JPH05309378A - Treatment of waste fluid containing cod-donating substance - Google Patents

Treatment of waste fluid containing cod-donating substance

Info

Publication number
JPH05309378A
JPH05309378A JP14322792A JP14322792A JPH05309378A JP H05309378 A JPH05309378 A JP H05309378A JP 14322792 A JP14322792 A JP 14322792A JP 14322792 A JP14322792 A JP 14322792A JP H05309378 A JPH05309378 A JP H05309378A
Authority
JP
Japan
Prior art keywords
cod
donating substance
solution
treated
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14322792A
Other languages
Japanese (ja)
Inventor
Fumio Hine
文男 日根
Yoshiomi Aoyanagi
義臣 青柳
Masahiro Saito
昌弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd, C Uyemura and Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP14322792A priority Critical patent/JPH05309378A/en
Publication of JPH05309378A publication Critical patent/JPH05309378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To efficiently, certainly and simply subject a COD-donating substance to oxidizing treatment with good handleability by electrolyzing a solution to be treated with a pH value of 5 or more prepared by dissolving salt in a waste fluid containing a COD-donating substance to form hypochlorous acid and oxidizing the COD donating substance in a liquid phase by hypochlorous acid. CONSTITUTION:Salt is dissolved in a waste fluid containing a COD donating substance such as a hypophosphorous ion, a phosphorous ion or an org. acid, typically, a waste electroless plating solution containing a hypophosphorous ion as a reducing agent to prepare a solution 2 to be treated, which is, in turn, hydrolyzed in an electrolytic cell 1 equipped with an anode 8 and a cathode 9. In this case, the pH value of the solution 2 to be treated prepared by dissolving salt in the waste fluid is adjusted to 5 or more and this solution 2 to be treated is hydrolyzed to immediately form hypochlorous acid and the COD donating substance is efficiently and certainly oxidized by hypochlorous acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、次亜りん酸塩を還元剤
とする無電解めっき液廃液等の次亜りん酸イオンや亜り
ん酸イオン、或いは有機酸もしくはその塩などのCOD
供与物質を含む廃液を処理する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hypophosphite ions and phosphite ions in electroless plating solution waste solutions containing hypophosphite as a reducing agent, or COD such as organic acids or salts thereof.
It relates to a method for treating a waste liquid containing a donor substance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】次亜り
ん酸塩を還元剤とする無電解めっき液(典型的には無電
解ニッケルめっき液)は、次亜りん酸イオンの還元作用
でめっき液中の金属イオンが還元析出すると共に、次亜
りん酸イオンが亜りん酸イオンに酸化される。従って、
めっき液中の金属イオン及び次亜りん酸イオンはめっき
反応の進行と共に、その濃度が低下し、このため析出速
度が低下したり、析出皮膜の物性が変化するなどの問題
が生じるので、金属イオン及び次亜りん酸イオンの消耗
に応じて金属イオン及び次亜りん酸イオンを補給するこ
とにより、めっき液を連続使用することが行われてい
る。
2. Description of the Related Art An electroless plating solution (typically an electroless nickel plating solution) using hypophosphite as a reducing agent is used for plating by reducing action of hypophosphite ion. The metal ion in the liquid is reduced and precipitated, and the hypophosphite ion is oxidized to the phosphite ion. Therefore,
The concentration of metal ions and hypophosphite ions in the plating solution decreases as the plating reaction progresses, which causes problems such as a decrease in the deposition rate and changes in the physical properties of the deposited film. In addition, the plating solution is continuously used by replenishing metal ions and hypophosphite ions in accordance with the consumption of hypophosphite ions.

【0003】しかし、上述したように、次亜りん酸塩を
還元剤とする無電解めっき液は、次亜りん酸イオンの酸
化により生成する亜りん酸イオンが漸次蓄積していく
が、亜りん酸イオンが大量に蓄積すると、めっき反応に
種々の悪影響を与えるようになるため、めっき液を廃棄
する必要が生じる。
However, as described above, in the electroless plating solution using hypophosphite as a reducing agent, phosphite ions produced by the oxidation of hypophosphite ions gradually accumulate. Accumulation of a large amount of acid ions adversely affects the plating reaction in various ways, so that it is necessary to discard the plating solution.

【0004】この次亜りん酸塩を還元剤とする無電解め
っき液廃液中の亜りん酸イオンを除去する方法として
は、従来、該廃液を高電流で電解し、その際陽極で発生
する酸素で亜りん酸をりん酸に電解酸化するか、又はH
22を廃液に添加して亜りん酸をりん酸に化学的に酸化
し、生成した酸をCaCl2等を添加してりん酸カルシ
ウム等として中和沈降させる方法が採用されている。
As a method for removing the phosphite ion in the electroless plating solution waste solution using hypophosphite as a reducing agent, the waste solution is conventionally electrolyzed at a high current, and oxygen generated at the anode at that time is electrolyzed. By electrolysis of phosphorous acid to phosphoric acid
A method has been adopted in which 2 O 2 is added to a waste liquid to chemically oxidize phosphorous acid into phosphoric acid, and the resulting acid is neutralized and precipitated as calcium phosphate by adding CaCl 2 or the like.

【0005】しかし、この方法は亜りん酸イオンを効率
よくしかも確実に除去するという点で問題があり、また
無電解めっき液廃液中に残存する次亜りん酸イオンや該
無電解めっき液中に錯化剤として含まれている有機酸イ
オンを効果的に除去することは困難である。
However, this method has a problem in that it efficiently and surely removes the phosphite ion, and the hypophosphite ion remaining in the waste solution of the electroless plating solution or the electroless plating solution remains. It is difficult to effectively remove the organic acid ions contained as the complexing agent.

【0006】このため、亜りん酸イオンは勿論、次亜り
ん酸イオンや有機酸などのCOD供与物質を効率よく確
実に除去し、処理廃液中のCODを可及的に減少する廃
液処理方法の確立が要望されていた。
[0006] Therefore, a waste liquid treatment method for efficiently and surely removing not only phosphorous acid ions but also COD-donating substances such as hypophosphite ions and organic acids, to reduce COD in the waste liquid as much as possible. It was requested to be established.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者は、上
記要望に応えるため鋭意検討を行った結果、次亜りん酸
イオン、亜りん酸イオン、有機酸などのCOD供与物質
を含む廃液、典型的には次亜りん酸イオンを還元剤とす
る無電解めっき液廃液に食塩を溶解し、これを陽極及び
陰極を備えた電解槽で電解すること、この場合上記廃液
に食塩を溶解した被処理液のpHを5以上として電解処
理を行うことにより、直ちに次亜塩素酸が生成し、この
次亜塩素酸によって次亜りん酸イオン、亜りん酸イオ
ン、有機酸等のCOD供与物質が効率よく確実に酸化さ
れ、かつ、この方法はCOD供与物質の酸化除去法とし
て取扱い性が良く、簡便であり、工業的に有利に採用し
得るものであることを知見した。
Means and Actions for Solving the Problems As a result of intensive studies to meet the above-mentioned demands, the present inventor has found that a waste liquid containing a COD-donating substance such as hypophosphite ion, phosphite ion and organic acid, Typically, salt is dissolved in an electroless plating solution waste solution containing hypophosphite as a reducing agent, and this is electrolyzed in an electrolytic cell equipped with an anode and a cathode. In this case, salt solution is dissolved in the waste solution. By performing electrolytic treatment with the pH of the treatment liquid at 5 or more, hypochlorous acid is immediately generated, and the hypochlorous acid efficiently converts COD-donating substances such as hypophosphite ion, phosphite ion, and organic acid. It has been found that the method is well and reliably oxidized, and that this method is easy to handle as a method for removing COD-donor substances by oxidation, is simple, and can be industrially advantageously adopted.

【0008】従って、本発明は、COD供与物質を含む
廃液に食塩を溶解すると共に、pHを5以上に調整した
被処理液を陽極と陰極とを具備した電解槽中で電解し、
これにより生成した次亜塩素酸でCOD供与物質を液相
酸化することを特徴とするCOD供与物質を含む廃液の
処理方法を提供する。
Therefore, according to the present invention, sodium chloride is dissolved in a waste liquid containing a COD-donating substance, and a liquid to be treated whose pH is adjusted to 5 or more is electrolyzed in an electrolytic cell having an anode and a cathode,
Provided is a method for treating a waste liquid containing a COD-donating substance, which comprises subjecting the COD-donating substance to liquid-phase oxidation with the hypochlorous acid thus produced.

【0009】本発明の方法においては、このようにCO
D供与物質を含む廃液に食塩を溶解すると共に、pH6
以上において電解するものであるが、かかる被処理液を
電解した場合、陽極及び陰極において下記の反応(1)
及び(2)が生じる。
Thus, in the method of the present invention, CO
Dissolve the salt in the waste liquid containing the D-donating substance and adjust the pH to 6
Although electrolysis is performed in the above, when the liquid to be treated is electrolyzed, the following reaction (1) occurs in the anode and the cathode.
And (2) occur.

【0010】[0010]

【化1】 [Chemical 1]

【0011】この場合、陽極側で生成した塩素は、被処
理液中で下記のように解離する。
In this case, chlorine generated on the anode side is dissociated in the liquid to be treated as follows.

【0012】[0012]

【化2】 [Chemical 2]

【0013】ここで、上記式(3),(4)の反応は被
処理液のpHに依存しており、図2に示すように、被処
理液をpH5以上にした場合、上記陽極反応で生じた塩
素は直ちに被処理液中でHClO又はClO-に解離
し、塩素ガスが実質上発生せず、被処理液中に溶解され
たHClO又はClO-の酸化作用により被処理液中の
次亜りん酸イオンが液相反応で亜りん酸イオン或いはり
ん酸イオンに酸化される。この反応の際、HClO又は
ClO-はCl-が還元されるが、このCl-は陽極酸化
されてCl2になる。
Here, the reactions of the above formulas (3) and (4) depend on the pH of the liquid to be treated, and as shown in FIG. The generated chlorine is immediately dissociated into HClO or ClO in the liquid to be treated, chlorine gas is not substantially generated, and the chlorine dioxide in the liquid to be treated is oxidized by the oxidizing action of HClO or ClO dissolved in the liquid to be treated. Phosphate ions are oxidized to phosphite ions or phosphate ions in a liquid phase reaction. During this reaction, HClO or ClO is reduced to Cl −, but this Cl is anodized to Cl 2 .

【0014】従って、食塩を溶解し、またpHを5以上
に調整した被処理液を電解すれば、被処理液中に直ちに
HClO又はClO-が生成し、液相中で次亜りん酸イ
オン、亜りん酸イオン、有機酸等のCOD供与物質が塩
素酸化されるので、通常の電解処理法に比べて容易に除
去される。
Therefore, if the solution to be treated in which salt is dissolved and the pH is adjusted to 5 or higher is electrolyzed, HClO or ClO is immediately produced in the solution to be treated, and hypophosphite ions in the liquid phase, Since COD-donating substances such as phosphite ions and organic acids are oxidized by chlorine, they can be easily removed as compared with ordinary electrolytic treatment methods.

【0015】この場合、このCOD供与物質の酸化法
は、塩素酸化ではあるが、取扱いの面倒な塩素や次亜塩
素酸塩を廃液中に添加してCOD供与物質を酸化する方
法とは異なり、単に食塩を添加すると共にpHを調整
し、これを電解するだけで次亜塩素酸が生成し、塩素ガ
ス発生を実質的に伴うこともないので、取扱い性に優れ
たものである。また、この方法は、電解により塩化物イ
オンから塩素を生成させ、この塩素を上記式(3)乃至
(4)の反応によってHClO及びClO-に直ちに解
離させて塩素酸化するものであるが、この際式(3)や
酸化反応で生成する塩化物イオンは式(1)の陽極反応
に供され、しかも上述したように実質的に塩素ガスの発
生がないので、塩化物イオンが実質的に消耗せず、この
ため処理に際しては廃液に最初に食塩を溶解するだけで
よく、管理も容易である。更に、この方法によれば、バ
ッチ法でも連続法でも可能であり、スケールアップも容
易に行われる。
In this case, although the oxidation method of the COD-donating substance is chlorine oxidation, it is different from the method of oxidizing the COD-donating substance by adding chlorine or hypochlorite to the waste liquid which is troublesome to handle. Hypochlorous acid is generated only by adding salt and adjusting pH and electrolyzing this, and chlorine gas is not substantially generated, so that it is easy to handle. In this method, chlorine is generated from chloride ion by electrolysis, and this chlorine is immediately dissociated into HClO and ClO by the reaction of the above formulas (3) to (4) to oxidize chlorine. Chloride ions produced by the equation (3) and the oxidation reaction are subjected to the anodic reaction of the equation (1), and since chlorine gas is not substantially generated as described above, the chloride ions are substantially consumed. For this reason, it is only necessary to dissolve the salt in the waste liquid at the time of processing, and the management is easy. Furthermore, according to this method, both a batch method and a continuous method are possible, and scale-up can be easily performed.

【0016】以下、本発明につき更に詳しく説明する
と、本発明の次亜りん酸イオン、亜りん酸イオン、有機
酸等のCOD供与物質を含む廃液の処理方法は、次亜り
ん酸塩を還元剤とする無電解ニッケルめっき液等のめっ
き液廃液の処理に好適に採用されるものである。
The present invention will be described in more detail below. In the method for treating a waste liquid containing a COD-donating substance such as hypophosphite ion, phosphite ion and organic acid according to the present invention, hypophosphite is used as a reducing agent. It is preferably used for treating a waste plating solution such as an electroless nickel plating solution.

【0017】このような廃液の処理に際しては、まず廃
液に食塩を添加溶解すると共に、pHを5以上に調整す
る。この場合、食塩の添加量は適宜選定され、特に限定
されるものではないが、通常は10〜300g/lの範
囲であり、より好ましくは30〜100g/lの範囲で
ある。また、pHは5以上であればよいが、より好まし
くは5.5〜8である。なお、廃液のpHがもともと5
以上であれば、これに食塩を溶解するだけでよいが、廃
液のpHが5より低い場合は苛性ソーダ等を添加して廃
液のpHを5以上にする必要がある。
In the treatment of such waste liquid, first, salt is added to the waste liquid to dissolve it, and the pH is adjusted to 5 or more. In this case, the amount of salt added is appropriately selected and is not particularly limited, but is usually in the range of 10 to 300 g / l, and more preferably in the range of 30 to 100 g / l. The pH may be 5 or more, and more preferably 5.5 to 8. The pH of the waste liquid was originally 5
In the above case, it is only necessary to dissolve the salt in this, but when the pH of the waste liquid is lower than 5, it is necessary to add caustic soda to make the pH of the waste liquid 5 or higher.

【0018】次いで、本発明では、このように食塩が溶
解されたpH5以上の廃液(被処理液)を陽極と陰極を
備えた電解槽中で電解する。この場合、陽極及び陰極の
材質は特に制限されないが、黒鉛、白金族金属又は白金
族金属酸化物で被覆されたチタンなどの不溶性陽極が好
ましい。また、ニッケル、ステンレス鋼など、種々のも
のを陰極として使用できる。
Next, in the present invention, the waste liquid (solution to be treated) having a pH of 5 or more in which salt is dissolved is electrolyzed in an electrolytic cell equipped with an anode and a cathode. In this case, the materials of the anode and the cathode are not particularly limited, but an insoluble anode such as graphite, platinum group metal or titanium coated with a platinum group metal oxide is preferable. Also, various materials such as nickel and stainless steel can be used as the cathode.

【0019】電解電流も適宜選定されるが、通常、陽極
電流密度(DA)は5〜100A/dm2、特に20〜5
0A/dm2とすることが好ましい。この場合、被処理
液中に金属イオンが含まれているときは、陰極の面積を
調製し、陰極電流密度を高く、即ち該金属イオン濃度に
相当する限界電流密度以上に設定し、金属イオンが粉末
状に還元されて、陰極に密着しないようにすると共に、
水素発生を促進して金属又は水和酸化物の陰極上への析
出を抑制することが好ましい。なお、処理時間は廃液中
のCOD供与物質濃度等に応じて適宜設定される(通電
量はCOD供与物質の含有量にほぼ比例関係で対応す
る)。
The electrolysis current is appropriately selected, but usually the anode current density (D A ) is 5 to 100 A / dm 2 , particularly 20 to 5
It is preferably 0 A / dm 2 . In this case, when the liquid to be treated contains metal ions, the area of the cathode is adjusted and the cathode current density is set high, that is, the current density is set equal to or higher than the limiting current density corresponding to the metal ion concentration. It is reduced to a powder form to prevent it from sticking to the cathode,
It is preferable to promote hydrogen generation and suppress the deposition of metal or hydrated oxide on the cathode. The treatment time is appropriately set according to the concentration of the COD-donating substance in the waste liquid and the like (the energizing amount is approximately proportional to the content of the COD-donating substance).

【0020】電解槽の構成も制限されず、例えば陽極と
陰極との間を隔膜で仕切った電解槽を用いることもでき
るが、陰極で発生する水素ガスによる撹拌効果を有効に
利用するため、陽陰極間を隔膜で仕切らない無隔膜電解
槽を使用することが推奨される。なお、被処理液は撹拌
することが好ましく、このため電解槽には空気撹拌、機
械撹拌等の撹拌装置を付設することができ、特に陽極と
陰極との間を隔膜で仕切った場合は、陽極室側に撹拌装
置を付設することが好ましいが、無隔膜電解槽を用い、
上述したような水素ガスによる撹拌効果が期待される場
合には、撹拌装置を付設しなくともよい。
The structure of the electrolytic cell is not limited, and for example, an electrolytic cell having a partition between the anode and the cathode may be used. However, since the stirring effect of hydrogen gas generated at the cathode is effectively used, It is recommended to use a diaphragm-free electrolytic cell in which the cathode is not separated by a diaphragm. It is preferable to stir the liquid to be treated. Therefore, the electrolytic cell can be provided with a stirrer such as air stirrer or mechanical stirrer. Especially, when the anode and the cathode are separated by a diaphragm, It is preferable to attach a stirring device to the chamber side, but using a diaphragmless electrolytic cell,
When the stirring effect by the hydrogen gas as described above is expected, the stirring device may not be attached.

【0021】図1は、本発明方法を実施する装置の一例
を示すもので、図中1は比較的背の高い有底筒状の電解
槽で、この電解槽1内には、その底面と離間し、かつ電
解槽1内に入れられる被処理液2の液面より下側にある
ように仕切り板3が配設され、これにより電解槽1内が
電解室4と流通室5とに二分されている。なお、これら
電解室4と流通室5とは、上記仕切板3と被処理液2の
液面との間隔(上側間隔)6及び仕切板3と電解槽壁1
との間隔(下側間隔)7で互に連通している。そして、
上記電解室4内には、その下部側に陽極8及び陰極9が
それぞれ配設されており、これら陽極8及び陰極9は図
示していないが直流電源に接続されている。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention. In FIG. 1, reference numeral 1 designates a relatively tall bottomed cylindrical electrolytic cell. The partition plate 3 is arranged so as to be spaced apart and below the liquid surface of the liquid to be treated 2 that is to be put into the electrolytic bath 1, whereby the inside of the electrolytic bath 1 is divided into an electrolytic chamber 4 and a flow chamber 5. Has been done. The electrolytic chamber 4 and the flow chamber 5 have a space (upper space) 6 between the partition plate 3 and the liquid surface of the liquid to be treated 2 and the partition plate 3 and the electrolytic cell wall 1.
And (interval on the lower side) 7 communicate with each other. And
Inside the electrolysis chamber 4, an anode 8 and a cathode 9 are provided on the lower side thereof, respectively, and the anode 8 and the cathode 9 are connected to a DC power source (not shown).

【0022】この装置を用いて被処理液2を電解した場
合、上述したように陽極で塩素が生成し(なお、条件に
よっては酸素も副生する)、この塩素は直ちにHClO
及びClO-となってCOD供与物質を酸化するように
作用し、一方陰極からは水素ガスが発生する。この水素
ガスは、泡となって被処理液2を撹拌しつつ上昇し、被
処理液2液面から逃散する。この時、水素ガスと共に被
処理液2も上昇し、水素ガスが逃散した被処理液2は、
上記上側間隔6を通って流通室5に流入し、この流通室
5内の被処理液2は下側間隔7を通って電解室4内に流
入する。従って、電解室4内の被処理液2は水素ガスに
よって撹拌されると共に、水素ガスの上昇、逃散に伴っ
て上昇し、流通室5と電解室4内を一種のポンプ作用で
循環、流動する。従って、撹拌装置を別途設ける必要も
なく、良好な処理が行われる。
When the liquid to be treated 2 is electrolyzed using this apparatus, chlorine is produced at the anode as described above (oxygen is also a by-product depending on the conditions), and this chlorine is immediately converted into HClO.
And ClO to act to oxidize the COD donor, while hydrogen gas is generated from the cathode. This hydrogen gas becomes bubbles and rises while stirring the liquid to be treated 2 and escapes from the liquid surface of the liquid to be treated 2. At this time, the liquid to be treated 2 also rises along with the hydrogen gas, and the liquid to be treated 2 from which the hydrogen gas has escaped is
The liquid to be treated 2 in the flow chamber 5 flows into the electrolytic chamber 4 through the lower space 7 through the upper space 6. Therefore, the liquid to be treated 2 in the electrolysis chamber 4 is agitated by the hydrogen gas, rises as the hydrogen gas rises and escapes, and circulates and flows in the circulation chamber 5 and the electrolysis chamber 4 by a kind of pump action. .. Therefore, it is not necessary to separately provide a stirrer, and good processing is performed.

【0023】なお、本発明方法を実施する装置は勿論図
1に示されているものに限定されるものではない。ま
た、図1の処理法はバッチ方式であるが、連続的に処理
を行うこともできる。
The apparatus for carrying out the method of the present invention is, of course, not limited to that shown in FIG. Further, the treatment method of FIG. 1 is a batch method, but the treatment can be continuously performed.

【0024】本発明の方法においては、上記式(1),
(3),(4)に示したように、塩化物イオンの陽極反
応で生じた活性塩素を直ちに次亜塩素酸とし、この次亜
塩素酸の作用でCOD供与物質を酸化する(例えば次亜
りん酸イオンを亜りん酸イオンやりん酸イオンに酸化す
る)ものである。この場合、次亜りん酸イオンの酸化処
理についていうと、処理は次亜りん酸イオンを亜りん酸
イオンに酸化させた状態で終了としてもよく、或いは次
亜りん酸イオンを亜りん酸イオンに酸化し、更にりん酸
イオンに酸化させた状態で停止してもよい(この際、廃
液中に亜りん酸イオンが含まれている場合はこれらも同
時にりん酸イオンに酸化する)。この際、その後は通常
の処理法に従って処理することができる。
In the method of the present invention, the above formula (1),
As shown in (3) and (4), the active chlorine generated by the anodic reaction of chloride ions is immediately converted to hypochlorous acid, and the COD donor is oxidized by the action of this hypochlorous acid (for example, hypochlorous acid). It oxidizes phosphate ions to phosphite ions and phosphate ions). In this case, regarding the oxidation treatment of hypophosphite ion, the treatment may be terminated in a state where the hypophosphite ion is oxidized to the hypophosphite ion, or the hypophosphite ion is converted to the hypophosphite ion. It may be oxidized and stopped in the state of being further oxidized to phosphate ions (at this time, if the waste liquid contains phosphite ions, these are also oxidized to phosphate ions). At this time, thereafter, the treatment can be performed according to a usual treatment method.

【0025】[0025]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0026】〔実施例1〕りんご酸8g/lを含む1M
−Na2SO4溶液(pH=6〜7)16リットルを電解
槽に満し、MODE U(石福金属製IrO2被覆チタ
ン電極)を陽極、SUS 304を陰極として室温下で
電解した。この場合、極間隔は10mmとした。その結
果、りんご酸濃度は300Ah通電してもほとんど不変
であった(図3において直線B)。次に、上記溶液に9
00gの食塩を加え(NaCl濃度約1M/l)、再び
電解したところ、ほぼ理論線に沿ってりんご酸濃度が低
下し(電流効率約100%、図3において直線A)、1
g/l以下でやや理論線より偏倚したが、325Ah通
電後の液中のりんご酸濃度は0g/lであった。なお、
この時の総括電流効率は95%であった。
[Example 1] 1 M containing 8 g / l of malic acid
-Na 2 SO 4 solution (pH = 6 to 7) 16 liters fully to the electrolytic cell, and electrolysis was performed at room temperature MODE U a (stone Fu metallic IrO 2 coated titanium electrode) an anode, a SUS 304 as a cathode. In this case, the pole interval was 10 mm. As a result, the concentration of malic acid was almost unchanged even when a current of 300 Ah was applied (line B in FIG. 3). Next, add 9 to the above solution.
When 00g of salt was added (NaCl concentration of about 1M / l) and electrolysis was performed again, the concentration of malic acid decreased almost along the theoretical line (current efficiency of about 100%, straight line A in FIG. 3), 1
Although it was slightly deviated from the theoretical line at g / l or less, the malic acid concentration in the liquid after energization of 325 Ah was 0 g / l. In addition,
The overall current efficiency at this time was 95%.

【0027】〔実施例2〕実施例1と同様な実験を酒石
酸、こはく酸、くえん酸について実施した結果、りんご
酸の場合と同様、食塩を含まない場合には全く酸化分解
しないが、食塩を1M/l含む場合にはいずれの有機酸
も90%以上の電流効率で分解した。
Example 2 The same experiment as in Example 1 was carried out for tartaric acid, succinic acid, and citric acid. As a result, as in the case of malic acid, when no salt was contained, no oxidative decomposition was caused. In the case of containing 1 M / l, all organic acids were decomposed with a current efficiency of 90% or more.

【0028】従って、例えば無電解ニッケルめっきな
ど、表面処理技術の分野で汎用される有機酸と及びその
誘導体又は塩は、この方法によって効率的に酸化分解で
きることがわかった。
Therefore, it was found that the organic acid and its derivative or salt, which are widely used in the field of surface treatment technology such as electroless nickel plating, can be efficiently oxidatively decomposed by this method.

【0029】〔実施例3〕実施例1と同様な実験を次亜
りん酸ナトリウム30g/lを含む溶液について実施し
た結果、食塩を含まない場合にはほとんど酸化しないが
(図4において直線D)、食塩を1M/l含む溶液中で
は5g/lまでほぼ理論値通り分解し(図4において直
線C)、また650Ah通電後の液中のNaHPO2
度は0g/lであった。
[Example 3] The same experiment as in Example 1 was carried out on a solution containing 30 g / l of sodium hypophosphite. As a result, when salt was not contained, almost no oxidation occurred (line D in Fig. 4). In a solution containing 1 M / l of sodium chloride, the solution decomposed to almost 5 g / l according to the theoretical value (line C in FIG. 4), and the NaHPO 2 concentration in the solution after energization of 650 Ah was 0 g / l.

【0030】〔実施例4〕実施例1と同様な実験を亜り
ん酸ナトリウム150g/lを含む溶液について実施し
た結果、食塩を含まない場合にはほとんど酸化しないが
(図5において直線F)、食塩を1M/l含む溶液中で
は20g/lまでほぼ理論値通り分解し(図5において
直線E)、また550Ah通電後の液中のNa2HPO3
濃度は0g/lであった。
[Example 4] The same experiment as in Example 1 was carried out on a solution containing 150 g / l of sodium phosphite. As a result, almost no oxidation was observed in the absence of sodium chloride (line F in Fig. 5). In a solution containing 1 M / l of salt, it decomposed to almost 20 g / l according to the theoretical value (straight line E in FIG. 5), and Na 2 HPO 3 in the solution after energization of 550 Ah.
The concentration was 0 g / l.

【0031】〔実施例5〕りんご酸8g/lを含む1M
−Na2SO4溶液中に所定量の食塩を添加し、実施例1
と同様にして実験を行い、りんご酸が完全に酸化分解さ
れるまでの電気量を測定して電流効率を計算した。その
結果、図6に示す通り、食塩が50g/l以下になれば
電流効率は多少低下するが、20g/lで84%、10
g/lでも75%程度で、これは塩素発生電流効率とほ
ぼ一致することが認められた。
Example 5 1M containing 8 g / l of malic acid
A predetermined amount of sodium chloride was added to the Na 2 SO 4 solution, and Example 1 was added.
An experiment was conducted in the same manner as in, and the amount of electricity until malic acid was completely oxidized and decomposed was measured to calculate the current efficiency. As a result, as shown in FIG. 6, when the salt becomes 50 g / l or less, the current efficiency slightly decreases, but at 20 g / l, 84%, 10%.
Even in g / l, it was about 75%, and it was confirmed that this almost coincided with the chlorine generation current efficiency.

【0032】酒石酸、こはく酸、くえん酸、次亜りん酸
塩、亜りん酸塩を含む溶液についても同様の結果を得
た。
Similar results were obtained with a solution containing tartaric acid, succinic acid, citric acid, hypophosphite and phosphite.

【0033】また、電流密度を5〜100A/dm2
範囲で変えた結果、食塩濃度30g/l以上であれば殆
ど電流効率は電流密度によって変化しなかった。
As a result of changing the current density within the range of 5 to 100 A / dm 2 , the current efficiency hardly changed depending on the current density when the salt concentration was 30 g / l or more.

【0034】〔実施例6〕りんご酸(約8g/l)、次
亜りん酸ナトリウム(約30g/l)、亜りん酸ナトリ
ウム(約150g/l)からなる混合溶液を実施例1と
同様の方法で電解したが、CODは全く変化せず、電解
酸化しないことがわかった(図7において直線H)、次
にこの溶液に食塩30g/lを添加して再び電解した結
果、CODは10g/lまで通電量に対してほぼ直線的
に減少し、それ以後やや反応速度が低下したが、250
0Ah通電後のCODはほぼ0g/l(図7において直
線G(白丸))であった。この時の推定電流効率は約6
8%であった。
Example 6 A mixed solution of malic acid (about 8 g / l), sodium hypophosphite (about 30 g / l) and sodium phosphite (about 150 g / l) was prepared in the same manner as in Example 1. Although electrolysis was carried out by the method, it was found that the COD did not change at all and did not undergo electrolytic oxidation (straight line H in FIG. 7). It decreased almost linearly with the amount of electricity applied up to 1, and the reaction rate decreased a little after that.
The COD after 0 Ah energization was almost 0 g / l (straight line G (white circle) in FIG. 7). The estimated current efficiency at this time is about 6
It was 8%.

【0035】また、上記混合溶液にNiSO4を溶解
(濃度約5g/l)した後、NaOHを添加してpH7
にして生成したニッケル水和酸化物沈殿を静置法と濾過
で分離し、食塩30g/lを添加して電解した結果、上
述の実験とほぼ同様の結果を得た(図7において直線I
(△印))。
After dissolving NiSO 4 in the above mixed solution (concentration: about 5 g / l), NaOH was added to adjust the pH to 7
The nickel hydrate oxide precipitate produced in step (1) was separated by a static method and filtration, and 30 g / l of salt was added to perform electrolysis. As a result, almost the same result as the above experiment was obtained (in FIG.
(△ mark)).

【0036】[0036]

【発明の効果】本発明によれば、次亜りん酸イオン、亜
りん酸イオン、有機酸等のCOD供与物質を含む廃液中
の該COD供与物質を効率よく確実に酸化処理すること
ができ、しかも取扱い性も良く、簡便で工業的に有利な
廃液処理方法を与える。
INDUSTRIAL APPLICABILITY According to the present invention, the COD-donating substance in the waste liquid containing the COD-donating substance such as hypophosphite ion, phosphite ion and organic acid can be efficiently and reliably oxidized. Moreover, it provides a convenient and industrially advantageous waste liquid treatment method that is easy to handle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いる装置の一例を示す概略断
面図である。
FIG. 1 is a schematic sectional view showing an example of an apparatus used for carrying out the present invention.

【図2】食塩溶液を種々のpHで電解した場合における
該食塩溶液中のCl2,HClO,ClO-濃度とpHと
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the Cl 2 , HClO, and ClO concentrations in a salt solution and pH when the salt solution is electrolyzed at various pHs.

【図3】りんご酸を含む溶液に食塩を添加し又は添加し
ないで電解した場合における電気量と残存りんご酸濃度
との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of electricity and the concentration of residual malic acid when electrolysis is performed with or without the addition of sodium chloride to a solution containing malic acid.

【図4】NaH2PO2を含む溶液に食塩を添加し又は添
加しないで電解した場合における電気量と残存NaH2
PO2濃度との関係を示すグラフである。
FIG. 4 is an amount of electricity and residual NaH 2 when electrolysis is performed with or without addition of sodium chloride to a solution containing NaH 2 PO 2 .
Is a graph showing the relationship between PO 2 concentration.

【図5】Na2 PO3を含む溶液に食塩を添加し又は添
加しないで電解した場合における電気量と残存Na2
PO3濃度との関係を示すグラフである。
FIG. 5 Na2H PO3Or add salt to the solution containing
Electricity and residual Na when electrolyzing without adding2H
PO3It is a graph which shows the relationship with a density.

【図6】りんご酸を含む溶液に種々の量で食塩を添加し
て電解を行った場合における食塩濃度と電流効率との関
係を示すグラフである。
FIG. 6 is a graph showing the relationship between the salt concentration and the current efficiency when electrolysis is performed by adding salt in various amounts to a solution containing malic acid.

【図7】りんご酸、NaH2PO2,Na2 PO3を含む
溶液に食塩を添加し又は添加しないで電解した場合にお
ける電気量とCOD濃度との関係を示すグラフである。
FIG. 7: Malic acid, NaH2PO2, Na2H PO3including
When electrolysis is performed with or without adding salt to the solution
3 is a graph showing the relationship between the amount of electricity and the COD concentration.

【符号の説明】[Explanation of symbols]

1 電解槽 2 被処理液 3 仕切板 4 電解室 8 陽極 9 陰極 1 Electrolyzer 2 Liquid to be treated 3 Partition plate 4 Electrolysis chamber 8 Anode 9 Cathode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 COD供与物質を含む廃液に食塩を溶解
すると共に、pHを5以上に調整した被処理液を陽極と
陰極とを具備した電解槽中で電解し、これにより生成し
た次亜塩素酸でCOD供与物質を液相酸化することを特
徴とするCOD供与物質を含む廃液の処理方法。
1. Hypochlorous acid produced by dissolving salt in a waste liquid containing a COD-donating substance and electrolyzing a liquid to be treated whose pH is adjusted to 5 or more in an electrolytic cell equipped with an anode and a cathode. A method for treating a waste liquid containing a COD-donating substance, which comprises subjecting the COD-donating substance to liquid-phase oxidation with an acid.
【請求項2】 COD供与物質を含む廃液が次亜りん酸
イオンを還元剤とする無電解めっき液廃液である請求項
1記載の方法。
2. The method according to claim 1, wherein the waste liquid containing the COD-donating substance is a waste liquid of an electroless plating solution containing hypophosphite as a reducing agent.
JP14322792A 1992-05-08 1992-05-08 Treatment of waste fluid containing cod-donating substance Pending JPH05309378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14322792A JPH05309378A (en) 1992-05-08 1992-05-08 Treatment of waste fluid containing cod-donating substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14322792A JPH05309378A (en) 1992-05-08 1992-05-08 Treatment of waste fluid containing cod-donating substance

Publications (1)

Publication Number Publication Date
JPH05309378A true JPH05309378A (en) 1993-11-22

Family

ID=15333860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14322792A Pending JPH05309378A (en) 1992-05-08 1992-05-08 Treatment of waste fluid containing cod-donating substance

Country Status (1)

Country Link
JP (1) JPH05309378A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299645A (en) * 1976-02-16 1977-08-20 Perumeretsuku Denkiyoku Kk Method of and apparatus for treating waste water
JPS52154252A (en) * 1976-06-17 1977-12-21 Taisei Corp Electolytic treating and regenerating method for nickel type oxidizing agent to be used waste water treatment
JPS5916587A (en) * 1982-07-16 1984-01-27 Kurita Water Ind Ltd Treatment of water containing phosphate
JPS6075393A (en) * 1983-09-30 1985-04-27 Nippon Chem Ind Co Ltd:The Treatment of waste water containing lower phosphoric acid
JPS627491A (en) * 1985-07-04 1987-01-14 Sharp Kogyo Kk Removal of phosphorus in waste liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299645A (en) * 1976-02-16 1977-08-20 Perumeretsuku Denkiyoku Kk Method of and apparatus for treating waste water
JPS52154252A (en) * 1976-06-17 1977-12-21 Taisei Corp Electolytic treating and regenerating method for nickel type oxidizing agent to be used waste water treatment
JPS5916587A (en) * 1982-07-16 1984-01-27 Kurita Water Ind Ltd Treatment of water containing phosphate
JPS6075393A (en) * 1983-09-30 1985-04-27 Nippon Chem Ind Co Ltd:The Treatment of waste water containing lower phosphoric acid
JPS627491A (en) * 1985-07-04 1987-01-14 Sharp Kogyo Kk Removal of phosphorus in waste liquid

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
JP2000254650A (en) Water treatment and water treatment device
AU2002248306A1 (en) Electrode coating and its use in the production of chlorate
WO2002063068A2 (en) Electrode coating and its use in the production of chlorate
EP0838434A2 (en) Electrolytic treatment of aqueous salt solutions
JP4090665B2 (en) Electrolyzed water production method
JP2000246249A (en) Production of electrolytic water
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JP3818619B2 (en) Hypochlorite production apparatus and method
JP3783972B2 (en) Cyanide water treatment method
JP3520060B2 (en) Hypochlorous acid generation method and apparatus
JP2003145161A (en) Water treatment apparatus and water treatment method
RU2715836C1 (en) Reagent-electrolysis method for regeneration of hydrochloric copper-chloride solutions of copper etching
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
JPH05309378A (en) Treatment of waste fluid containing cod-donating substance
JP2975577B2 (en) Electrolytic treatment of electroless nickel plating wastewater
JP3725685B2 (en) Hydrogen peroxide production equipment
KR20050032489A (en) Apparatus and method for electrolytically treating chemical plating waste liquor
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JPH05179475A (en) Production of hypochlorite
JPH11158681A (en) Treatment of selenium-containing water to be treated
JPH09206796A (en) Oxidation of organic sludge
WO1998012144A1 (en) Electrolytic treatment of aqueous salt solutions
JP3534367B2 (en) Wastewater treatment method and apparatus
CN116657162B (en) Preparation method of high-purity ammonium persulfate