JPH0620835A - Amorphous magnetic thin film - Google Patents

Amorphous magnetic thin film

Info

Publication number
JPH0620835A
JPH0620835A JP31441591A JP31441591A JPH0620835A JP H0620835 A JPH0620835 A JP H0620835A JP 31441591 A JP31441591 A JP 31441591A JP 31441591 A JP31441591 A JP 31441591A JP H0620835 A JPH0620835 A JP H0620835A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
film
thickness
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31441591A
Other languages
Japanese (ja)
Other versions
JPH07114165B2 (en
Inventor
Shigehiro Onuma
繁弘 大沼
Shinji Furukawa
伸治 古川
Fumio Matsumoto
文夫 松本
Hiroyasu Fujimori
啓安 藤森
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMORPHOUS DENSHI DEVICE KENKYU
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Original Assignee
AMORPHOUS DENSHI DEVICE KENKYU
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMORPHOUS DENSHI DEVICE KENKYU, AMORPHOUS DENSHI DEVICE KENKYUSHO KK filed Critical AMORPHOUS DENSHI DEVICE KENKYU
Priority to JP3314415A priority Critical patent/JPH07114165B2/en
Publication of JPH0620835A publication Critical patent/JPH0620835A/en
Publication of JPH07114165B2 publication Critical patent/JPH07114165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To obtain the amorphous magnetic thin film having high specific resistance, low coersive force and excellent permeability as well as extremely efficient high-frequency characteristics in permeability. CONSTITUTION:Magnetic thin films of Fe, B and N have multiple metallographical phases and a thickness not exceeding 500Angstrom . An intermediate non- magnetic film is sandwiched between the magnetic films and has a thickness not exceeding 60% of the thickness of the magnetic films.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波帯域で用いられる
インダクタやトランスなどの磁心材料に適した非晶質磁
性薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous magnetic thin film suitable for magnetic core materials such as inductors and transformers used in a high frequency band.

【0002】[0002]

【従来の技術】電子機器部品の軽量化・高集積化が進む
なかインダクタ、トランスの小型化が要求されている。
このようなインダクタ、トランスの磁心材料としては従
来からMn-ZnフェライトやNi-Zn フェライトが用いら
れ、近年の小型化への対応にもその範囲での努力が成さ
れている。しかし、特に 100MHz 程度以上の周波数域で
用いるにはフェライトでは飽和磁束密度が低く、透磁率
も極めて小さいので、電気・磁性特性を満たすための磁
性材料の体積を大きくする必要があり、小型化には限界
がある。
2. Description of the Related Art With the progress of weight reduction and high integration of electronic equipment parts, miniaturization of inductors and transformers is required.
Mn-Zn ferrite and Ni-Zn ferrite have been conventionally used as the magnetic core material for such inductors and transformers, and efforts have been made in that range to cope with recent miniaturization. However, in particular for use in 100 MHz z about more frequency ranges in a ferrite low saturation magnetic flux density, since the magnetic permeability is extremely small, it is necessary to increase the volume of the magnetic material to meet the electrical and magnetic properties, miniaturization Is limited.

【0003】[0003]

【発明が解決しようとする課題】高周波帯域で用いる場
合、必然的に材料の薄膜化が考えられる。フェライトは
上記したように問題があり、さらに、薄膜化を行なった
場合、軟磁性に必要な構造が得られない。一方、非晶質
合金は比抵抗ρがフェライトに比し劣るものの結晶質合
金に比し一桁大きく、飽和磁束密度Bsがフライトよりか
なり大きいので薄膜化には適している。
When used in a high frequency band, it is inevitable to make the material thinner. Ferrite has problems as described above, and further, when it is made thin, the structure required for soft magnetism cannot be obtained. On the other hand, the amorphous alloy has a specific resistance ρ that is inferior to that of ferrite, but is one digit larger than that of a crystalline alloy, and the saturation magnetic flux density Bs is considerably larger than that of flight, so that it is suitable for thinning.

【0004】このような非晶質磁性合金薄膜に関しては
これまでに多くの成分系についての文献などが開陳され
ており、特に高い比抵抗ρをもつ非晶質合金薄膜につい
ては特開昭 54-94428 号公報および特開昭 60-152651号
公報で遷移金属元素 (Co,Fe) および半金属元素Bなら
びに窒素Nより成る合金膜について言及している。しか
しながら、特開昭 54-94428 号公報においては専ら比抵
抗ρ向上効果、飽和磁束密度Bsの変化および垂直異方性
磁界 Hk の増加について触れられており、ρの向上はあ
るものの異方性の垂直方向の増加は本発明の軟磁性材料
とは必然的に相容れない特性をもたらすもので、この成
分系であれば全てを包含するというものでなく、おのず
と異なった材料を指向していることが分かる。また、特
開昭 60-152651号公報に於ても同様に比抵抗ρの向上お
よび飽和磁束密度Bsについては言及しているものの、極
めて大きい保磁力 Hc をもち、本発明の意図する軟磁性
材料ではない。
With respect to such an amorphous magnetic alloy thin film, literatures on many component systems have been published so far, and in particular, an amorphous alloy thin film having a high specific resistance ρ is disclosed in JP-A-54- Japanese Patent No. 94428 and Japanese Patent Laid-Open No. 60-152651 refer to an alloy film composed of a transition metal element (Co, Fe) and a semimetal element B and nitrogen N. However, in JP-A-54-94428, the effect of improving the specific resistance ρ, the change of the saturation magnetic flux density Bs and the increase of the perpendicular anisotropy magnetic field Hk are exclusively mentioned, and although the ρ is improved, the anisotropy of It can be seen that the increase in the vertical direction necessarily brings about characteristics that are incompatible with the soft magnetic material of the present invention, and that this component system does not include all but naturally aims at a different material. . Further, in Japanese Patent Laid-Open No. 60-152651, although the improvement of the specific resistance ρ and the saturation magnetic flux density Bs are similarly mentioned, the soft magnetic material intended by the present invention has an extremely large coercive force Hc. is not.

【0005】本発明は上記の事情に鑑みてなされたもの
で、高い比抵抗と低い保磁力ならびに優れた透磁率をも
ち、なおかつ透磁率の高周波特性の極めて優れた非晶質
磁性薄膜を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an amorphous magnetic thin film having a high specific resistance, a low coercive force, and an excellent magnetic permeability, and yet having an excellent high frequency characteristic of the magnetic permeability. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、Fe、BおよびNの3元素からなる成分系に
おいて、金相学的に複数の相で構成された(非晶質複合
分散膜)、厚さが 500オングストロームより小さい磁性
薄膜を膜厚が磁性薄膜のそれの60%を越えない中間非磁
性膜を挟んで積層することを特徴とするものである。
In order to solve the above-mentioned problems, the present invention is composed of a plurality of phases metallurgically in an ingredient system consisting of three elements Fe, B and N (amorphous composite dispersion). Film), a magnetic thin film having a thickness of less than 500 Å is laminated with an intermediate non-magnetic film having a thickness not exceeding 60% of that of the magnetic thin film.

【0007】[0007]

【作用】本発明は上記手段により、高い比抵抗と低い保
磁力ならびに優れた透磁率をもち、なおかつ透磁率の高
周波特性の極めて優れた多層非晶質磁性薄膜を得るもの
で、周波数が 100MHz 程度或いはそれ以上で優れた軟磁
性と透磁率をもつ高周波用マイクロインダクタやトラン
ス用磁心として好適な軟磁性薄膜を得るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention by the means, has a high specific resistance and a low coercive force and excellent magnetic permeability, those yet obtain very good multilayer amorphous magnetic thin film of the high frequency characteristics of permeability, frequency 100 MHz z A soft magnetic thin film suitable for high-frequency micro-inductors and transformer magnetic cores having excellent soft magnetism and magnetic permeability of a degree or more is obtained.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0009】本発明の薄膜はスパッタ法により作成する
が、磁性薄膜は飽和磁束密度の高いFe ターゲット上に
窒化ほう素BNを配置させた複合ターゲットをAr+N2 の混
合ガス雰囲気中にてスパッタすることで非晶質複合分散
膜を作成し、中間非磁性絶縁膜は窒化物系などのセラミ
ックスにより作成する。磁性薄膜のFeおよびBNの組成割
合についての限定は特にはないが、Fe/BN <1の場合は
比抵抗ρは高いものの飽和磁束密度が低下するため望ま
しくなく、また、BNリッチな非磁性相と Fe リッチな磁
性相が良好な状態で分散していることが望ましい。図1
に Fe/BN=1なる含有比のFe-B-N薄膜の場合の生成単層
薄膜のヒステリシス曲線を示すが、単層膜では高比抵抗
をもつもののこのように軟磁性を示さない。図2は図1
の磁性膜に中間絶縁層として AIN膜を挟んだ多層膜、即
ち、Fe/BN=1なる含有比のFe-B-N薄膜に中間絶縁層と
してAIN 薄膜を一層当たりの夫々の膜厚が1000オングス
トローム/200 オングストローム、積層周期が20の多層
膜のヒステリシス曲線であるが、このように磁性膜の厚
さが1000オングストロームでは垂直磁気異方性成分が未
だ存在し軟磁性は得られていない。本発明者らはこの磁
性膜の厚さについて検討を重ね、磁性膜の厚さを 500オ
ングストロームより薄くすることにより図3に示したよ
うに優れた軟磁性をもち、かつ高比抵抗の薄膜を得るこ
とに成功した。即ち、図3はFe/BN=1なる含有比のFe
-B-N薄膜に中間絶縁層としてAIN 薄膜を一層当たりの夫
々の膜厚が120 オングストローム/30オングストロー
ム、積層周期が200 の多層膜のヒステリシス曲線を示す
特性図である。図3中、Hは磁化困難軸方向(hard
axis)であり、Eは磁化容易軸方向(easy
axis)に測定磁界を印加したことを示している。図
4はFe/BN=1なる含有比のFe-B-N薄膜に中間絶縁層と
してAIN 薄膜を一層当たりの夫々の膜厚が120 オングス
トローム/30オングストローム、積層周期が200 の多層
膜の透磁率の周波数特性を示す図である。
The thin film of the present invention is formed by the sputtering method. For the magnetic thin film, a composite target in which boron nitride BN is arranged on an Fe target having a high saturation magnetic flux density is sputtered in a mixed gas atmosphere of Ar + N 2. By doing so, an amorphous composite dispersion film is formed, and the intermediate non-magnetic insulating film is formed by a ceramic such as a nitride system. There is no particular limitation on the composition ratio of Fe and BN in the magnetic thin film, but when Fe / BN <1, the specific resistance ρ is high but the saturation magnetic flux density decreases, which is not desirable, and the BN-rich non-magnetic phase It is desirable that the Fe and Fe-rich magnetic phases are dispersed in a good state. Figure 1
Shows the hysteresis curve of the produced single-layer thin film in the case of the Fe-BN thin film having the content ratio of Fe / BN = 1. The single-layer film has a high specific resistance but does not show such soft magnetism. 2 is shown in FIG.
AIN thin film is sandwiched between the magnetic film and the AIN film as the intermediate insulating layer, that is, the AIN thin film is formed as an intermediate insulating layer on the Fe-BN thin film having the content ratio of Fe / BN = 1, and each film thickness is 1000 angstrom / This is a hysteresis curve of a multilayer film with a thickness of 200 Å and a stacking period of 20. Thus, when the thickness of the magnetic film is 1000 Å, the perpendicular magnetic anisotropy component still exists and soft magnetism is not obtained. The inventors of the present invention have repeatedly studied the thickness of this magnetic film, and by making the thickness of the magnetic film thinner than 500 angstroms, a thin film having excellent soft magnetism and high specific resistance as shown in FIG. 3 is obtained. I got it successfully. That is, FIG. 3 shows that the content ratio of Fe is Fe / BN = 1.
Fig. 3 is a characteristic diagram showing a hysteresis curve of a multilayer film in which each AIN thin film has a film thickness of 120 angstroms / 30 angstroms as a middle insulating layer in a BN thin film and a stacking period is 200. In FIG. 3, H is the hard axis direction (hard).
and E is the direction of the easy axis of magnetization (easy).
It is shown that the measurement magnetic field is applied to the (axis). Figure 4 shows the frequency of the magnetic permeability of a multilayer film with a film thickness of 120 angstroms / 30 angstroms per layer and an AIN thin film as an intermediate insulating layer in a Fe-BN thin film with a content ratio of Fe / BN = 1. It is a figure which shows a characteristic.

【0010】磁性膜/ AIN膜の厚さの比は5/3を越え
ない、即ち、 AIN膜厚が磁性膜の 60 %を越えないこと
が必要で、AIN 膜厚がそれ以上では所望の大きさの飽和
磁束密度 Bs が得られない。中間絶縁層は AINに限定さ
れないが、磁気特性の面から非磁性金属窒化膜が望まし
く、例えばアルミニウムやシリコンなどの半金属窒化膜
が好ましい。以下に本発明の具体的実施例を示す。 具体的実施例−1 高周波スパッタ装置を用いて次の条件で多層薄膜を作成
した。 ターゲット:磁性体:Feターゲット上に焼結 BN チップを並べ Fe/BNの面積 比が1/1となるよう均一に配置した。 絶縁体:AIN スパッタ条件:雰囲気ガス:Ar+N2 基板温度 :100 ℃ 膜 厚 :Fe−B−N:120 オングストローム/層 AIN : 30 オングストローム/層 積層周期 :200 全膜厚 :3μm 得られた膜は高い比抵抗と図3のように低い保磁力をも
ち、さらに、図4に示すように透磁率とその周波数特性
が優れることが明白である。 具体的実施例−2
The magnetic film / AIN film thickness ratio must not exceed 5/3, that is, the AIN film thickness must not exceed 60% of the magnetic film. Saturation magnetic flux density Bs cannot be obtained. The intermediate insulating layer is not limited to AIN, but a non-magnetic metal nitride film is preferable in terms of magnetic characteristics, and a semi-metal nitride film such as aluminum or silicon is preferable. Specific examples of the present invention will be shown below. Specific Example-1 A multilayer thin film was formed under the following conditions using a high frequency sputtering device. Target: Magnetic substance: Fe Sintered BN chips were arranged on a target and uniformly arranged so that the Fe / BN area ratio was 1/1. Insulator: AIN Sputtering condition: Atmosphere gas: Ar + N 2 Substrate temperature: 100 ℃ Film thickness: Fe-BN: 120 Å / layer AIN: 30 Å / layer Stacking period: 200 Total film thickness: 3 μm It has a high specific resistance and a low coercive force as shown in FIG. 3, and it is obvious that the magnetic permeability and its frequency characteristic are excellent as shown in FIG. Specific Example-2

【0011】具体的実施例−1とターゲットならびに雰
囲気ガス、基板温度のスパッタ条件は同一にして、Fe−
B−NとAINの一層当たりの膜厚を次のようにし、膜
厚比は5/1と一定にして、全膜厚を3.0 〜3.8 μmと
した:Fe−B−N(オングストローム)/AIN(オン
グストローム):500/100,200/40,100/20,50/10,20/4。
The sputtering conditions for the target, the atmosphere gas, and the substrate temperature were the same as those of the concrete example-1, and Fe-
The film thickness per layer of BN and AIN was set as follows, the film thickness ratio was kept constant at 5/1, and the total film thickness was set to 3.0 to 3.8 μm: Fe-BN (Angstrom) / AIN (Angstrom): 500 / 100,200 / 40,100 / 20,50 / 10,20 / 4.

【0012】周波数が5MHz および50MHz における
透磁率の比μ (50MHz ) /μ(5MHz ) と一層当たり
のFe−B−N膜厚との関係を図5に示す。これから周波
数に対する安定性はFe−B−N膜厚が500 〜100 オング
ストロームの範囲が特に優れることが分かる。尚、周波
数が5MHz における透磁率は900(500 オングストロー
ム)〜1500(20 オングストローム)であった。
[0012] frequency is shown in FIG. 5 the relationship between the ratio μ (50MH z) / μ ( 5MH z) and Fe-B-N film thickness per layer of the permeability at 5MH z and 50 mH z. From this, it is understood that the stability with respect to frequency is particularly excellent when the Fe-BN film thickness is in the range of 500 to 100 Å. The frequency is the permeability in 5MH z was 900 (500 Angstroms) to 1500 (20 angstroms).

【0013】[0013]

【発明の効果】以上述べたように本発明によれば、成分
がFe−B−Nから成り、厚さが500 オングストロームよ
り小さい非晶質合金磁性薄膜を膜厚が磁性薄膜のそれの
60 %を越えない中間非磁性膜を挟んで積層することに
よって高い比抵抗と低い保磁力ならびに優れた透磁率を
もち、かつ透磁率の高周波特性の極めて優れた多層非晶
質磁性薄膜が得られることが分かり、この工業的意義、
産業界に及ぼす効果は大きい。
As described above, according to the present invention, an amorphous alloy magnetic thin film whose component is Fe-BN and has a thickness of less than 500 angstroms is used.
Multilayer amorphous magnetic thin film with high specific resistance, low coercive force and excellent magnetic permeability, and excellent high frequency characteristics of magnetic permeability can be obtained by stacking intermediate non-magnetic films that do not exceed 60%. I understand, this industrial significance,
The effect on the industrial world is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe/BN=1なる含有比の場合の単層薄膜のヒス
テリシス曲線を示す特性図である。
FIG. 1 is a characteristic diagram showing a hysteresis curve of a single-layer thin film in the case of a content ratio of Fe / BN = 1.

【図2】Fe/BN=1なる含有比のFe-B-N薄膜に中間絶縁
層としてAIN 薄膜を一層当たりの夫々の膜厚が1000オン
グストローム/200 オングストローム、積層周期が20の
多層膜のヒステリシス曲線を示す特性図である。
[Fig. 2] Hysteresis curve of a multi-layered film in which each AIN thin film has a thickness of 1000 angstroms / 200 angstroms as a middle insulating layer in a Fe-BN thin film having a content ratio of Fe / BN = 1 and a stacking period is 20. It is a characteristic view to show.

【図3】本発明試料に係わる多層非晶質磁性薄膜のヒス
テリシス曲線を示す特性図である。
FIG. 3 is a characteristic diagram showing a hysteresis curve of a multilayer amorphous magnetic thin film according to a sample of the present invention.

【図4】本発明試料に係わる多層非晶質磁性薄膜の透磁
率の周波数を示す特性図である。
FIG. 4 is a characteristic diagram showing the frequency of magnetic permeability of the multilayer amorphous magnetic thin film according to the sample of the present invention.

【図5】本発明試料に係わる多層非晶質磁性薄膜の周波
数が5MHz および50MHz の場合の夫々の透磁率の比
μ(50)/μ(5) とFe-B-N膜の一層当たりの膜厚との関係
を示す特性図である。
[5] The present invention specific mu (50) of each of the magnetic permeability when the frequency of multi-layer amorphous magnetic thin film according to the sample 5MH z and 50MH z / μ (5) and a more per Fe-BN film It is a characteristic view which shows the relationship with a film thickness.

【符号の説明】[Explanation of symbols]

H…磁化困難軸方向、E…磁化容易軸方向。 H: hard axis of magnetization, E: easy axis of magnetization.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 伸治 宮城県仙台市青葉区南吉成六丁目6番地の 3 株式会社アモルファス・電子デバイス 研究所内 (72)発明者 松本 文夫 宮城県仙台市青葉区南吉成六丁目6番地の 3 株式会社アモルファス・電子デバイス 研究所内 (72)発明者 藤森 啓安 宮城県仙台市青葉区吉成2−20−3 (72)発明者 増本 健 宮城県仙台市青葉区上杉3−8−22 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Shinji Furukawa, 6-6 Minamiyoshinari, Minamiyoshinari, Aoba-ku, Sendai-shi, Miyagi 3 Amorphous / Electronic Device Laboratory, Inc. 6-chome 3 Amorphous / Electronic Devices Co., Ltd. (72) Inventor Keiyasu Fujimori 2-20-3 Yoshinari Aoba-ku, Sendai-shi, Miyagi Prefecture (72) Ken Ken Masumoto 3-8-Uesugi, Aoba-ku, Sendai-shi, Miyagi Prefecture twenty two

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Fe,BおよびN元素から成り、金相学的
に複数の相を構成し、厚さが500 オングストロームより
小さい磁性薄膜を膜厚が磁性薄膜の膜厚の60%を越えな
い中間非磁性膜を挟んで積層することを特徴とする非晶
質磁性薄膜。
1. A magnetic thin film composed of Fe, B and N elements and constituting a plurality of phases in a metallographical manner and having a thickness of less than 500 angstroms. An amorphous magnetic thin film characterized by being laminated with a magnetic film sandwiched therebetween.
JP3314415A 1991-11-28 1991-11-28 Amorphous magnetic thin film Expired - Lifetime JPH07114165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3314415A JPH07114165B2 (en) 1991-11-28 1991-11-28 Amorphous magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3314415A JPH07114165B2 (en) 1991-11-28 1991-11-28 Amorphous magnetic thin film

Publications (2)

Publication Number Publication Date
JPH0620835A true JPH0620835A (en) 1994-01-28
JPH07114165B2 JPH07114165B2 (en) 1995-12-06

Family

ID=18053074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3314415A Expired - Lifetime JPH07114165B2 (en) 1991-11-28 1991-11-28 Amorphous magnetic thin film

Country Status (1)

Country Link
JP (1) JPH07114165B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494428A (en) * 1977-12-30 1979-07-26 Ibm Amorphous metal layer
JPS60152651A (en) * 1984-01-20 1985-08-10 Res Dev Corp Of Japan Amorphous alloy containing nitrogen
JPH0282601A (en) * 1988-09-20 1990-03-23 Mitsubishi Mining & Cement Co Ltd Multilayer magnetic film
JPH02268407A (en) * 1989-04-10 1990-11-02 Tdk Corp Multilayer ferromagnetic material
JPH02288209A (en) * 1989-04-28 1990-11-28 Amorufuasu Denshi Device Kenkyusho:Kk Multilayer magnetic thin-film
JPH03124005A (en) * 1989-10-06 1991-05-27 Matsushita Electric Ind Co Ltd Superstructure nitride alloy film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494428A (en) * 1977-12-30 1979-07-26 Ibm Amorphous metal layer
JPS60152651A (en) * 1984-01-20 1985-08-10 Res Dev Corp Of Japan Amorphous alloy containing nitrogen
JPH0282601A (en) * 1988-09-20 1990-03-23 Mitsubishi Mining & Cement Co Ltd Multilayer magnetic film
JPH02268407A (en) * 1989-04-10 1990-11-02 Tdk Corp Multilayer ferromagnetic material
JPH02288209A (en) * 1989-04-28 1990-11-28 Amorufuasu Denshi Device Kenkyusho:Kk Multilayer magnetic thin-film
JPH03124005A (en) * 1989-10-06 1991-05-27 Matsushita Electric Ind Co Ltd Superstructure nitride alloy film

Also Published As

Publication number Publication date
JPH07114165B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US6140902A (en) Thin magnetic element and transformer
US5896078A (en) Soft magnetic alloy thin film and plane-type magnetic device
JPH07220922A (en) Flat magnetic element and amorphous magnetic thin film
JPH11340037A (en) Soft magnetic film, soft magnetic multi-layer film, manufacture thereof, and magnetic body element using same
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JPH0620835A (en) Amorphous magnetic thin film
JPH10270246A (en) Magnetic thin film
JP3956061B2 (en) Uniaxial magnetic anisotropic film
JP2898129B2 (en) Amorphous soft magnetic multilayer thin film and manufacturing method thereof
JP2696989B2 (en) Multilayer magnetic film
JPH05101930A (en) Soft magnetic thin film
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JPH10289821A (en) Magnetic device for high-frequency band use
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JPH05308018A (en) Magnetically soft thin film
KR890004861B1 (en) Soft magnetic alloy
JPH05464B2 (en)
JP2638739B2 (en) Magnetic thin film and method of manufacturing the same
JPH04139707A (en) Soft magnetic thin film having high saturation magnetic flux density
JPH05226150A (en) Soft magnetic multilayer film
Sato et al. Magnetic Properties of Fe-Co-Ti Thin Films
JPH0666190B2 (en) Magnetic thin film
Ohnuma et al. Soft magnetic properties of FeN/FeBN multi-layers
JPH0644544B2 (en) Method of manufacturing magnetic thin film
JPH09256117A (en) Iron-base soft-magnetic alloy, and thin magnetic element using same