JPH05306956A - Method for measuring temperature of inner surface of furnace of boiler - Google Patents

Method for measuring temperature of inner surface of furnace of boiler

Info

Publication number
JPH05306956A
JPH05306956A JP13594992A JP13594992A JPH05306956A JP H05306956 A JPH05306956 A JP H05306956A JP 13594992 A JP13594992 A JP 13594992A JP 13594992 A JP13594992 A JP 13594992A JP H05306956 A JPH05306956 A JP H05306956A
Authority
JP
Japan
Prior art keywords
wavelength
energy
furnace
reference numeral
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13594992A
Other languages
Japanese (ja)
Inventor
Shigehiro Miyamae
茂広 宮前
Takeshi Ishizaki
武志 石崎
Yutaka Aoki
裕 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Ishikawajima Inspection and Instrumentation Co Ltd
Original Assignee
IHI Corp
Ishikawajima Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Ishikawajima Inspection and Instrumentation Co Ltd filed Critical IHI Corp
Priority to JP13594992A priority Critical patent/JPH05306956A/en
Publication of JPH05306956A publication Critical patent/JPH05306956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To directly measure the surface temperature of each section of the furnace of a boiler. CONSTITUTION:Infrared cameras 9 and 10 are positioned toward an object to be measured and picture processors 13 and 14 measure an energy intensity (picture-processed signal) 16 at an arbitrary wavelength in a wavelength band in which energy absorption by CO2 is less and another energy intensity (picture- processed signal) 15 at a wavelength in the energy absorbing wavelength band in which CO2 absorbs energy. An arithmetic and control unit 17 subtracts a value equivalent to the wavelength obtained by making wavelength conditions of the energy intensities 16 and 15 coincident with each other. Therefore, after finding the radiant energy from the object to be measure, the temperature measuring signal 19 of the object is found based on the radiant energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラにおける炉内表
面温度検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting surface temperature inside a furnace in a boiler.

【0002】[0002]

【従来の技術】ボイラなどでは、火炉底部に付着するク
リンカ(石炭溶融灰)が大きくなると、クリンカが火炉
底部から剥離して落下し、火炉の下方にあるホッパの出
口部に閉塞を引起すので、火炉底部におけるクリンカの
付着状態を計測したいという要求がある。
2. Description of the Related Art In a boiler or the like, when the clinker (coal molten ash) adhering to the bottom of the furnace becomes large, the clinker separates from the bottom of the furnace and falls, causing blockage at the outlet of the hopper below the furnace. There is a demand to measure the state of clinker adhesion at the bottom of the furnace.

【0003】又、ボイラなどでは、火炉出口部に配置さ
れた過熱器が苛酷な温度条件下に置かれるので、過熱器
管の表面のメタル温度を計測したいという要求がある
(過熱器内部を流れる蒸気に関しては、過熱器出口蒸気
温度として検出している)。
Further, in a boiler or the like, since the superheater arranged at the outlet of the furnace is placed under severe temperature conditions, there is a demand to measure the metal temperature on the surface of the superheater tube (flow inside the superheater). Regarding steam, it is detected as the superheater outlet steam temperature).

【0004】そして、火炉底部におけるクリンカの付着
状態を計測したり、過熱器管の表面のメタル温度を計測
したりするためには、ボイラの炉内における各部の表面
温度を直接検出する装置が必要となる(火炉底部におけ
るクリンカの付着状態は火炉底部の温度を検出すること
により知ることができる)。
Further, in order to measure the adhered state of the clinker at the bottom of the furnace and to measure the metal temperature on the surface of the superheater tube, a device for directly detecting the surface temperature of each part in the furnace of the boiler is required. (The clinker adhesion state at the bottom of the furnace can be known by detecting the temperature at the bottom of the furnace).

【0005】しかし、ボイラの炉内における各部の表面
温度を直接検出する方法は、従来、存在しなかった。
However, there has been no conventional method for directly detecting the surface temperature of each part in the furnace of the boiler.

【0006】[0006]

【発明が解決しようとする課題】ボイラにおいて炉内各
部の表面温度を検出しようとした場合、以下のような問
題があった。
When the surface temperature of each part in the furnace is detected in the boiler, there are the following problems.

【0007】即ち、ボイラの炉内における各部の表面温
度を直接計測するために、ボイラの火炉に形成された覗
き窓などから計測対象物へ向けて単に温度検出器を配置
したとしても、ボイラの火炉内にはススや灰粒子などの
固体粒子が多量に存在し、且つ、バーナの火炎や火炉内
に充満しているガスからの輻射エネルギーなどがあるの
で、これらが障害となって、ボイラの炉内の各部の表面
温度を直接検出することが困難であった。
That is, in order to directly measure the surface temperature of each part in the furnace of the boiler, even if the temperature detector is simply arranged from the sight window formed in the furnace of the boiler toward the object to be measured, There is a large amount of solid particles such as soot and ash particles in the furnace, and there are flames of the burner and radiant energy from the gas filling the furnace. It was difficult to directly detect the surface temperature of each part in the furnace.

【0008】従って、火炉底部におけるクリンカの付着
状態を計測して、クリンカの剥離及び落下によるホッパ
出口部の閉塞を防止したり、火炉出口部に配置された過
熱器表面のメタル温度を計測して、運転中に過熱器の表
面温度をモニタするようなことができなかった。
Therefore, by measuring the adhered state of the clinker at the bottom of the furnace, it is possible to prevent clogging of the hopper outlet due to peeling and dropping of the clinker, and to measure the metal temperature of the superheater surface arranged at the furnace outlet. , It was not possible to monitor the surface temperature of the superheater during operation.

【0009】本発明は、上述の実情に鑑み、ボイラの炉
内における各部の表面温度を直接計測し得るようにした
ボイラにおける炉内表面温度検出方法を提供することを
目的とするものである。
In view of the above situation, it is an object of the present invention to provide a furnace surface temperature detecting method for a boiler, which is capable of directly measuring the surface temperature of each part in the furnace of the boiler.

【0010】[0010]

【課題を解決するための手段】本発明は、計測対象物
(符号4,8)へ向けて計測装置(符号9,10又は2
3)を配置し、該計測装置で計測した信号(符号11,
12又は25)を元に信号処理装置(符号13,14)
でCO2によるエネルギー吸収の少い波長帯域における
任意の波長λ1についてのエネルギー強度(符号16)
と、CO2吸収帯波長λ2のエネルギー強度(符号15)
とを計測し、演算制御装置(符号17)でCO2による
エネルギー吸収の少い波長帯域における任意の波長λ1
についてのエネルギー強度と、CO2吸収帯波長λ2のエ
ネルギー強度との、波長条件を一致させた波長相当値を
減算することにより、計測対象物からの放射エネルギー
を求め、計測対象物からの放射エネルギーに基いて、計
測対象物の表面温度(符号19)を求めることを特徴と
するボイラにおける炉内表面温度検出方法にかかるもの
である。
The present invention is directed to a measuring device (reference numeral 9, 10 or 2) toward an object to be measured (reference numeral 4, 8).
3) is arranged and the signal (reference numeral 11,
12 or 25) based on the signal processing device (reference numerals 13 and 14)
Energy intensity at an arbitrary wavelength λ 1 in a wavelength band in which energy absorption by CO 2 is small (reference numeral 16)
And the energy intensity of CO 2 absorption band wavelength λ 2 (reference numeral 15)
Is measured, and the arithmetic and control unit (reference numeral 17) measures an arbitrary wavelength λ 1 in a wavelength band in which energy absorption by CO 2 is small.
Radiated energy from the object to be measured is subtracted by subtracting the wavelength equivalent value of the energy intensity of about the energy intensity of the CO 2 absorption band wavelength λ 2 in which the wavelength conditions are matched, and the radiated energy from the object to be measured is obtained. The present invention relates to a method for detecting a surface temperature inside a furnace in a boiler, which is characterized in that a surface temperature (reference numeral 19) of an object to be measured is obtained based on energy.

【0011】[0011]

【作用】本発明によれば、計測対象物(符号4,8)へ
向けて配置された計測装置(符号9,10又は23)に
よって計測された信号(符号11,12又は25)を元
に、信号処理装置(符号13,14)でCO2によるエ
ネルギー吸収の少い波長帯域における任意の波長λ1
ついてのエネルギー強度(符号16)と、CO2吸収帯
波長λ2のエネルギー強度(符号15)とが計測され、
演算制御装置(符号17)でCO2によるエネルギー吸
収の少い波長帯域における任意の波長λ1についてのエ
ネルギー強度と、CO2吸収帯波長λ2のエネルギー強度
との、波長条件を一致させた波長相当値が減算されるこ
とにより、計測対象物からの放射エネルギーが求めら
れ、計測対象物からの放射エネルギーに基いて、計測対
象物の表面温度(符号19)が求められる。
According to the present invention, based on the signal (reference numeral 11, 12 or 25) measured by the measuring device (reference numeral 10, 10 or 23) arranged toward the measurement object (reference numeral 4, 8). , A signal processor (reference numerals 13 and 14) has an energy intensity (reference numeral 16) for an arbitrary wavelength λ 1 in a wavelength band in which energy absorption by CO 2 is small, and an energy intensity (reference numeral 15) for a CO 2 absorption band wavelength λ 2. ) And are measured,
A wavelength in which the energy condition for the arbitrary wavelength λ 1 in the wavelength band in which the energy absorption by CO 2 is small and the energy intensity for the CO 2 absorption band wavelength λ 2 are matched by the arithmetic and control unit (reference numeral 17). By subtracting the corresponding value, the radiant energy from the measurement object is obtained, and the surface temperature (reference numeral 19) of the measurement object is obtained based on the radiant energy from the measurement object.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1〜図3は、本発明の一実施例である。1 to 3 show an embodiment of the present invention.

【0014】図中1はボイラの火炉、2は火炉1に設け
られたバーナ、3は火炉1の炉底部の下方に設けられた
ホッパ、4は火炉1の出口部に配置された過熱器、5は
火炉1に設けられた赤外線透過材製の覗き窓である。
In the figure, 1 is a boiler furnace, 2 is a burner provided in the furnace 1, 3 is a hopper provided below the bottom of the furnace 1, 4 is a superheater arranged at the outlet of the furnace 1, Reference numeral 5 is a viewing window provided in the furnace 1 and made of an infrared transmitting material.

【0015】又、6はバーナ2の火炎、7は火炉1内に
存在するススや灰粒子などの固体粒子、8は火炉1の炉
底部に付着したクリンカ(石炭溶融灰)である。
Further, 6 is a flame of the burner 2, 7 is solid particles such as soot and ash particles existing in the furnace 1, and 8 is a clinker (coal molten ash) attached to the bottom of the furnace 1.

【0016】そして、火炉1に設けられた覗き窓5に、
炉底部に付着したクリンカ8や出口部に配置された過熱
器4(以下、計測対象物という)へ向けてそれぞれ2台
ずつ赤外線カメラなどの計測装置9,10(以下、赤外
線カメラ9,10という)を配設する。
Then, in the viewing window 5 provided in the furnace 1,
Two measuring devices 9 and 10 such as infrared cameras (hereinafter referred to as infrared cameras 9 and 10) toward the clinker 8 attached to the furnace bottom and the superheaters 4 (hereinafter referred to as measurement objects) arranged at the outlet. ) Is provided.

【0017】各赤外線カメラ9,10からの映像信号1
1,12をそれぞれ画像処理装置などの信号処理装置1
3,14(以下、画像処理装置13,14という)へ送
り、画像処理装置13,14で画像処理された画像処理
信号15,16を演算制御装置17へ送り、演算制御装
置17による演算結果に基き温度表示装置18に温度計
測信号19を送ると共に、警報装置20に警報指令21
を送る。
Video signal 1 from each infrared camera 9 and 10
1 and 12 are signal processing devices 1 such as image processing devices.
3 and 14 (hereinafter referred to as image processing devices 13 and 14), and the image processing signals 15 and 16 image-processed by the image processing devices 13 and 14 are sent to the arithmetic and control unit 17, and the arithmetic result by the arithmetic and control unit 17 is obtained. A temperature measurement signal 19 is sent to the base temperature display device 18, and an alarm command 21 is sent to the alarm device 20.
To send.

【0018】尚、22は半透過性のミラーである。Reference numeral 22 is a semitransparent mirror.

【0019】次に、作動について説明する。Next, the operation will be described.

【0020】火炉1の炉底部におけるクリンカ8の付着
状態を計測したり、過熱器4の表面のメタル温度を計測
したりする場合には、赤外線透過材製の覗き窓5に設け
られた赤外線カメラ9,10を用いて、火炉1内部を撮
影し、撮影された映像信号11,12をそれぞれ画像処
理装置13,14へ送り、画像処理装置13,14で映
像信号11,12を画像処理し、一方の画像処理装置1
3でCO2吸収帯波長λ2(4.2〜4.5μm)のエネ
ルギー強度を求め、他方の画像処理装置14でCO2
よるエネルギー吸収の少い波長帯域における任意の波長
λ1(例えば、4.8〜10.0μmの波長のうちのい
ずれかの波長)のエネルギー強度を求める。
In order to measure the adhered state of the clinker 8 on the bottom of the furnace 1 or to measure the metal temperature on the surface of the superheater 4, an infrared camera provided in the sight window 5 made of an infrared transparent material. The inside of the furnace 1 is photographed using 9 and 10, and the photographed video signals 11 and 12 are sent to the image processing devices 13 and 14, respectively, and the image processing devices 13 and 14 image-process the video signals 11 and 12, One image processing device 1
3 determines the energy intensity of the CO 2 absorption band wavelength λ 2 (4.2 to 4.5 μm), and the other image processing device 14 determines an arbitrary wavelength λ 1 (eg, in the wavelength band in which the energy absorption by CO 2 is small) (for example, Energy intensity of any wavelength of 4.8 to 10.0 μm) is obtained.

【0021】該エネルギー強度を示す画像処理信号1
5,16を演算制御装置17へ送り、演算制御装置17
で、先ず、一方の画像処理信号15,16にかかるエネ
ルギー強度を、他方の画像処理信号16,15にかかる
エネルギー強度と、波長に関する条件を一致させるため
に換算或いは補正を行った後(ここでは、画像処理信号
16の方を後述するようにして換算するものとし、波長
条件が一致されたエネルギー強度を波長相当値と言うも
のとする)、CO2によるエネルギー吸収の少い波長帯
域における任意の波長λ1についてのエネルギー強度
(画像処理信号16)の波長相当値から、CO2吸収帯
波長λ2のエネルギー強度(画像処理信号15)を減算
し、得られたエネルギー強度の差に基き温度を算出して
これを計測対象物の表面温度とし、該表面温度を温度計
測信号19として温度表示装置18に送って温度表示装
置18に表示させると共に、必要な場合には、警報装置
20に警報指令21を送って警報を発令させる。
Image processing signal 1 showing the energy intensity
5, 16 are sent to the arithmetic and control unit 17, and the arithmetic and control unit 17
Then, first, after the energy intensity applied to one of the image processing signals 15 and 16 is converted or corrected to match the energy intensity applied to the other image processed signals 16 and 15 with the condition relating to the wavelength (here, , The image processing signal 16 is converted as will be described later, and the energy intensity with which the wavelength conditions are matched is referred to as a wavelength equivalent value), and any energy in a wavelength band in which energy absorption by CO 2 is small is performed. The energy intensity of the CO 2 absorption band wavelength λ 2 (image processing signal 15) is subtracted from the wavelength equivalent value of the energy intensity of the wavelength λ 1 (image processing signal 16), and the temperature is determined based on the obtained energy intensity difference. The calculated temperature is used as the surface temperature of the measurement target, and the surface temperature is sent to the temperature display device 18 as a temperature measurement signal 19 to be displayed on the temperature display device 18. , If necessary, to trigger an alarm and send a warning command 21 to the alarm device 20.

【0022】計測対象物の表面温度を計測する原理は以
下の通りである。
The principle of measuring the surface temperature of the measuring object is as follows.

【0023】即ち、CO2は火炉1内部に均一に分布し
ているものであり、しかも、CO2吸収帯波長λ2は、C
2によるエネルギー吸収と同時にススや灰粒子などの
固体粒子7によるエネルギー吸収の影響も大きいため、
エネルギーの減衰が起り易く(つまり、遠方からの光の
エネルギーが届きにくい)、反対に、CO2によるエネ
ルギー吸収の少い長波長帯域における任意の波長λ1
は、ススや灰粒子などの固体粒子7によるエネルギー吸
収の影響が小さいため、エネルギーの減衰が起り難い
(つまり、遠方からの光のエネルギーが届き易い)とい
う性質を有しているので、CO2吸収帯波長を利用する
こととする。
That is, CO 2 is uniformly distributed inside the furnace 1, and the CO 2 absorption band wavelength λ 2 is C
Since the energy absorption by O 2 and the energy absorption by the solid particles 7 such as soot and ash particles are large,
Energy is likely to be attenuated (that is, the energy of light from a distance is hard to reach), and conversely, solid particles such as soot and ash particles are generated at an arbitrary wavelength λ 1 in the long wavelength band where energy absorption by CO 2 is small. Since the effect of energy absorption by No. 7 is small, the energy is less likely to be attenuated (that is, the energy of light from a distance easily reaches). Therefore, the CO 2 absorption band wavelength is used.

【0024】図3は、吸収エネルギーと波長との関係を
示す線図であって、破線イはバーナ2の火炎6や火炉1
内に充満しているガスからの輻射エネルギーに対するC
2のみの吸収エネルギーを示す波形であり、二点鎖線
ロは破線イに固体粒子7による吸収エネルギーを加えた
波形であり、実線ハは二点鎖線ロに更に計測対象物から
の放射エネルギーを加えた波形である。
FIG. 3 is a diagram showing the relationship between the absorbed energy and the wavelength. The broken line a indicates the flame 6 of the burner 2 and the furnace 1.
C for radiant energy from the gas filling the inside
It is a waveform showing the absorbed energy of only O 2 , the two-dot chain line b is the waveform obtained by adding the absorbed energy by the solid particles 7 to the broken line a, and the solid line c is the two-dot chain line b showing the radiant energy from the measurement object. It is the added waveform.

【0025】そして、CO2吸収帯波長λ2のエネルギー
強度(破線イ上の点ニの値)を計測することによって、
覗き窓5から1〜10メートル前後の範囲におけるバー
ナ2の火炎6や火炉1内に充満しているガスからの輻射
エネルギーの強度を計測することができる。
Then, by measuring the energy intensity of the CO 2 absorption band wavelength λ 2 (the value of point d on the broken line a),
It is possible to measure the intensity of radiant energy from the flame 6 of the burner 2 and the gas filling the furnace 1 within a range of about 1 to 10 meters from the viewing window 5.

【0026】又、CO2によるエネルギー吸収の少い波
長帯域における任意の波長λ1についてのエネルギー強
度(実線ハ上の点ホの値)を計測することによって、計
測対象物からの放射エネルギーとバーナ2の火炎6や火
炉1内に充満しているガスからの輻射エネルギーとの合
計のエネルギー強度を計測することができる。
Further, by measuring the energy intensity (value of point E on the solid line C) at an arbitrary wavelength λ 1 in the wavelength band where the energy absorption by CO 2 is small, the radiant energy from the measurement object and the burner are measured. It is possible to measure the total energy intensity of the radiant energy from the flame 6 of No. 2 and the gas filling the furnace 1.

【0027】次に、波長λ1におけるエネルギー強度
(点ホの値)からプランクの式 E=C1λ-5[1/{exp(C2/λT)−1}] E:エネルギー強度 C1,C2:プランクの第1、第2定数 λ:波長(m) T:温度(k) に基づいて温度を求め、該温度からプランクの式に基づ
いて波長をλ2相当とした場合のエネルギー強度(前記
波長相当値、点ヘの値)を求める。
Next, from the energy intensity at the wavelength λ 1 (value of point E), Planck's equation E = C 1 λ -5 [1 / {exp (C 2 / λT) -1}] E: Energy intensity C 1 , C 2 : Planck's first and second constants λ: Wavelength (m) T: Temperature based on temperature (k), and the energy when the wavelength is equivalent to λ 2 based on Planck's equation The intensity (value corresponding to the wavelength, value to point) is obtained.

【0028】このように、波長相当値を求めて波長に関
する条件を一致させることにより、CO2吸収帯波長λ2
のエネルギー強度(点ニの値)が覗き窓から1〜10m
前後の範囲に対する値であり、CO2によるエネルギー
吸収の少ない波長帯域における任意の波長λ1のエネル
ギー強度(点ホの値)が覗き窓から火炉1の奥行全体に
対する値であることの、計測範囲の差を補正している。
As described above, the wavelength-equivalent value is obtained and the conditions relating to the wavelength are made to coincide with each other, whereby the CO 2 absorption band wavelength λ 2
Energy intensity (value of point d) is 1 to 10 m from the viewing window
It is a value for the front and rear ranges, and the measurement range is that the energy intensity (value of point e) of arbitrary wavelength λ 1 in the wavelength band in which energy absorption by CO 2 is small is the value for the entire depth of the furnace 1 from the viewing window. The difference between is corrected.

【0029】そして、CO2によるエネルギー吸収の少
い波長帯域における任意の波長λ1についてのエネルギ
ー強度(画像処理信号16)の波長相当値(点ヘの値)
から、CO2吸収帯波長λ2のエネルギー強度(画像処理
信号15、点ニの値)を減算することにより、ススや灰
粒子などの固体粒子7によるエネルギー吸収や、バーナ
2の火炎6や火炉1内に充満しているガスからの輻射エ
ネルギーによる影響が除去された、計測対象物からの放
射エネルギー(差トの値)を得ることができる。
Then, a wavelength-equivalent value (value to a point) of energy intensity (image processing signal 16) for an arbitrary wavelength λ 1 in a wavelength band in which energy absorption by CO 2 is small.
By subtracting the energy intensity of the CO 2 absorption band wavelength λ 2 (the image processing signal 15, the value of point 2), the energy absorption by the solid particles 7 such as soot and ash particles, the flame 6 of the burner 2 and the furnace It is possible to obtain the radiant energy (value of difference) from the measurement object in which the influence of the radiant energy from the gas filling 1 is removed.

【0030】このようにして得られた計測対象物からの
放射エネルギー(差トの値)に基いてプランクの式で温
度を求めることによって、計測対象物の表面温度を求め
ることができる。
The surface temperature of the object to be measured can be obtained by calculating the temperature by the Planck's equation based on the radiant energy (value of difference G) from the object to be measured thus obtained.

【0031】図4は本発明の他の実施例であり、赤外線
カメラ23を共通にして、切換器24により、映像信号
25を切換て画像処理装置13,14へ送るようにした
以外は、前記実施例と同様の構成を備えており、同様の
作用効果を得ることができる。
FIG. 4 shows another embodiment of the present invention, except that the infrared camera 23 is used in common and the switching device 24 switches the video signal 25 to be sent to the image processing devices 13 and 14. The structure is similar to that of the embodiment, and the same operation and effect can be obtained.

【0032】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、計測対象物は火炉底部に付着したク
リンカ8や出口部に配置された過熱器4に限らないこ
と、又、装置の構成として光プローブや光電変換器など
を用いても良いこと、その他、本発明の要旨を逸脱しな
い範囲内において種々変更を加え得ることは勿論であ
る。
The present invention is not limited to the above-mentioned embodiment, and the object to be measured is not limited to the clinker 8 attached to the bottom of the furnace or the superheater 4 arranged at the outlet. Needless to say, an optical probe, a photoelectric converter, or the like may be used as the configuration of the device, and various changes may be made without departing from the scope of the invention.

【0033】[0033]

【発明の効果】以上説明したように、本発明のボイラに
おける炉内表面温度検出方法によれば、ボイラの炉内に
おける各部の表面温度を直接計測することができるとい
う優れた効果を奏し得る。
As described above, the method for detecting the surface temperature in the furnace of the boiler of the present invention has an excellent effect that the surface temperature of each part in the furnace of the boiler can be directly measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかるボイラの火炉部分の
概略側断面図である。
FIG. 1 is a schematic side sectional view of a furnace portion of a boiler according to an embodiment of the present invention.

【図2】図1の制御装置の系統図である。FIG. 2 is a system diagram of the control device of FIG.

【図3】吸収エネルギーと波長との関係を示す線図であ
る。
FIG. 3 is a diagram showing a relationship between absorbed energy and wavelength.

【図4】本発明の他の実施例にかかる制御装置の系統図
である。
FIG. 4 is a system diagram of a control device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4 計測対象物(過熱器) 8 計測対象物(クリンカ) 9,10,23 計測装置(赤外線カメラ) 11,12 信号(映像信号) 13,14 信号処理装置(画像処理装置) 15 CO2吸収帯波長λ2のエネルギー強度(画像処理
信号) 16 CO2によるエネルギー吸収の少い波長帯域にお
ける任意の波長λ1についてのエネルギー強度(画像処
理信号) 17 演算制御装置 19 表面温度(温度計測信号)
4 Measuring object (superheater) 8 Measuring object (clinker) 9,10,23 Measuring device (infrared camera) 11,12 Signal (video signal) 13,14 Signal processing device (image processing device) 15 CO 2 absorption band Energy intensity of wavelength λ 2 (image processing signal) 16 Energy intensity of any wavelength λ 1 in a wavelength band in which energy absorption by CO 2 is small (image processing signal) 17 Operation control device 19 Surface temperature (temperature measurement signal)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 裕 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yutaka Aoki 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Toyosu General Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測対象物(符号4,8)へ向けて計測
装置(符号9,10又は23)を配置し、該計測装置で
計測した信号(符号11,12又は25)を元に信号処
理装置(符号13,14)でCO2によるエネルギー吸
収の少い波長帯域における任意の波長λ1についてのエ
ネルギー強度(符号16)と、CO2吸収帯波長λ2のエ
ネルギー強度(符号15)とを計測し、演算制御装置
(符号17)でCO2によるエネルギー吸収の少い波長
帯域における任意の波長λ1についてのエネルギー強度
と、CO2吸収帯波長λ2のエネルギー強度との、波長条
件を一致させた波長相当値を減算することにより、計測
対象物からの放射エネルギーを求め、計測対象物からの
放射エネルギーに基いて、計測対象物の表面温度(符号
19)を求めることを特徴とするボイラにおける炉内表
面温度検出方法。
1. A signal based on a signal (reference numeral 11, 12 or 25) measured by the measurement apparatus (reference numeral 9, 10 or 23) arranged toward a measurement object (reference numeral 4, 8). The energy intensity (symbol 16) for an arbitrary wavelength λ 1 in the wavelength band in which energy absorption by CO 2 is small in the processing device (symbols 13 and 14) and the energy intensity (symbol 15) of the CO 2 absorption band wavelength λ 2 The wavelength condition of the energy intensity for an arbitrary wavelength λ 1 in the wavelength band where the energy absorption by CO 2 is small and the energy intensity of the CO 2 absorption band wavelength λ 2 is measured by the arithmetic and control unit (reference numeral 17). The radiant energy from the measurement object is obtained by subtracting the matched wavelength equivalent values, and the surface temperature (reference numeral 19) of the measurement object is obtained based on the radiant energy from the measurement object. Method for detecting surface temperature in furnace in boiler.
JP13594992A 1992-04-28 1992-04-28 Method for measuring temperature of inner surface of furnace of boiler Pending JPH05306956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13594992A JPH05306956A (en) 1992-04-28 1992-04-28 Method for measuring temperature of inner surface of furnace of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13594992A JPH05306956A (en) 1992-04-28 1992-04-28 Method for measuring temperature of inner surface of furnace of boiler

Publications (1)

Publication Number Publication Date
JPH05306956A true JPH05306956A (en) 1993-11-19

Family

ID=15163611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13594992A Pending JPH05306956A (en) 1992-04-28 1992-04-28 Method for measuring temperature of inner surface of furnace of boiler

Country Status (1)

Country Link
JP (1) JPH05306956A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037519A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Heat measurement system for detecting malfunction in power generation system
JP2015232418A (en) * 2014-06-10 2015-12-24 株式会社Ihi Boiler furnace interior measuring device
WO2017047376A1 (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method of measuring temperature of an object to be measured, dust temperature and dust concentration
JP2017058370A (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method for measuring temperature of measured object, temperature of powder dust and concentration of powder dust
JP2019211150A (en) * 2018-06-04 2019-12-12 一般財団法人電力中央研究所 Boiler device and power generating installation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037519A (en) * 2010-08-05 2012-02-23 General Electric Co <Ge> Heat measurement system for detecting malfunction in power generation system
JP2015232418A (en) * 2014-06-10 2015-12-24 株式会社Ihi Boiler furnace interior measuring device
WO2017047376A1 (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method of measuring temperature of an object to be measured, dust temperature and dust concentration
JP2017058370A (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method for measuring temperature of measured object, temperature of powder dust and concentration of powder dust
KR20180054700A (en) * 2015-09-16 2018-05-24 미츠비시 마테리알 가부시키가이샤 A method of measuring the temperature of the object to be measured, the temperature of the dust, and the concentration of the dust
US10852195B2 (en) 2015-09-16 2020-12-01 Mitsubishi Materials Corporation Method of measuring temperature of an object to be measured, dust temperature and dust concentration
JP2019211150A (en) * 2018-06-04 2019-12-12 一般財団法人電力中央研究所 Boiler device and power generating installation

Similar Documents

Publication Publication Date Title
US7938576B1 (en) Sensing system for obtaining images and surface temperatures
JPH06229832A (en) Pyrometer including emissivity meter
JP2604754B2 (en) Spectrophotometer
GB2188416A (en) Flame condition monitoring
JPH05306956A (en) Method for measuring temperature of inner surface of furnace of boiler
KR100217868B1 (en) Ceramic welding method and apparatus
JP4102626B2 (en) Smoke detector
US3936648A (en) Flame monitoring apparatus
JP5880751B2 (en) Gas detection device
US3157728A (en) Method and means for measuring high temperatures
JPS6012525B2 (en) Selective fire monitoring method for multiple burner furnaces
JP2007171112A (en) Method and apparatus for measuring slag temperature in plasma melting furnace
JP2004045306A (en) Method and instrument for measuring emissivity distribution
JPH07275392A (en) Disasters preventive system
JP3370598B2 (en) Fire alarm
JPH07301569A (en) Method and apparatus for processing infrared temperature image using two filters
Maldague et al. Dual imager and its applications to active vision robot welding, surface inspection, and two-color pyrometry
JP2670959B2 (en) Flame measurement method
JP2004271537A (en) Method for measuring temperature of molten slag
JP2505363B2 (en) Shooting evaluation device and shooting evaluation method
RU2152065C1 (en) Method for checking of inner surface of chimney and device for its embodiment
EP0519033A1 (en) Method and device for measuring the temperature of an object and heating method
JPS58173440A (en) Detector
CN106885635A (en) A kind of heatproof detection means that furnace flame temperature field is characterized based on image
JP4255420B2 (en) Flame detector