range of 0.2 and does not vitrify in the Li 2 S · P 2 S 5 pseudo binary system, for example, 0.65 Li 2 S · 0.
Lithium phosphate was added to 35P 2 S 5 to obtain 0.05
Li 3 PO 4 · (0.65Li 2 S · 0.35P
It was found that vitrification is possible by using 2 S 5 ).

【0033】以上のようにして合成した固体電解質のイ
オン伝導率を調べるため、交流インピーダンス法により
測定した。
In order to investigate the ionic conductivity of the solid electrolyte synthesized as described above, it was measured by the AC impedance method.

【0034】測定の結果、a≦0.1、b≧0.5、c
≧0.3の組成領域で特に高い伝導率を示し、2×10
-4〜4×10-4S/cmとなった。伝導率が最大となる
組成は、0.03Li3 PO4 ・0.65Li2 S・
0.32P2 5 であった。
As a result of the measurement, a ≦ 0.1, b ≧ 0.5, c
Particularly high conductivity is exhibited in the composition region of ≧ 0.3, 2 × 10
-4 to 4 x 10 -4 S / cm. The composition conductivity is maximized, 0.03Li 3 PO 4 · 0.65Li 2 S ·
It was 0.32P 2 S 5 .

【0035】以上のように、本発明によると、Li2
・P2 5 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
The composition which was not vitrified in the P 2 S 5 pseudo binary system can be vitrified by adding lithium phosphate, and a solid electrolyte having a higher ionic conductivity can be obtained.

【0036】(実施例4)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・B2 3 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてB2 3 を用いた以外は実
施例1と同様の方法で合成した。
Example 4 Amorphous lithium according to the present invention
Among the ion conductive solid electrolytes, Li3POFour・ Li2S
・ B2S3Amorphous lithium ion conductive solid represented by
Electrolyte, SiS 2Instead of B2S3Except using
It was synthesized in the same manner as in Example 1.

【0037】合成の結果、生成物がガラス化する組成領
域とガラス化しない組成領域が見られた。ガラス化範囲
は図4で示すように、a<0.3、b>0.3、c>
0.2の範囲であり、Li2 S・B2 3 擬2成分系で
はガラス化しない組成、例えば0.65Li2 S・0.
35B2 3 に対し、リン酸リチウムを加えて0.05
Li3 PO4 ・(0.65Li2 S・0.35B
2 3 )とすることによりガラス化が可能であることが
わかった。
As a result of the synthesis, a composition region where the product vitrified and a composition region where the product did not vitrify were found. As shown in FIG. 4, the vitrification range is a <0.3, b> 0.3, c>
In the range of 0.2, the composition does not vitrify the Li 2 S · B 2 S 3 pseudo binary system, for example 0.65Li 2 S · 0.
Lithium phosphate was added to 35B 2 S 3 to obtain 0.05.
Li 3 PO 4 · (0.65Li 2 S · 0.35B
It was found that vitrification is possible by using 2 S 3 ).

【0038】以上のようにして合成した固体電解質のイ
オン伝導率を、交流インピーダンス法により測定した。
The ionic conductivity of the solid electrolyte synthesized as described above was measured by the AC impedance method.

【0039】測定の結果、a≦0.1、b≧0.5、c
≧0.3の組成領域で特に高い伝導率を示し、1×10
-4〜3×10-4S/cmとなった。伝導率が最大となる
組成は、0.03Li3 PO4 ・0.53Li2 S・
0.44B2 3 であった。
As a result of the measurement, a ≦ 0.1, b ≧ 0.5, c
Particularly high conductivity is exhibited in the composition region of ≧ 0.3 and 1 × 10
-4 to 3 × 10 -4 S / cm. The composition that maximizes the conductivity is 0.03Li 3 PO 4 .0.53Li 2 S.
It was 0.44 B 2 S 3 .

【0040】以上のように、本発明によると、Li2
・B2 3 擬2成分系ではガラス化しなかった組成もリ
ン酸リチウムを加えることによりガラス化が可能とな
り、また、よりイオン伝導率の大きな固体電解質とする
ことができる。
As described above, according to the present invention, Li 2 S
The composition which was not vitrified in the B 2 S 3 pseudo binary system can be vitrified by adding lithium phosphate, and a solid electrolyte having a higher ionic conductivity can be obtained.

【0041】(実施例5)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・SiS2 で表される非晶質リチウムイオン伝導性固体
電解質を以下の方法で合成した。
Example 5 Among the amorphous lithium ion conductive solid electrolytes according to the present invention, Li 3 PO 4 .Li 2 S
An amorphous lithium ion conductive solid electrolyte represented by SiS 2 was synthesized by the following method.

【0042】所定の組成となるように、リン酸リチウム
(Li3 PO4 )と硫化リチウム(Li2 S)と硫化珪
素(SiS2 )を混合した材料粉末をガラス状カーボン
坩堝にいれ、これを、アルゴン気流中950°Cで1.
5時間溶融し反応させた後、液体窒素中に投入して急冷
し、aLi3 PO4 ・bLi2 S・cSiS2 (a+b
+c=1)リチウムイオン伝導性固体電解質を合成し
た。
A material powder obtained by mixing lithium phosphate (Li 3 PO 4 ), lithium sulfide (Li 2 S) and silicon sulfide (SiS 2 ) so as to have a predetermined composition is put in a glassy carbon crucible, and the powder is put into the crucible. At 950 ° C in an argon stream.
After melting and reacting for 5 hours, the mixture was poured into liquid nitrogen and rapidly cooled to obtain aLi 3 PO 4 .bLi 2 S.cSiS 2 (a + b
+ C = 1) A lithium ion conductive solid electrolyte was synthesized.

【0043】合成の結果、ガラス化領域や伝導率の特性
は、実施例1で示した場合とほぼ同様となった。
As a result of the synthesis, the characteristics of the vitrification region and the conductivity were almost the same as those shown in Example 1.

【0044】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte exhibiting high ionic conductivity can be obtained without going through a step of synthesizing a base material.

【0045】(実施例6)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・GeS2 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてGeS2 を用いた以外は実
施例5と同様の方法で合成した。
Example 6 Amorphous lithium according to the present invention
Among the ion conductive solid electrolytes, Li3POFour・ Li2S
・ GeS2Amorphous lithium ion conductive solid represented by
Electrolyte, SiS 2GeS instead2Except using
It was synthesized in the same manner as in Example 5.

【0046】合成の結果、ガラス化領域や伝導率の特性
は、実施例2で示した場合とほぼ同様となった。
As a result of the synthesis, the characteristics of the vitrification region and the conductivity were almost the same as those shown in Example 2.

【0047】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte exhibiting high ionic conductivity can be obtained without going through a step of synthesizing a base material.

【0048】(実施例7)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・P2 5 で表される非晶質リチウムイオン伝導性固体
電解質をSiS2にかえてP2 5 を用いた以外は実施
例5と同様の方法で合成した。
Example 7 Among the amorphous lithium ion conductive solid electrolytes according to the present invention, Li 3 PO 4 .Li 2 S
It was synthesized in the same manner as in Example 5, except that the amorphous lithium ion conductive solid electrolyte represented by P 2 S 5 was replaced with SiS 2 and P 2 S 5 was used.

【0049】合成の結果、ガラス化領域や伝導率の特性
は、実施例3で示した場合とほぼ同様となった。
As a result of the synthesis, the characteristics of the vitrification region and the conductivity were almost the same as those shown in Example 3.

【0050】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte exhibiting high ionic conductivity can be obtained without going through a step of synthesizing a base material.

【0051】(実施例8)本発明による非晶質リチウム
イオン伝導性固体電解質の内、Li3 PO4 ・Li2
・B2 3 で表される非晶質リチウムイオン伝導性固体
電解質を、SiS 2 にかえてB2 3 を用いた以外は実
施例5と同様の方法で合成した。
Example 8 Amorphous lithium according to the present invention
Among the ion conductive solid electrolytes, Li3POFour・ Li2S
・ B2S3Amorphous lithium ion conductive solid represented by
Electrolyte, SiS 2Instead of B2S3Except using
It was synthesized in the same manner as in Example 5.

【0052】合成の結果、ガラス化領域や伝導率の特性
は、実施例4で示した場合とほぼ同様となった。
As a result of the synthesis, the characteristics of the vitrification region and the conductivity were almost the same as those shown in Example 4.

【0053】以上のように、本発明によると、母材の合
成工程を経ることなしに、高いイオン伝導率を示すリチ
ウムイオン伝導性固体電解質を得ることができる。
As described above, according to the present invention, a lithium ion conductive solid electrolyte exhibiting high ionic conductivity can be obtained without going through a step of synthesizing a base material.

【0054】尚、本発明の実施例においては、一般式L
3 PO4 ・Li2 S・Xで表される固体電解質とし
て、XがSiS2 ,GeS2 ,P2 5 ,B2 3 であ
るものについて説明を行ったが、XとしてSiS2 とG
eS2 の混合物など、SiS2,GeS2 ,P2 5
2 3 から選ばれる複数の硫化物の混合物を用いても
同様の結果が得られることはいうまでもなく、本発明は
Li3 PO4 ・Li2 S・XにおけるXとして単一の硫
化物に限定されるものではない。
In the examples of the present invention, the general formula L
As solid electrolyte represented by i 3 PO 4 · Li 2 S · X, but X has been described what is SiS 2, GeS 2, P 2 S 5, B 2 S 3, and SiS 2 as X G
such as a mixture of eS 2 , SiS 2 , GeS 2 , P 2 S 5 ,
It goes without saying that the same result can be obtained by using a mixture of a plurality of sulfides selected from B 2 S 3 and the present invention provides a single sulfide as X in Li 3 PO 4 .Li 2 S.X. It is not limited to the thing.

【0055】[0055]

【発明の効果】一般式aLi3 PO4 ・bLi2 S・c
X(a+b+c=1、XはSiS2 ,GeS2 ,P2
5 ,B2 3 のうち少なくとも一種の硫化物)で表され
るリチウムイオン伝導性固体電解質において、その組成
比a、b、cをa<0.3、b>0.3、c>0.2と
することで、高いイオン伝導性を示す非晶質リチウムイ
オン伝導性固体電解質を得ることができる。
EFFECT OF THE INVENTION General formula aLi 3 PO 4 .bLi 2 S.c
X (a + b + c = 1, X is SiS 2 , GeS 2 , P 2 S
5 , at least one sulfide of B 2 S 3 ) and a lithium ion conductive solid electrolyte represented by a composition ratio a, b, c of a <0.3, b> 0.3, c> 0. By setting the ratio to 0.2, an amorphous lithium ion conductive solid electrolyte exhibiting high ion conductivity can be obtained.

【0056】また、組成比a、b、cをa≦0.1、b
≧0.5、c≧0.3とすることで、特に高いイオン伝
導性を示す非晶質リチウムイオン伝導性固体電解質を得
ることができる。
Further, the composition ratios a, b and c are a ≦ 0.1 and b.
By setting ≧ 0.5 and c ≧ 0.3, it is possible to obtain an amorphous lithium ion conductive solid electrolyte exhibiting particularly high ionic conductivity.

【0057】また、Li3 PO4 とLi2 SとX(Xは
SiS2 ,GeS2 ,P2 5 ,B 2 3 のうち少なく
とも一種の硫化物)の混合物を溶融し、その後急冷する
ことで、母材の合成工程を経ることなしに高いイオン伝
導性を示す前記非晶質リチウムイオン伝導性固体電解質
を得ることができる。
In addition, Li3POFourAnd Li2S and X (X is
SiS2, GeS2, P2SFive, B 2S3Less of
And a kind of sulfide) are melted and then quenched.
This enables high ion transmission without going through the synthesis process of the base material.
The amorphous lithium ion conductive solid electrolyte exhibiting conductivity
Can be obtained.

【0058】また、特に、前記一般式aLi3 PO4
bLi2 S・cX(a+b+c=1)で表される化合物
において、XとしてSiS2 を用いることで、高いイオ
ン伝導性を示す非晶質リチウムイオン伝導性固体電解質
を得ることができる。
Further, in particular, the above general formula aLi 3 PO 4 .multidot.
By using SiS 2 as X in the compound represented by bLi 2 S · cX (a + b + c = 1), an amorphous lithium ion conductive solid electrolyte exhibiting high ion conductivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】aLi3 PO4 ・bLi2 S・cSiS2 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 1 aLi 3 PO 4 .bLi 2 S.cSiS 2 pseudo-3
Three-component composition diagram showing the vitrification region of the component system

【図2】aLi3 PO4 ・bLi2 S・cGeS2 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 2 aLi 3 PO 4 .bLi 2 S.cGeS 2 pseudo-3
Three-component composition diagram showing the vitrification region of the component system

【図3】aLi3 PO4 ・bLi2 S・cP2 5 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 3 aLi 3 PO 4 .bLi 2 S.cP 2 S 5 pseudo-3
Three-component composition diagram showing the vitrification region of the component system

【図4】aLi3 PO4 ・bLi2 S・cB2 3 擬3
成分系のガラス化領域を示す三成分組成図
FIG. 4 aLi 3 PO 4 .bLi 2 S.cB 2 S 3 pseudo-3
Three-component composition diagram showing the vitrification region of the component system

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01M 10/36 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01M 10/36 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式aLi3 PO4 ・bLi2 S・c
X(a+b+c=1、XはSiS2 ,GeS2 ,P2
5 ,B2 3 のうち少なくとも一種の硫化物)で表さ
れ、組成比a、b、c、がa<0.3かつb>0.3か
つc>0.2をみたすことを特徴とする非晶質リチウム
イオン伝導性固体電解質。
1. A general formula aLi 3 PO 4 .bLi 2 S.c.
X (a + b + c = 1, X is SiS 2 , GeS 2 , P 2 S
5 , B 2 S 3 of at least one sulfide), and the composition ratios a, b, and c satisfy a <0.3 and b> 0.3 and c> 0.2. Amorphous lithium ion conductive solid electrolyte.
【請求項2】 組成比a、b、c、がa≦0.1かつb
≧0.5かつc≧0.3をみたすことを特徴とする請求
項1記載の非晶質リチウムイオン伝導性固体電解質。
2. The composition ratios a, b, and c are a ≦ 0.1 and b.
The amorphous lithium ion conductive solid electrolyte according to claim 1, wherein ≧ 0.5 and c ≧ 0.3 are satisfied.
【請求項3】 Li3 PO4 とLi2 SとX(XはSi
2 ,GeS2 ,P25 ,B2 3 のうち少なくとも
一種の硫化物)の混合物を溶融し、その後急冷すること
を特徴とする請求項1または請求項2記載の非晶質リチ
ウムイオン伝導性固体電解質の合成法。
3. Li 3 PO 4 and Li 2 S and X (X is Si
Amorphous lithium according to claim 1 or 2, wherein a mixture of at least one sulfide of S 2 , GeS 2 , P 2 S 5 , and B 2 S 3 is melted and then rapidly cooled. Synthesis of ion conductive solid electrolyte.
JP11869092A 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method Expired - Lifetime JP3343936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11869092A JP3343936B2 (en) 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11869092A JP3343936B2 (en) 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method

Publications (2)

Publication Number Publication Date
JPH05310418A true JPH05310418A (en) 1993-11-22
JP3343936B2 JP3343936B2 (en) 2002-11-11

Family

ID=14742766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11869092A Expired - Lifetime JP3343936B2 (en) 1992-05-12 1992-05-12 Amorphous lithium ion conductive solid electrolyte and its synthesis method

Country Status (1)

Country Link
JP (1) JP3343936B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034515A1 (en) * 1994-06-13 1995-12-21 Mitsui Petrochemical Industries, Ltd. Lithium ion-conductive glass film and thin carbon dioxide gas sensor using the same film
EP0704920A1 (en) * 1994-09-21 1996-04-03 Matsushita Electric Industrial Co., Ltd. Solid-state lithium secondary battery
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6277524B1 (en) 1997-12-09 2001-08-21 Toyota Jidosha Kabushiki Kaisha Lithium-ion-conductive solid electrolyte and solid-electrolyte lithium battery
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2006156083A (en) * 2004-11-29 2006-06-15 Osaka Prefecture New high ionic conductivity ionic glass composition and manufacturing method of the same
EP1739769A1 (en) * 2005-06-28 2007-01-03 Sumitomo Electric Industries, Ltd. Lithium secondary battery anode member and method for manufacturing the same
JP2007273214A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, its manufacturing method and all solid secondary battery
JP2007273217A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, manufacturing method therefor and all-solid secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4174816B2 (en) 2001-02-28 2008-11-05 住友電気工業株式会社 Inorganic solid electrolyte and lithium battery member
EP1732152B1 (en) 2004-04-01 2014-03-05 Sumitomo Electric Industries, Ltd. Negative electrode member for secondary lithium battery and process for producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755940A (en) * 1994-06-13 1998-05-26 Mitsui Petrochemical Industries, Ltd. Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film
WO1995034515A1 (en) * 1994-06-13 1995-12-21 Mitsui Petrochemical Industries, Ltd. Lithium ion-conductive glass film and thin carbon dioxide gas sensor using the same film
EP0704920A1 (en) * 1994-09-21 1996-04-03 Matsushita Electric Industrial Co., Ltd. Solid-state lithium secondary battery
US5677081A (en) * 1994-09-21 1997-10-14 Matsushita Electric Industrial Co., Ltd. Solid-state lithium secondary battery
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6277524B1 (en) 1997-12-09 2001-08-21 Toyota Jidosha Kabushiki Kaisha Lithium-ion-conductive solid electrolyte and solid-electrolyte lithium battery
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP2006156083A (en) * 2004-11-29 2006-06-15 Osaka Prefecture New high ionic conductivity ionic glass composition and manufacturing method of the same
EP1739769A1 (en) * 2005-06-28 2007-01-03 Sumitomo Electric Industries, Ltd. Lithium secondary battery anode member and method for manufacturing the same
US8709106B2 (en) 2005-06-28 2014-04-29 Sumitomo Electric Industries, Ltd. Lithium secondary battery anode member and method for manufacturing the same
JP2007273214A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, its manufacturing method and all solid secondary battery
JP2007273217A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte, manufacturing method therefor and all-solid secondary battery

Also Published As

Publication number Publication date
JP3343936B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JP3125506B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
JPH05310418A (en) Amorphous lithium ion conductive solid electrolyte and its synthesis
JP3151925B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
US4331750A (en) Alkaline cation conductive vitreous composition and a method of preparing such a composition
US4599284A (en) Vitreous phosphorus oxide-sulfide solid lithium electrolyte
JP2002109955A (en) Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP3163741B2 (en) Amorphous lithium ion conductive solid electrolyte and method for producing the same
JP3343934B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
JP3184517B2 (en) Lithium ion conductive solid electrolyte
JP3134595B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
JP3284215B2 (en) Method for producing sulfide-based lithium ion conductive solid electrolyte
JPH0670906B2 (en) Solid electrolyte battery
US5500291A (en) Lithium ion conductive solid electrolyte and process for synthesizing the same
JP3149524B2 (en) Amorphous lithium ion conductive solid electrolyte and method for producing the same
JP3125507B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
US7351502B2 (en) Solid inorganic glassy electrolyte and method of production thereof
EP0618632B1 (en) Lithium ion conductive solid electrolyte and process for synthesizing the same
JP7301005B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
JPH0556384B2 (en)
Levasseur et al. Borate based lithium conducting glasses
JP7301013B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
WO2024085045A1 (en) Sulfide solid electrolyte and method for producing same, electrode mixture, solid electrolyte layer, and all-solid-state lithium ion secondary battery
KR100511420B1 (en) New Lithium Cobalt Metaphosphate Composition and Method for Preparing the Same
KR100351035B1 (en) Preparation of grassceramies for cathod materials in liion batteries
JP2001328816A (en) Cubic lithium-iron chloride crystal, method for producing the same and lithium secondary battery by using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10