JP5880751B2 - Gas detection device - Google Patents

Gas detection device Download PDF

Info

Publication number
JP5880751B2
JP5880751B2 JP2015041194A JP2015041194A JP5880751B2 JP 5880751 B2 JP5880751 B2 JP 5880751B2 JP 2015041194 A JP2015041194 A JP 2015041194A JP 2015041194 A JP2015041194 A JP 2015041194A JP 5880751 B2 JP5880751 B2 JP 5880751B2
Authority
JP
Japan
Prior art keywords
gas
infrared
sealed structure
detected
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015041194A
Other languages
Japanese (ja)
Other versions
JP2015099168A (en
Inventor
恵美子 倉田
恵美子 倉田
仲嶋 一
一 仲嶋
河野 裕之
裕之 河野
隆史 平位
隆史 平位
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015041194A priority Critical patent/JP5880751B2/en
Publication of JP2015099168A publication Critical patent/JP2015099168A/en
Application granted granted Critical
Publication of JP5880751B2 publication Critical patent/JP5880751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、赤外線を使って密閉構造体から漏れ出た特定の気体を検出する気体検出装置に関するものである。   The present invention relates to a gas detection device that detects a specific gas leaking from a sealed structure using infrared rays.

特定の気体を検出する技術としては、特定の気体が特定の波長の光を強く吸収する特性を利用する方式がある。従来の気体検出装置では、赤外光源からの光を気体の存在を判定したい空間に対して放射し、その空間を通過した光を特定波長の光のみを透過するフィルタに通し、フィルタを通った光を画面表示信号に変換し表示装置に表示する(例えば、特許文献1参照)。   As a technique for detecting a specific gas, there is a method using a characteristic that a specific gas strongly absorbs light of a specific wavelength. In a conventional gas detection device, light from an infrared light source is radiated to a space where the presence of gas is to be determined, and the light passing through the space is passed through a filter that transmits only light of a specific wavelength. Light is converted into a screen display signal and displayed on a display device (for example, see Patent Document 1).

特開2006−317366号公報JP 2006-317366 A

従来の気体検出装置では、配管などの密閉構造体の亀裂から漏れ出ている気体を検出する場合、赤外光源と赤外線検出手段との間に密閉構造体を配置する必要がある。そのため、密閉構造体の亀裂が赤外光源からの赤外線の照射されない位置に存在する場合や、赤外光源と赤外線検出手段との間に多数の密閉構造体が重なり合っている場合などに、密閉構造体の亀裂から漏れている気体の検出が困難であるという問題があった。   In the conventional gas detection device, when detecting a gas leaking from a crack in a sealed structure such as a pipe, it is necessary to dispose the sealed structure between the infrared light source and the infrared detecting means. Therefore, when a crack in the sealed structure exists at a position where infrared rays from the infrared light source are not irradiated, or when a large number of sealed structures overlap between the infrared light source and the infrared detection means, the sealed structure There was a problem that it was difficult to detect gas leaking from a crack in the body.

本発明は前記のような問題を解決するためになされたもので、密閉構造体の亀裂の位置にかかわらず漏れ出している気体を検出することができる気体検出装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas detection device capable of detecting leaking gas regardless of the position of the crack in the sealed structure. .

本発明による気体検出装置は、被検出ガスが封入されている密閉構造体を加熱する構造体加熱手段と、密閉構造体の温度を測定する温度計測デバイスと、被検出ガスによって吸収される波長の赤外線を透過し構造体加熱手段によって加熱された密閉構造体から放射される赤外線を受ける光学フィルタと、光学フィルタを透過した赤外線を受光し検出信号に変換する赤外線検出手段と、赤外線検出手段の出力を表示する信号表示手段とを備え、構造体加熱手段は温度計測デバイスで測定される温度が所定の温度になるように制御されるものである。
また、本発明による気体検出装置は、被検出ガスが封入されている密閉構造体の少なくとも一部を覆って密閉構造体を加熱する構造体加熱手段と、被検出ガスによって吸収される波長の赤外線を透過し構造体加熱手段によって加熱された密閉構造体から放射される赤外線を受ける光学フィルタと、光学フィルタを透過した赤外線を受光し検出信号に変換する赤外線検出手段と、赤外線検出手段の出力を表示する信号表示手段とを備えるものである。
A gas detection apparatus according to the present invention includes a structure heating means for heating a sealed structure in which a gas to be detected is sealed, a temperature measuring device for measuring the temperature of the sealed structure, and a wavelength absorbed by the gas to be detected. An optical filter that receives infrared rays radiated from a sealed structure that transmits infrared rays and is heated by a structure heating unit, an infrared detection unit that receives infrared rays that have passed through the optical filter and converts them into detection signals, and an output of the infrared detection unit The structure heating means is controlled so that the temperature measured by the temperature measuring device becomes a predetermined temperature.
Further, the gas detection device according to the present invention includes a structure heating means for heating at least a part of the sealed structure in which the gas to be detected is sealed, and an infrared ray having a wavelength absorbed by the detected gas. An optical filter that receives infrared rays emitted from a sealed structure that is transmitted by the structure heating means, receives infrared rays that pass through the optical filter and converts them into detection signals, and outputs the infrared detection means. Signal display means for displaying.

本発明によれば、被検出ガスが封入されている密閉構造体を加熱する構造体加熱手段と、密閉構造体の温度を測定する温度計測デバイスと、被検出ガスによって吸収される波長の赤外線を透過し構造体加熱手段によって加熱された密閉構造体から放射される赤外線を受ける光学フィルタと、光学フィルタを透過した赤外線を受光し検出信号に変換する赤外線検出手段と、赤外線検出手段の出力を表示する信号表示手段とを備え、構造体加熱手段は温度計測デバイスで測定される温度が所定の温度になるように制御されるので、密閉構造体の亀裂の位置にかかわらず、漏れ出している気体を検出することができる。
また、本発明によれば、被検出ガスが封入されている密閉構造体の少なくとも一部を覆って密閉構造体を加熱する構造体加熱手段と、被検出ガスによって吸収される波長の赤外線を透過し構造体加熱手段によって加熱された密閉構造体から放射される赤外線を受ける光学フィルタと、光学フィルタを透過した赤外線を受光し検出信号に変換する赤外線検出手段と、赤外線検出手段の出力を表示する信号表示手段とを備えているので、密閉構造体の亀裂の位置にかかわらず、漏れ出している気体を検出することができる。
According to the present invention, the structure heating means for heating the sealed structure in which the gas to be detected is sealed, the temperature measuring device for measuring the temperature of the sealed structure, and the infrared ray having a wavelength absorbed by the gas to be detected An optical filter that receives infrared rays transmitted from the sealed structure heated by the structure heating means, an infrared detection means that receives the infrared rays that have passed through the optical filter and converts them into detection signals, and displays the output of the infrared detection means The structure heating means is controlled so that the temperature measured by the temperature measuring device becomes a predetermined temperature, so that the leaking gas can be obtained regardless of the position of the crack in the sealed structure. Can be detected.
According to the present invention, the structure heating means for heating the sealed structure covering at least a part of the sealed structure in which the gas to be detected is sealed, and the infrared ray having a wavelength absorbed by the gas to be detected are transmitted. An optical filter that receives infrared rays emitted from the sealed structure heated by the structure heating means, an infrared detection means that receives infrared rays that have passed through the optical filter and converts them into detection signals, and displays the output of the infrared detection means Since the signal display means is provided, the leaking gas can be detected regardless of the position of the crack in the sealed structure.

本発明の実施の形態1による気体検出装置の構成を示す図である。It is a figure which shows the structure of the gas detection apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による黒体輻射スペクトルの温度変化の様子を示す図である。It is a figure which shows the mode of the temperature change of the black body radiation spectrum by Embodiment 1 of this invention. 本発明の実施の形態1による気体検出装置の位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the gas detection apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による気体検出装置の出力例を示す図である。It is a figure which shows the example of an output of the gas detection apparatus by Embodiment 1 of this invention.

実施の形態1
図1は、本発明の実施の形態1による気体検出装置の構成を示す図である。密閉構造体7には被検出ガス8が封入されており、密閉構造体7に亀裂が生じたときなどに被検出ガス8が密閉構造体7の外側に漏れ出しガス漏れが発生する。本発明の実施の形態1による気体検出装置は、密閉構造体7が示された被検出領域において、ガス漏れによって密閉構造体7の外側に漏れ出た被検出ガス8を検出するものである。
Embodiment 1
FIG. 1 is a diagram showing a configuration of a gas detection device according to Embodiment 1 of the present invention. The gas to be detected 8 is sealed in the sealed structure 7, and when the crack is generated in the sealed structure 7, the gas 8 to be detected leaks to the outside of the sealed structure 7, and gas leakage occurs. The gas detection apparatus according to the first embodiment of the present invention detects a gas 8 to be detected that has leaked to the outside of the sealing structure 7 due to gas leakage in a detection region where the sealing structure 7 is shown.

なお、本発明の実施の形態1における密閉構造体7は、被検出ガス8が密閉された配管やガスタンクなどである。密閉構造体は、必ずしもオーリングやガスケットを使った厳密な密閉状態を実現している必要はなく、被検出ガス8の封入が目的であるものでも良い。   The sealed structure 7 in Embodiment 1 of the present invention is a pipe or a gas tank in which the gas 8 to be detected is sealed. The sealed structure does not necessarily need to realize a strict sealed state using an O-ring or a gasket, and may be used for enclosing the gas 8 to be detected.

構造体加熱手段1は、密閉構造体7を加熱するものである。構造体加熱手段1は、密閉構造体7を加熱するものであればどの様なものでも良く、シーズヒーター、シリコンラバーヒーター、電熱線、ニクロム線、カンタル線などでも良い。また、ヒートガンなどの熱風を吹き付けるものでも良い。また、構造体加熱手段1は、密閉構造体7を全て覆う必要はなく、その一部を覆って、熱伝導によって密閉構造体7全体を加熱しても良い。さらに、構造体加熱手段1に、熱電対、サーミスタなどの温度計測デバイスを組み込み、構造体加熱手段1の温度が所定の温度を維持するようにしても良い。また、温度計測デバイスを密閉構造体7に設置して密閉構造体7の温度を測定し、密閉構造体7の温度が所定の温度になるように構造体加熱手段1を制御しても良い。   The structure heating means 1 heats the sealed structure 7. The structure heating means 1 may be anything as long as it can heat the sealed structure 7, and may be a sheathed heater, a silicon rubber heater, a heating wire, a nichrome wire, a Kanthal wire, or the like. Moreover, what blows hot air, such as a heat gun, may be used. Moreover, the structure heating means 1 does not need to cover all of the sealed structure 7, and may cover the part and heat the entire sealed structure 7 by heat conduction. Furthermore, a temperature measuring device such as a thermocouple or a thermistor may be incorporated in the structure heating means 1 so that the temperature of the structure heating means 1 is maintained at a predetermined temperature. Alternatively, a temperature measuring device may be installed in the sealed structure 7 to measure the temperature of the sealed structure 7 and the structure heating means 1 may be controlled so that the temperature of the sealed structure 7 becomes a predetermined temperature.

構造体加熱手段1によって加熱された密閉構造体7からは、その温度に応じた黒体輻射スペクトルが放射される。黒体輻射スペクトルの強度B(λ)は、物体の温度をT[K]、放射されるスペクトルの波長をλ[μm]、波長λにおける密閉構造体7の放射率をε(λ)とすると、以下の式で表される。   A black body radiation spectrum corresponding to the temperature is emitted from the sealed structure 7 heated by the structure heating means 1. The intensity B (λ) of the black body radiation spectrum is assumed that the temperature of the object is T [K], the wavelength of the emitted spectrum is λ [μm], and the emissivity of the sealed structure 7 at the wavelength λ is ε (λ). Is represented by the following equation.

Figure 0005880751
Figure 0005880751

ここで、hはプランク定数、kはボルツマン定数、cは光速、eはネイピア数である。   Here, h is the Planck constant, k is the Boltzmann constant, c is the speed of light, and e is the Napier number.

このスペクトルは、CO、CO、CH4などのガスが吸収する2〜5μm帯、SFなどのフロン系ガスが吸収する8〜12μm帯の波長を含んでいるため、これらのガスを検出するための赤外光源として使用することができる。 This spectrum includes wavelengths of 2 to 5 μm band absorbed by gases such as CO 2 , CO, and CH 4, and 8 to 12 μm band absorbed by chlorofluorocarbon gases such as SF 6 , so that these gases are detected. It can be used as an infrared light source.

被検出ガス8の濃度をn、被検出ガス8が吸収する光の波長をλ、被検出ガス8が存在する領域に入射する光量をIλ(0)、被検出ガス8が存在する領域の厚さ(光路長)をs、光量Iλ(0)の光が光路長sの被検出ガス8を透過した後の光量をIλ(s)、被検出ガス8に固有な比例乗数をKλとすると、それぞれの関係は以下のように表わすことができる。 The concentration of the detected gas 8 is n, the wavelength of the light absorbed by the detected gas 8 is λ, the amount of light incident on the region where the detected gas 8 is present is I λ (0), and the region where the detected gas 8 is present The thickness (optical path length) is s, the light quantity after the light of I λ (0) passes through the detected gas 8 with the optical path length s is I λ (s), and the proportional multiplier specific to the detected gas 8 is K. Assuming λ , each relationship can be expressed as follows.

Figure 0005880751
Figure 0005880751

したがって、濃度の低い微少な気体漏れを検出するためには、式(2)においてnが小さくなったときに{Iλ(0)−Iλ(s)}を大きくする必要がある。そのためには、光路長sを長くするか、被検出ガス8が存在する領域に入射する光量Iλ(0)を増加させる必要がある。密閉構造体7から漏洩した被検出ガス8は拡散するため、光路長sを長くすることは困難である。よって、被検出ガス8が存在する領域に入射する光量Iλ(0)を増加させる。ここでは、構造体加熱手段1によって加熱された密閉構造体7から放射される黒体輻射スペクトルに注目する。 Therefore, in order to detect a slight gas leak having a low concentration, it is necessary to increase {I λ (0) −I λ (s)} when n becomes small in Equation (2). For that purpose, it is necessary to lengthen the optical path length s or increase the amount of light I λ (0) incident on the region where the gas 8 to be detected exists. Since the detection gas 8 leaking from the sealed structure 7 diffuses, it is difficult to increase the optical path length s. Therefore, the amount of light I λ (0) incident on the region where the detection gas 8 exists is increased. Here, attention is paid to the black body radiation spectrum radiated from the sealed structure 7 heated by the structure heating means 1.

図2は、黒体輻射スペクトルの温度変化の様子を示している。図2に示されているように、室温程度の25℃においても黒体輻射スペクトルは放射されているが、温度上昇とともに光量が増加していることが分かる。よって、密閉構造体7を周囲の温度よりも高温にすることにより、低濃度で光路長が短くなる微少な気体もれも検出することができる。   FIG. 2 shows the temperature change of the black body radiation spectrum. As shown in FIG. 2, the black body radiation spectrum is radiated even at 25 ° C., which is about room temperature, but it is understood that the amount of light increases as the temperature rises. Therefore, by making the sealed structure 7 higher than the ambient temperature, it is possible to detect minute gas leaks in which the optical path length is shortened at a low concentration.

光学フィルタ2は、構造体加熱手段1によって加熱された密閉構造体7から放射されガス漏れ検知領域を通過した赤外線を受ける位置に配置される。また、光学フィルタ2は、被検出ガス8が吸収する波長の赤外線のみを透過するものである。   The optical filter 2 is disposed at a position to receive infrared rays that are emitted from the sealed structure 7 heated by the structure heating means 1 and pass through the gas leak detection region. The optical filter 2 transmits only infrared light having a wavelength that is absorbed by the detection gas 8.

光学フィルタ2は、被検出ガス8が吸収する赤外線の波長に合わせて、選択する。例えば、被検出ガス8がCO、CO、CHであれば波長2〜5μmの赤外線を吸収するので、光学フィルタ2は波長2〜5μmの赤外線のみを透過するものを用いる。SF、フロン系ガスであれば8〜12μmの赤外線を吸収するので、光学フィルタ2は波長8〜12μmの赤外線のみを透過するものを用いる。また、背景気体と検出対象気体とを区別するために、検出対象ではない気体の吸収波長帯域を光学フィルタ2の透過帯域から外してもよい。例えば、大気中でSFを検出する場合は、SFが吸収する赤外線の波長は10.6μmなので、光学フィルタ2は波長10.6μmの赤外線のみを透過するものを用いる。この場合は、背景気体として例えばCOが想定されるが、COが吸収する赤外線の波長が2〜5μmなので、SFのみを検出することができる。光学フィルタ2は、検出対象となる気体が1種類の場合は1種類のフィルタを使用する。検出対象となる気体が複数ある場合は、光学フィルタ2を複数枚準備し、手動もしくは自動で入れ替えても良い。また、光学フィルタ2を使用する代わりに、干渉計、プリズム、回折格子などを用いて特定波長の光成分を分光しても良い。あるいは、集光レンズや集光ミラーを用いる場合は、これらの表面に特定波長の赤外線のみを透過する膜を蒸着しても良い。 The optical filter 2 is selected according to the wavelength of infrared rays absorbed by the detection gas 8. For example, if the gas to be detected 8 is CO 2 , CO, or CH 4 , it absorbs infrared rays having a wavelength of 2 to 5 μm, so that the optical filter 2 transmits only infrared rays having a wavelength of 2 to 5 μm. Since SF 6 and fluorocarbon gas absorb infrared rays having a wavelength of 8 to 12 μm, an optical filter 2 that transmits only infrared rays having a wavelength of 8 to 12 μm is used. Further, in order to distinguish the background gas from the detection target gas, the absorption wavelength band of the gas that is not the detection target may be excluded from the transmission band of the optical filter 2. For example, when SF 6 is detected in the atmosphere, the wavelength of infrared rays absorbed by SF 6 is 10.6 μm, so that the optical filter 2 transmits only infrared rays having a wavelength of 10.6 μm. In this case, for example, CO 2 is assumed as the background gas, but since the wavelength of infrared rays absorbed by CO 2 is 2 to 5 μm, only SF 6 can be detected. The optical filter 2 uses one type of filter when there is one type of gas to be detected. When there are a plurality of gases to be detected, a plurality of optical filters 2 may be prepared and replaced manually or automatically. Further, instead of using the optical filter 2, a light component having a specific wavelength may be dispersed using an interferometer, a prism, a diffraction grating, or the like. Or when using a condensing lens or a condensing mirror, you may vapor-deposit the film | membrane which permeate | transmits only the infrared rays of a specific wavelength on these surfaces.

赤外線検出手段3は、光学フィルタ2を透過した赤外線を受光し、検出信号に変換する。赤外線検出手段3は、サーモパイル、ポロメーター、焦電素子などの熱型検出素子や、フォトダイオード、フォトトランジスタなどの量子型検出素子などから構成されている。サーモビュアなど2次元配置された赤外線検出素子を用いることで、検出信号を画像データとすることができる。これにより、気体の存在位置や濃度分布を分かりやすく知ることができる。ライン状に1次元配置された赤外線素子を用いて、これを配置されたセンサの短手方向にスキャンすることで、2次元配置された赤外線検出素子と同様の出力信号を得るようにしても良い。また、光学フィルタ2を透過した赤外線を集光するために、赤外線検出手段3の前面に集光レンズや集光ミラーを配置しても良い。   The infrared detecting means 3 receives the infrared light transmitted through the optical filter 2 and converts it into a detection signal. The infrared detection means 3 includes a thermal detection element such as a thermopile, a porometer, and a pyroelectric element, and a quantum detection element such as a photodiode and a phototransistor. By using a two-dimensionally arranged infrared detection element such as a thermoviewer, the detection signal can be used as image data. Thereby, it is possible to easily understand the existence position and concentration distribution of the gas. By using an infrared element arranged one-dimensionally in a line and scanning it in the short direction of the arranged sensor, an output signal similar to that of an infrared detecting element arranged two-dimensionally may be obtained. . Further, a condensing lens or a condensing mirror may be arranged on the front surface of the infrared detecting means 3 in order to condense the infrared light transmitted through the optical filter 2.

信号処理手段4は、赤外線検出手段3からの出力信号を確認しやすいように強調処理などを行い、信号表示手段6に出力する。また、信号処理手段4において赤外線検出手段3からの出力信号を処理するときには、必要に応じて信号をメモリ5に保存する。   The signal processing unit 4 performs enhancement processing so that the output signal from the infrared detection unit 3 can be easily confirmed, and outputs the signal to the signal display unit 6. When the signal processing means 4 processes the output signal from the infrared detection means 3, the signal is stored in the memory 5 as necessary.

信号表示手段6では、信号処理手段4から受け取った信号を画像データなどの形で表示する。信号表示手段6に表示された画像を確認することにより、ガス漏れによって密閉構造体7の外側に漏れ出た被検出ガス8を検出することができる。   The signal display means 6 displays the signal received from the signal processing means 4 in the form of image data or the like. By confirming the image displayed on the signal display means 6, it is possible to detect the detected gas 8 that has leaked to the outside of the sealed structure 7 due to gas leakage.

次に、本発明の実施の形態1による気体検出装置の動作について説明する。まず、構造体加熱手段1を動作させて、密閉構造体7を加熱する。構造体加熱手段1は、例えば、ヒーターなどによる直熱加熱、あるいは、ヒートガンなどによる熱風の吹きつけなどにより、密閉構造体7の一部を加熱する。密閉構造体7の一部が加熱されると、熱伝導により密閉構造体7の全体の温度が上昇する。なお、検出対象となる空間が広い場合や外気温が低い場合は、必要に応じて構造体加熱手段1を複数個設置するなどして、密閉構造体7の全体を加熱しても良い。加熱された密閉構造体7からは、表面の輻射率と加熱されたときの温度に応じて、輻射スペクトルとして赤外線が放射される。   Next, the operation of the gas detection device according to Embodiment 1 of the present invention will be described. First, the structure heating means 1 is operated to heat the sealed structure 7. The structure heating means 1 heats a part of the sealed structure 7 by, for example, direct heating using a heater or the like, or blowing hot air using a heat gun or the like. When a part of the sealed structure 7 is heated, the entire temperature of the sealed structure 7 rises due to heat conduction. If the space to be detected is wide or the outside air temperature is low, the entire sealed structure 7 may be heated by installing a plurality of structure heating means 1 as necessary. From the heated sealed structure 7, infrared rays are radiated as a radiation spectrum according to the emissivity of the surface and the temperature when heated.

図3は、図1に示した本発明の実施の形態1による気体検出装置をy軸方向に見たときの位置関係を説明するための図である。図3において、被検出ガス8が密閉構造体7からx方向に漏れ出している。密閉構造体7が構造体加熱手段1に加熱されることにより輻射スペクトルとして赤外線9が放射されており、被検出ガス8が特定波長の赤外線9を吸収している。被検出ガス8に吸収されなかった赤外線9は、光学フィルタ2を通って赤外線検出手段3に届く。   FIG. 3 is a diagram for explaining the positional relationship when the gas detection device according to the first embodiment of the present invention shown in FIG. 1 is viewed in the y-axis direction. In FIG. 3, the gas 8 to be detected leaks from the sealed structure 7 in the x direction. When the sealed structure 7 is heated by the structure heating means 1, infrared rays 9 are emitted as a radiation spectrum, and the detection gas 8 absorbs infrared rays 9 having a specific wavelength. Infrared light 9 that has not been absorbed by the gas 8 to be detected passes through the optical filter 2 and reaches the infrared detection means 3.

図4は、図3に示された本発明の実施の形態1による気体検出装置において、信号表示手段6の出力例を説明するための図である。図4は、図1に示した本発明の実施の形態1による気体検出装置において、x軸方向から撮影したときの出力例である。図4は、信号表示手段6の撮影領域10を示している。図4に示された例では、赤外線検出手段3が赤外線を強く検出した場所が白く表示されている。例えば、密閉構造体7の部分は、赤外線9が放射されているため白い部分11として示されており、被検出ガス8が存在する部分は、被検出ガス8によって特定波長の赤外線が吸収されるため、黒い部分12となって表れる。被検出ガス8の濃度が濃い場合は、黒い部分12の色の濃さも濃くなる。何も無い部分は、赤外線9がそのまま赤外線検出手段3に届くため、白い領域となって表れている。このように、信号表示手段6の出力である図4における黒い部分12の有無を確認することにより、被検出ガス8が漏れ出している場所やその濃度を確認することができる。また、被検出ガス8が間欠的に噴出している場合は、赤外線検出手段3によって、連続して取得したデータ、あるいは、異なる時刻に取得したデータを信号処理手段4を通してメモリ5に保存し、異なる時刻に取得したデータの差分を取ることによりそれぞれのデータを比較することにより、被検出ガス8の噴出の時間的変化を確認することができる。   FIG. 4 is a diagram for explaining an output example of the signal display means 6 in the gas detection device according to Embodiment 1 of the present invention shown in FIG. FIG. 4 is an output example when the gas detector according to Embodiment 1 of the present invention shown in FIG. 1 is photographed from the x-axis direction. FIG. 4 shows the imaging region 10 of the signal display means 6. In the example shown in FIG. 4, the place where the infrared detecting means 3 strongly detected infrared rays is displayed in white. For example, the portion of the sealed structure 7 is shown as a white portion 11 because the infrared ray 9 is emitted, and the infrared ray having a specific wavelength is absorbed by the detected gas 8 in the portion where the detected gas 8 exists. Therefore, the black portion 12 appears. When the concentration of the detected gas 8 is high, the darkness of the color of the black portion 12 is also high. The blank area appears as a white area because the infrared rays 9 reach the infrared detection means 3 as they are. Thus, by confirming the presence or absence of the black portion 12 in FIG. 4 which is the output of the signal display means 6, it is possible to confirm the location and concentration of the gas 8 to be detected. Further, when the gas 8 to be detected is intermittently ejected, the infrared detection means 3 stores the data acquired continuously or the data acquired at different times in the memory 5 through the signal processing means 4, By comparing the respective data by taking the difference between the data acquired at different times, it is possible to confirm the temporal change in the ejection of the detected gas 8.

従来の気体検出装置では、例えば、赤外光源と赤外線検出手段3との間に被検出ガス8が封入されている密閉構造体7を配置する。図3では、密閉構造体7の左側に赤外光源が配置されることになる。この場合、赤外光源から放射された赤外線が密閉構造体7によってさえぎられるため、密閉構造体7の部分が黒い部分となって表れる。その結果、図4に示された信号表示手段6の出力において、密閉構造体11の部分が黒く示されることになり、被検出ガス8の存在を示していた黒い部分12を確認することができなくなってしまっていた。また、赤外光源から放射された赤外線が届かない位置に存在する被検出ガス8を検出するためには、密閉構造体7を挟むように赤外光源と赤外線検出手段との両方の位置を変更してガス漏れ検出作業を行う必要があり、作業が非常に大きなものになっていた。   In a conventional gas detection device, for example, a sealed structure 7 in which a gas to be detected 8 is sealed is disposed between an infrared light source and an infrared detection means 3. In FIG. 3, an infrared light source is disposed on the left side of the sealed structure 7. In this case, since the infrared rays emitted from the infrared light source are interrupted by the sealing structure 7, the portion of the sealing structure 7 appears as a black portion. As a result, in the output of the signal display means 6 shown in FIG. 4, the portion of the sealed structure 11 is shown in black, and the black portion 12 indicating the presence of the detected gas 8 can be confirmed. It was gone. Further, in order to detect the gas 8 to be detected that does not reach the infrared rays emitted from the infrared light source, the positions of both the infrared light source and the infrared detection means are changed so as to sandwich the sealed structure 7. Therefore, it was necessary to perform a gas leak detection work, and the work was very large.

本発明の実施の形態1による気体検出装置では、構造体加熱手段1によって密閉構造体7を加熱するため、密閉構造体7から赤外線が放射され、密閉構造体7の赤外線検出手段3の側にわずかに漏れ出した被検出ガス8も検出することができる。また、密閉構造体7そのものから放射される赤外線を用いて被検出ガス8を検出するため、密閉構造体7の細かな傷などから漏れ出している被検出ガス8なども検出することができる。さらに、構造体加熱手段1によって加熱された密閉構造体7に対する光学フィルタ2および赤外線検出手段3の位置を変化させることにより、密閉構造体7の様々な位置にある亀裂を容易に確認することができる。   In the gas detection device according to the first embodiment of the present invention, since the sealed structure 7 is heated by the structure heating means 1, infrared rays are emitted from the sealed structure 7, and the infrared detection means 3 side of the sealed structure 7 is irradiated. The gas 8 to be detected that has slightly leaked can also be detected. Further, since the detected gas 8 is detected using infrared rays radiated from the sealed structure 7 itself, it is possible to detect the detected gas 8 leaking from fine scratches or the like of the sealed structure 7. Furthermore, by changing the positions of the optical filter 2 and the infrared detecting means 3 with respect to the sealed structure 7 heated by the structure heating means 1, it is possible to easily confirm cracks at various positions of the sealed structure 7. it can.

1 構造体加熱手段
2 光学フィルタ
3 赤外線検出手段
4 信号処理手段
6 信号表示手段
7 密閉構造体
8 被検出ガス
DESCRIPTION OF SYMBOLS 1 Structure heating means 2 Optical filter 3 Infrared detection means 4 Signal processing means 6 Signal display means 7 Sealed structure 8 Detected gas

Claims (4)

被検出ガスが封入されている密閉構造体を加熱する構造体加熱手段と、
前記密閉構造体の温度を測定する温度計測デバイスと、
前記被検出ガスによって吸収される波長の赤外線を透過し前記構造体加熱手段によって加熱された前記密閉構造体から放射される赤外線を受ける光学フィルタと、
前記光学フィルタを透過した赤外線を受光し検出信号に変換する赤外線検出手段と、
前記赤外線検出手段の出力を表示する信号表示手段と
を備え、
前記構造体加熱手段は前記温度計測デバイスで測定される温度が所定の温度になるように制御されることを特徴とする気体検出装置。
A structure heating means for heating the sealed structure in which the gas to be detected is sealed;
A temperature measuring device for measuring the temperature of the sealed structure;
An optical filter that transmits infrared rays having a wavelength absorbed by the gas to be detected and receives infrared rays emitted from the sealed structure heated by the structure heating means;
Infrared detecting means for receiving infrared light transmitted through the optical filter and converting it into a detection signal;
Signal display means for displaying the output of the infrared detection means,
The gas detector according to claim 1, wherein the structure heating unit is controlled so that a temperature measured by the temperature measuring device is a predetermined temperature.
前記構造体加熱手段は、前記密閉構造体の少なくとも一部を覆って前記密閉構造体を加熱することを特徴とする請求項1に記載の気体検出装置。   The gas detector according to claim 1, wherein the structure heating unit heats the sealed structure covering at least a part of the sealed structure. 被検出ガスが封入されている密閉構造体の少なくとも一部を覆って前記密閉構造体を加熱する構造体加熱手段と、
前記被検出ガスによって吸収される波長の赤外線を透過し前記構造体加熱手段によって加熱された前記密閉構造体から放射される赤外線を受ける光学フィルタと、
前記光学フィルタを透過した赤外線を受光し検出信号に変換する赤外線検出手段と、
前記赤外線検出手段の出力を表示する信号表示手段と
を備える気体検出装置。
A structure heating means that heats the sealed structure covering at least a part of the sealed structure in which the gas to be detected is sealed;
An optical filter that transmits infrared rays having a wavelength absorbed by the gas to be detected and receives infrared rays emitted from the sealed structure heated by the structure heating means;
Infrared detecting means for receiving infrared light transmitted through the optical filter and converting it into a detection signal;
A gas detection apparatus comprising signal display means for displaying the output of the infrared detection means.
異なる複数の時刻に前記赤外線検出手段によって取得されたデータを保存するメモリと、
前記異なる時刻に取得されたデータを比較する信号処理手段とをさらに備え、
前記信号表示手段は前記信号処理手段の出力を表示することを特徴とする請求項1から請求項3のいずれか1項に記載の気体検出装置。
A memory for storing data acquired by the infrared detection means at a plurality of different times;
Signal processing means for comparing data acquired at the different times,
The gas detection device according to any one of claims 1 to 3, wherein the signal display means displays an output of the signal processing means.
JP2015041194A 2015-03-03 2015-03-03 Gas detection device Active JP5880751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041194A JP5880751B2 (en) 2015-03-03 2015-03-03 Gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041194A JP5880751B2 (en) 2015-03-03 2015-03-03 Gas detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011270291A Division JP2013122389A (en) 2011-12-09 2011-12-09 Gas detection device

Publications (2)

Publication Number Publication Date
JP2015099168A JP2015099168A (en) 2015-05-28
JP5880751B2 true JP5880751B2 (en) 2016-03-09

Family

ID=53375840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041194A Active JP5880751B2 (en) 2015-03-03 2015-03-03 Gas detection device

Country Status (1)

Country Link
JP (1) JP5880751B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073427A1 (en) * 2015-10-29 2017-05-04 コニカミノルタ株式会社 Leaked gas detection device and leaked gas detection method
KR101807094B1 (en) * 2016-02-04 2018-01-18 숭실대학교산학협력단 System and method for measuring optical gas image
CN111141460A (en) * 2019-12-25 2020-05-12 西安交通大学 Equipment gas leakage monitoring system and method based on artificial intelligence sense organ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894516A (en) * 1994-09-28 1996-04-12 Tokyo Gas Co Ltd Infrared ray radiation panel assembly and gas detecting device
US5656813A (en) * 1995-04-04 1997-08-12 Gmd Systems, Inc. Apparatus for imaging gas
WO2005001409A2 (en) * 2003-06-11 2005-01-06 Furry Brothers, Llc Infrared imaging of chemical leaks

Also Published As

Publication number Publication date
JP2015099168A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP2013122389A (en) Gas detection device
US7422365B2 (en) Thermal imaging system and method
US7348562B2 (en) Method for adapting an existing thermal imaging device
US7938576B1 (en) Sensing system for obtaining images and surface temperatures
US20080048121A1 (en) Uncooled Infrared Camera System for Detecting Chemical Leaks and Method for Making the Same
JP5880751B2 (en) Gas detection device
Marzo et al. Solar blind pyrometry not relying on atmospheric absorption bands
JP6979704B2 (en) Temperature measuring device and temperature measuring method
JPWO2019059250A1 (en) Laser processing head and laser processing system using it
Deisenroth et al. Measurement uncertainty of surface temperature distributions for laser powder bed fusion processes
US6786634B2 (en) Temperature measuring method and apparatus
Deep et al. Temperature characterization of a radiating gas layer using digital-single-lens-reflex-camera-based two-color ratio pyrometry
Hobbs et al. Quantitative traceable temperature measurement using novel thermal imaging camera
JP2004045306A (en) Method and instrument for measuring emissivity distribution
Mahal et al. Contactless thermal mapping of high-temperature solar receivers via narrow-band near-infrared thermography
JP2002303553A (en) Method and device for measuring temperature distribution
Naranjo et al. IR gas cloud imaging in oil and gas applications: immunity to false stimuli
JP6565932B2 (en) Optical detector
KR101947256B1 (en) Method for calculating calibration curve for measuring high temperature
JP2021047195A (en) Infrared imaging device, infrared imaging system and infrared imaging method
EP1588136A2 (en) Apparatus for thermal imaging
KR101863498B1 (en) System for calculating calibration curve for measuring high temperature
JP6750672B2 (en) Gas observation method
JP2021504678A (en) Systems and methods for avoiding infrared reflection
KR101291303B1 (en) Emissivity setting system of infrared thermal vision camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5880751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250