JPH05308018A - Magnetically soft thin film - Google Patents

Magnetically soft thin film

Info

Publication number
JPH05308018A
JPH05308018A JP21507291A JP21507291A JPH05308018A JP H05308018 A JPH05308018 A JP H05308018A JP 21507291 A JP21507291 A JP 21507291A JP 21507291 A JP21507291 A JP 21507291A JP H05308018 A JPH05308018 A JP H05308018A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
thickness
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21507291A
Other languages
Japanese (ja)
Inventor
Shigehiro Onuma
繁弘 大沼
Shigeo Fujii
重男 藤井
Fumio Matsumoto
文夫 松本
Hiroyasu Fujimori
啓安 藤森
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMORPHOUS DENSHI DEVICE KENKYU
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Original Assignee
AMORPHOUS DENSHI DEVICE KENKYU
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMORPHOUS DENSHI DEVICE KENKYU, AMORPHOUS DENSHI DEVICE KENKYUSHO KK filed Critical AMORPHOUS DENSHI DEVICE KENKYU
Priority to JP21507291A priority Critical patent/JPH05308018A/en
Publication of JPH05308018A publication Critical patent/JPH05308018A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetically soft thin film having an excellent high frequency characteristic because of its less permeability attenuation in a band of 100MHz or higher and suitable for an inductor or transformer material used in the band by limiting the ratio of the magnetic layer thickness to the non-magnetic layer thickness to a specified range. CONSTITUTION:A magnetic layer composed of Fe and nitrogen and a nitride non-magnetic layer are alternately deposited; the thickness of each magnetic layer is within the range from 5 angstrom to 50 angstrom inclusive, and the ratio of the magnetic layer thickness to the non-magnetic layer thickness is within the range of 1-5. This provides a magnetically soft thin film excellent in high frequency characteristic because of its less permeability attenuation in a band of 100MHz or higher, which makes it suitable for a material for inductors and transformers used in the band. As shown in the figure, even in case a non-magnetic metal nitride is used for the non-magnetic layer, there is a region where an excellent permeability is shown when its thickness is 50 angstroms or below; however, the permeability is rapidly degraded when the thickness of the Fe nitride. layer is 100 angstroms or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軟磁気特性を示す磁性薄
膜、とりわけ100MHz以上の高周波領域において利
用されるインダクタ、トランスなどの材料としての軟磁
性薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic thin film exhibiting soft magnetic characteristics, and more particularly to a soft magnetic thin film used as a material for inductors, transformers and the like used in a high frequency region of 100 MHz or higher.

【0002】[0002]

【従来の技術】電子機器部品の軽量化・高集積化が進む
なかインダクタ、トランスの小型化が要求されている。
このような趨勢に対しては従来フェライトチップを利用
してきた。しかし、フェライトでは材料自体の飽和磁束
密度が低くそのため高周波領域で共振現象を起こし、今
後更なる小型化を進めるための高周波化に対処できない
不具合がある。そのため、より飽和磁束密度の高いアモ
ルファス金属極細線を用いたインダクタやトランスが提
案されている(特開昭63−220521号公報)。
2. Description of the Related Art With the progress of weight reduction and high integration of electronic equipment parts, miniaturization of inductors and transformers is required.
Conventionally, ferrite chips have been used for such a trend. However, in ferrite, the saturation magnetic flux density of the material itself is low, so that a resonance phenomenon occurs in a high frequency region, and there is a problem that it cannot cope with higher frequencies for further miniaturization in the future. Therefore, an inductor and a transformer using an amorphous metal ultrafine wire having a higher saturation magnetic flux density have been proposed (JP-A-63-220521).

【0003】[0003]

【発明が解決しようとする課題】一方、近年FeC/F
eを数〜数十オングストローム積層し高飽和磁束密度で
軟磁気特性に優れた金属磁性薄膜も提案されており、主
に磁気記録用に用いられている。ところで、このような
軟磁性薄膜は50MHz以上では透磁率が急激に減衰
し、100MHz以上の高周波領域で動作するインダク
タなどの磁気デバイスには供しえない。
On the other hand, in recent years FeC / F
A metal magnetic thin film having a high saturation magnetic flux density and excellent soft magnetic characteristics, which is obtained by stacking e of several e to several tens of angstroms, has also been proposed and is mainly used for magnetic recording. By the way, such a soft magnetic thin film abruptly attenuates the magnetic permeability at 50 MHz or more, and cannot be used for a magnetic device such as an inductor which operates in a high frequency region of 100 MHz or more.

【0004】ところで、最近結晶質のFe窒化物に関す
る研究が活発になっている。Fe窒化物薄膜はスパッタ
リングなどの成膜時に窒素ガスを導入することで形成さ
れ、2.1T以上の高飽和磁束密度で2Oeの低保磁力
も報告されている(IEEE Trans.Magn.MAG-20,1451(198
4) )。そして、該Fe窒化物とSiO2 などの非磁性
酸化物を交互に50オングストローム以上の膜厚で積層
した磁性体も提案されているが(第14回応用磁気学会
学術講演概要集281(1990) )、該発明は5MHzの周波
数において透磁率が400〜600と低く高周波での用
途には適さない。
By the way, recently, researches on crystalline Fe nitrides have become active. The Fe nitride thin film is formed by introducing nitrogen gas during film formation such as sputtering, and a low coercive force of 2 Oe has been reported with a high saturation magnetic flux density of 2.1 T or more (IEEE Trans.Magn.MAG-20. , 1451 (198
Four) ). A magnetic material in which the Fe nitride and a non-magnetic oxide such as SiO 2 are alternately laminated to have a film thickness of 50 angstroms or more is also proposed (Proceedings of the 14th Applied Magnetics Society Academic Lectures 281 (1990)). ), The magnetic permeability is low at 400 to 600 at a frequency of 5 MHz and is not suitable for high frequency applications.

【0005】本発明は上記の事情に鑑みてなされたもの
で、100MHz以上の帯域での透磁率の減衰が小さく
高周波特性に優れ、この領域で使用されるインダクタや
トランス用材料として好適する軟磁性薄膜を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and has a small attenuation of magnetic permeability in a band of 100 MHz or more and excellent high frequency characteristics, and is a soft magnetic material suitable as a material for inductors and transformers used in this region. The purpose is to provide a thin film.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、Feと窒素より成る磁性層と窒化物非磁性
層が交互に順次積層され、該磁性層は50オングストロ
ーム以下の膜厚であり、磁性層の前記非磁性層に対する
膜厚の比が1〜5の範囲で構成されて成ることを特徴と
するものである。
In order to solve the above-mentioned problems, the present invention has magnetic layers composed of Fe and nitrogen and nitride non-magnetic layers alternately laminated in sequence, the magnetic layers having a thickness of 50 angstroms or less. The ratio of the film thickness of the magnetic layer to the non-magnetic layer is in the range of 1 to 5.

【0007】[0007]

【作用】上記手段のように構成することにより、100
MHz以上の帯域での透磁率の減衰が小さく高周波特性
に優れ、この領域で使用されるインダクタやトランス用
材料として好適する。
By configuring as described above, 100
It is suitable as a material for inductors and transformers used in this region because it has a small attenuation of magnetic permeability in the band of MHz or more and excellent high frequency characteristics.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0009】従来技術であるFe窒化物とSiO2 の積
層体は100オングストローム以下の膜厚では急激に磁
気特性とりわけ透磁率が劣化する。これは、非磁性層が
酸化物であるため酸素の磁性層への拡散、または結晶構
造に何ら類似性がないことに起因する。そこで、本発明
者らは鋭意研究を重ねた結果、図1に示した如く非磁性
層を非磁性金属窒化物とした場合でも、Fe窒化物層の
膜厚が100オングストロームでは確かに透磁率が急激
に劣化するものの、50オングストローム以下の膜厚に
おいては透磁率に優れる領域が存在することを見い出し
た。
[0009] prior art Fe nitride is the SiO 2 of the laminate rapidly magnetic properties especially permeability is deteriorated in film thickness of 100 angstroms or less. This is due to the fact that the nonmagnetic layer is an oxide, so that oxygen is diffused into the magnetic layer, or there is no similarity in crystal structure. Therefore, as a result of intensive studies conducted by the present inventors, even when the nonmagnetic layer is made of a nonmagnetic metal nitride as shown in FIG. 1, the magnetic permeability is certainly high when the Fe nitride layer has a film thickness of 100 angstrom. It was found that there is a region having excellent magnetic permeability at a film thickness of 50 angstroms or less, although it deteriorates rapidly.

【0010】Fe窒化膜と非磁性金属窒化膜を50オン
グストローム以下の膜厚で交互に積層した磁性体は、F
e窒化膜自身の飽和磁束密度が50オングストローム以
上の膜厚の場合に比べてやや低下するものの、100M
Hz以上の高周波領域において透磁率の減衰が小さい優
れた特性が得られる。このためには、Fe窒化層よりな
る磁性層の非磁性金属窒化層よりなる非磁性層に対する
膜厚の比は1〜5の範囲で構成されて成る。磁性層の膜
厚が50オングストロームを越える場合は、膜全体とし
ての飽和磁束密度Bsは大きいものの、前述したように
透磁率の減衰が大きく、5オングストローム以下の膜厚
では急激に飽和磁束密度Bsが低下する。前記膜厚比は
1以下の場合は磁性層の相互作用のために保磁力が増加
し、また、積層磁性体としての飽和磁束密度Bsが低下
して実用に供し得ない。5以上の場合は非磁性金属窒化
層が少ないため抵抗率が低く、高周波での透磁率の減衰
が大きく本発明の目的には適しない。なお、本発明にお
いてFe基窒化膜はb.c.c.構造を基本とするが、
窒素がFe格子中に取り込まれた結果歪んだ構造となっ
ている。非磁性金属窒化膜は、電気抵抗1010μΩcm
以上であることが望ましく、たとえばアルミニウムやシ
リコンなどの半金属窒化膜が好ましい。以下に具体的実
施例に従って本発明を説明する。 (本発明)
A magnetic material obtained by alternately stacking a Fe nitride film and a non-magnetic metal nitride film with a film thickness of 50 angstroms or less is F
Although the saturation magnetic flux density of the e-nitride film itself is slightly lower than that in the case where the film thickness is 50 angstroms or more, 100M
Excellent characteristics with small attenuation of magnetic permeability can be obtained in a high frequency region of Hz or higher. For this purpose, the ratio of the film thickness of the magnetic layer made of the Fe nitride layer to the nonmagnetic layer made of the nonmagnetic metal nitride layer is in the range of 1 to 5. When the film thickness of the magnetic layer exceeds 50 angstroms, the saturation magnetic flux density Bs of the film as a whole is large, but as described above, the permeability is greatly attenuated, and when the film thickness is 5 angstroms or less, the saturation magnetic flux density Bs rapidly increases. descend. When the film thickness ratio is 1 or less, the coercive force increases due to the interaction of the magnetic layers, and the saturation magnetic flux density Bs of the laminated magnetic body decreases, which cannot be put to practical use. When it is 5 or more, the non-magnetic metal nitride layer is small and the resistivity is low, and the permeability is attenuated at high frequencies, which is not suitable for the purpose of the present invention. In the present invention, the Fe-based nitride film is b. c. c. It is based on the structure,
As a result of nitrogen being incorporated into the Fe lattice, the structure becomes distorted. Non-magnetic metal nitride film has an electric resistance of 10 10 μΩcm
The above is desirable, and a semi-metal nitride film such as aluminum or silicon is preferable. The present invention will be described below with reference to specific examples. (Invention)

【0011】プレーナ型高周波マグネトロンスパッタ装
置を用いて、投入電力5W/cm2 、全圧力3mTor
r、窒素分圧3%、基板温度30℃の条件下、ガラス基
板にFe膜を5〜50オングストローム形成する。次に
投入電力25W/cm2 、全圧力3mTorr、窒素分
圧20%、基板温度30℃の条件下AlN膜(非磁性
膜)を、磁性膜(FeN膜)厚のAlN膜厚に対する比
が1〜5となるように形成し、順次これを繰り返し、総
膜厚が約2μmとなるようにする。このときの膜構成お
よび磁気特性を図2に示す。また、8の字コイルに電磁
誘導された電圧を測定する方式によって計測した代表的
な膜の透磁率の高周波特性を図3のAに示す。 (比較例)
Planar type high frequency magnetron sputtering equipment
Input power 5W / cm2 , Total pressure 3mTor
r, nitrogen partial pressure 3%, substrate temperature 30 ° C., glass base
An Fe film is formed on the plate by 5 to 50 angstrom. next
Input power 25W / cm2 , Total pressure 3mTorr, nitrogen content
AlN film (non-magnetic) under the conditions of pressure 20% and substrate temperature 30 ° C.
The ratio of the magnetic film (FeN film) thickness to the AlN film thickness.
To be 1 to 5
The film thickness should be about 2 μm. The film composition at this time
The magnetic properties are shown in FIG. In addition, the 8-shaped coil is electromagnetic
Typical measured by the method of measuring the induced voltage
The high frequency characteristics of the magnetic permeability of this film are shown in FIG. (Comparative example)

【0012】Fe窒素中スパッタ膜の膜厚が100オン
グストローム以上、また、磁性膜(FeN膜)のAlN
膜に対する膜厚の比が1以下および5以上とする以外は
具体的実施例と同様な条件で磁性薄膜を形成する。この
ときの膜構成および磁気特性を図2に示す。また、具体
的実施例と同様な方法で求めた透磁率の周波数特性の例
を図3のBおよびCに示す。
The film thickness of the sputtered film in Fe nitrogen is 100 angstroms or more, and the magnetic film (FeN film) is made of AlN.
The magnetic thin film is formed under the same conditions as in the specific examples except that the ratio of the film thickness to the film is 1 or less and 5 or more. The film structure and magnetic characteristics at this time are shown in FIG. 3B and 3C show examples of frequency characteristics of magnetic permeability obtained by the same method as that of the concrete example.

【0013】[0013]

【発明の効果】以上述べたように本発明によれば、10
0MHz以上の帯域での透磁率の減衰が小さく高周波特
性に優れており、今後この領域で使用されるインダクタ
やトランス用材料として好適する。
As described above, according to the present invention, 10
It is suitable for use as a material for inductors and transformers that will be used in this region in the future, because it has a small attenuation of magnetic permeability in the band of 0 MHz or more and is excellent in high frequency characteristics.

【0014】なお、上記実施例ではFeN磁性膜とした
が、耐蝕性を向上するために著しく磁気特性を劣化させ
ない程度のPt、Ruなどの貴金属を含んでいてもよい
ことは勿論である。
Although the FeN magnetic film is used in the above embodiment, it is of course possible to include a noble metal such as Pt or Ru to the extent that the magnetic characteristics are not significantly deteriorated in order to improve the corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】一層のFeN膜厚と印加磁場10mOeのもと
周波数100MHzで測定された透磁率の関係を示す特
性図である。
FIG. 1 is a characteristic diagram showing a relationship between a layer thickness of FeN and magnetic permeability measured at a frequency of 100 MHz under an applied magnetic field of 10 mOe.

【図2】本発明の具体的実施例と比較例の膜構成および
磁気特性の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of film configurations and magnetic characteristics of specific examples of the present invention and comparative examples.

【図3】図2中の実施例No.5および比較例No.1
5,16の膜の印加磁場10mOeでの透磁率の周波数
特性を示す特性図である。
3 is an example No. 3 in FIG. 5 and Comparative Example No. 1
It is a characteristic view which shows the frequency characteristic of magnetic permeability in the applied magnetic field of 10 mOe of the films of 5 and 16.

【符号の説明】[Explanation of symbols]

A…本発明の具体的実施例についての透磁率の周波数特
性、B,C…比較例についての透磁率の周波数特性。
A ... Frequency characteristics of magnetic permeability for specific examples of the present invention, B, C ... Frequency characteristics of magnetic permeability for comparative examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 重男 宮城県仙台市青葉区芋沢字権現森山112番 地の1 株式会社アモルファス・電子デバ イス研究所内 (72)発明者 松本 文夫 宮城県仙台市青葉区芋沢字権現森山112番 地の1 株式会社アモルファス・電子デバ イス研究所内 (72)発明者 藤森 啓安 宮城県仙台市青葉区吉成2−20−3 (72)発明者 増本 健 宮城県仙台市青葉区上杉3−8−22 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeo Fujii, Inventor, Shigeo Fujii, No. 1 112, Gongen Moriyama, Imozawa, Aoba-ku, Sendai-shi, Miyagi Amorphous Electronic Devices Laboratory Co., Ltd. (72) Fumio Matsumoto, Aoba, Sendai-shi, Miyagi 1 112, Moriyama, Gongen, Izawa, Ku-ku Amorphous Electronic Devices Research Institute Co., Ltd. (72) Inventor Kei'an Fujimori 2-20-3 Yoshinari Yoshinari, Aoba-ku, Sendai-shi, Miyagi (72) Inventor Ken Masumoto Aoba, Sendai-shi, Miyagi Prefecture 3-8-22 ward Uesugi

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Feと窒素より成る磁性層と窒化物非磁
性層が順次積層されてなる磁性薄膜において、該磁性層
は5オングストローム以上50オングストローム以下の
膜厚を有し、磁性層の前記非磁性層に対する膜厚の比が
1〜5の範囲で構成されて成ることを特徴とする軟磁性
薄膜。
1. A magnetic thin film comprising a magnetic layer made of Fe and nitrogen and a nitride non-magnetic layer which are sequentially laminated, wherein the magnetic layer has a film thickness of 5 angstroms or more and 50 angstroms or less. A soft magnetic thin film having a thickness ratio of 1 to 5 with respect to the magnetic layer.
JP21507291A 1991-08-27 1991-08-27 Magnetically soft thin film Pending JPH05308018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21507291A JPH05308018A (en) 1991-08-27 1991-08-27 Magnetically soft thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21507291A JPH05308018A (en) 1991-08-27 1991-08-27 Magnetically soft thin film

Publications (1)

Publication Number Publication Date
JPH05308018A true JPH05308018A (en) 1993-11-19

Family

ID=16666293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21507291A Pending JPH05308018A (en) 1991-08-27 1991-08-27 Magnetically soft thin film

Country Status (1)

Country Link
JP (1) JPH05308018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527476A (en) * 2016-07-14 2019-09-26 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Inductor structure and method of forming inductor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527476A (en) * 2016-07-14 2019-09-26 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Inductor structure and method of forming inductor structure

Similar Documents

Publication Publication Date Title
Ohnuma et al. Magnetostriction and soft magnetic properties of (Co 1− x Fe x)–Al–O granular films with high electrical resistivity
US5725686A (en) Magnetic core for pulse transformer and pulse transformer made thereof
US6346336B1 (en) Soft magnetic film soft magnetic multilayer film method of manufacturing the same and magnetic device
JPH11340036A (en) Soft magnetic film, thin film magnetic head using the same, planar magnetic element, and filter
US20090197062A1 (en) Magnetic thin film and thin film magnetic device
EP1233429A2 (en) FeCoNiN-based soft magnetic thin film composition
JP3392444B2 (en) Magnetic artificial lattice film
Kataoka et al. High frequency permeability of nanocrystalline Fe–Cu–Nb–Si–B single and multilayer films
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JP2000054083A (en) Soft magnetic multilayered film, and flat magnetic element, filter, and thin film magnetic head using the soft magnetic multilayered film, and manufacture of the soft magnetic multilayer film
JPH05308018A (en) Magnetically soft thin film
JPH10270246A (en) Magnetic thin film
JP2898129B2 (en) Amorphous soft magnetic multilayer thin film and manufacturing method thereof
JP2005109246A (en) High frequency magnetic thin film and its manufacturing method, and magnetic element
JPH0282601A (en) Multilayer magnetic film
JP3232592B2 (en) Magnetic head
JPH10289821A (en) Magnetic device for high-frequency band use
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JP3602988B2 (en) Magnetic impedance effect element
JPH0794314A (en) Pulse transformer magnetic core and pulse transformer
JPH05101930A (en) Soft magnetic thin film
JP2633813B2 (en) Manufacturing method of reactor for switching circuit
JPH0625399B2 (en) Glassy alloy with almost zero magnetostriction for high frequency use
JP2638739B2 (en) Magnetic thin film and method of manufacturing the same
JPH0620835A (en) Amorphous magnetic thin film