JPH05306709A - Power transmitting shaft made of fiber reinforced resin and its manufacture - Google Patents

Power transmitting shaft made of fiber reinforced resin and its manufacture

Info

Publication number
JPH05306709A
JPH05306709A JP4111272A JP11127292A JPH05306709A JP H05306709 A JPH05306709 A JP H05306709A JP 4111272 A JP4111272 A JP 4111272A JP 11127292 A JP11127292 A JP 11127292A JP H05306709 A JPH05306709 A JP H05306709A
Authority
JP
Japan
Prior art keywords
fiber
layer
shaft
resin
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4111272A
Other languages
Japanese (ja)
Inventor
Yasuo Shinohara
泰雄 篠原
Koji Yamatsuta
浩治 山蔦
Hitoshi Murotani
均 室谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP4111272A priority Critical patent/JPH05306709A/en
Publication of JPH05306709A publication Critical patent/JPH05306709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress generation of cracks in a radial reinforced layer at a jointed portion of a power transmitting shaft made of fiber reinforced resin which is to be connected to a coupling element, and to cover up the cracks for preventing infiltration of water and oil even if cracks are generated. CONSTITUTION:In a jointed portion of a power transmitting shaft made of fiber reinforced resin which is to be connected to a coupling element, a torque transmitting layer 5, a radial reinforced layer 6 and a skin layer 7 are provided on the shaft (1) from the inside toward the outside. This torque transmitting layer 5 is a fiber reinforced resin layer having an orientation angle of fibers of 0-+ or -60 deg., and the radial reinforced layer 6 is a fiber reinforced resin layer in which fibers are wound with a helical angle of + or -75-+ or -90 deg.C, and the skin layer 7 is a fiber reinforced resin layer which has an orientation angle of fibers smaller at least by 20 deg. in absolute value than the helical angle of the fiber in the radial reinforced layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化樹脂(以下、F
RPということがある)製駆動力伝達用シャフトおよび
その製造方法に関する。特に、本発明は、自動車用、船
舶用に好適な繊維強化樹脂製駆動力伝達用シャフトおよ
びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a fiber reinforced resin (hereinafter referred to as F
RP) and a manufacturing method thereof. In particular, the present invention relates to a fiber-reinforced resin driving force transmitting shaft suitable for automobiles and ships, and a method for manufacturing the shaft.

【0002】[0002]

【従来の技術】車両、船舶等の駆動力伝達用シャフト
は、一般に金属製中実棒または金属製中空パイプの両端
に金属製継手要素を接合したものが使用されてきた。し
かし、 近年自動車の軽量化が注目されるようになり、車
体の金属部をFRP化するだけでなく、構造部材をFR
P化することも注目を集めている。構造部材の中で駆動
力を伝達するシャフトは回転部分であるので、その軽量
化の効果は大きい。そのため駆動力伝達用シャフトのF
RP化は特に注目されている。
2. Description of the Related Art Generally, a shaft for transmitting a driving force of a vehicle, a ship or the like has been formed by joining a metal joint element to both ends of a solid metal rod or a hollow metal pipe. However, in recent years, attention has been paid to the weight reduction of automobiles, and not only is the metal portion of the vehicle body made of FRP, but the structural members are made of FR
Making P is also attracting attention. Since the shaft that transmits the driving force in the structural member is a rotating portion, its weight saving effect is great. Therefore, the driving force transmission shaft F
The RP conversion has received particular attention.

【0003】従来の鉄鋼製の駆動力伝達用シャフトをF
RP製に変更することで、シャフトの重量が1/4〜1
/2になるので、 FRP製駆動力伝達用シャフトは、各
種の自動車に搭載されるようになってきた。
A conventional steel driving force transmission shaft is
By changing to RP, the shaft weight is 1/4 to 1
/ 2, so FRP drive force transmission shafts have come to be installed in various automobiles.

【0004】また、船舶においても快適な乗り心地を追
求して、 共振周波数を実用域から外すために駆動力伝達
用シャフトのFRP化が注目を集めるようになってき
た。 それは、FRPの比強度(強度/密度)と比剛性
(弾性率/密度)が鋼やアルミニウムなどの金属の比強
度と比剛性に比べて優れていることと、繊維の配向角度
を変更することによって曲げ剛性と捩り剛性を自由に変
えることができるので、捩りの強度を維持したまま、共
振周波数を高くしたり、逆に低くしたりすることが可能
であることによる。
Further, in the pursuit of comfortable riding comfort in ships as well, in order to remove the resonance frequency from the practical range, the use of FRP for the driving force transmission shaft has been attracting attention. That is, the specific strength (strength / density) and specific rigidity (elastic modulus / density) of FRP are superior to the specific strength and specific rigidity of metals such as steel and aluminum, and the orientation angle of fibers is changed. Since the bending rigidity and the torsional rigidity can be freely changed by, it is possible to increase the resonance frequency or, conversely, decrease it while maintaining the torsional strength.

【0005】FRP製駆動力伝達用シャフトの場合、一
般にFRPの中空のパイプの両端には継手要素を設けな
ければならず、そのためにFRP製パイプと継手要素を
別々に準備し、後で何らかの方法で接合することにより
製造されてきた。そのような方法として、たとえば特開
昭64−49719号公報には、FRP製駆動力伝達用
シャフトのトルク伝達層の繊維の巻き付け角度が、±4
5°〜±10°(複号同順、ヘリカル巻)のようにシャ
フトの軸に対し浅い角度となった場合、接合部のシャフ
トの径方向および周方向に対する剛性が不足するため、
好ましくは絶対値で75°より大きな巻き付け角度でヘ
リカル巻の上から繊維を巻き付けて補強することが提案
されている。
In the case of an FRP driving force transmission shaft, generally, a joint element must be provided at both ends of a hollow pipe of the FRP, and therefore, the FRP pipe and the joint element are separately prepared, and some method will be used later. It has been manufactured by joining with. As such a method, for example, in Japanese Patent Laid-Open No. 64-49719, the winding angle of the fibers of the torque transmission layer of the FRP driving force transmission shaft is ± 4.
When the angle is shallow with respect to the axis of the shaft, such as 5 ° to ± 10 ° (double sign same order, helical winding), the rigidity of the joint portion in the radial direction and the circumferential direction of the shaft is insufficient,
It has been proposed to wind and reinforce the fibers from above the helical turns, preferably at an wrap angle greater than 75 ° absolute.

【0006】[0006]

【発明が解決しようとする課題】しかし、ヘリカル巻の
上から大きな巻き付け角度で補強繊維を巻き付けた場
合、シャフトのトルク伝達層と径方向補強層の熱膨脹率
が大きく異なるため、成形時の温度変化や自動車などに
取り付けて運転をした場合の環境の温度変化により、補
強層の径方向にクラックが発生しやすいという問題があ
った。したがって、機械的物性には問題はなくても、外
側からクラックが見えるため,商品価値がなくなるとい
う問題があった。クラックを隠蔽するため、表面塗装を
行う方法も考えられるが、十分ではなく、またコストが
増大するという問題があった。さらに、発生したクラッ
クから水やオイルが浸入して、長期的には樹脂の劣化や
継手要素の錆などが生じることも考えられる。本発明
は、シャフトの接合部における径方向補強層のクラック
の発生を抑制し、またクラックが発生しても、該クラッ
クを隠蔽し、またクラックから水やオイルが浸入するこ
とを防ぐことを目的とする繊維強化樹脂製駆動力伝達用
シャフトおよびその製造方法を提供するものである。
However, when the reinforcing fiber is wound from the top of the helical winding at a large winding angle, the thermal expansion coefficient of the torque transmission layer of the shaft and that of the radial direction reinforcing layer are greatly different from each other. There is a problem that cracks are likely to occur in the radial direction of the reinforcing layer due to temperature changes in the environment when it is mounted on a car or a vehicle and driven. Therefore, although there is no problem in mechanical properties, cracks can be seen from the outside, so that there is a problem that the commercial value is lost. A method of coating the surface to conceal the cracks can be considered, but it is not sufficient and there is a problem that the cost increases. Further, it is conceivable that water or oil may infiltrate from the generated cracks, resulting in deterioration of the resin and rust of the joint element in the long term. An object of the present invention is to suppress the occurrence of cracks in the radial reinforcing layer in the joint portion of the shaft, to conceal the cracks even if they occur, and to prevent water or oil from entering through the cracks. The present invention provides a shaft for driving force transmission made of fiber-reinforced resin and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、これらの
問題点を解決するため鋭意検討した結果、本発明に到達
したものである。すなわち、本発明は、継手要素と接合
される繊維強化樹脂製駆動力伝達用シャフトにおいて、
シャフトの接合部が、(1)シャフトの内側から外側に
向かって、トルク伝達層/径方向補強層/表層、または
(トルク伝達層/径方向補強層)の複数積層/表層から
なり、(2)トルク伝達層は、シャフト軸に対する繊維
の配向角度が0〜+60°、0〜−60°または0〜±
60°の繊維強化樹脂層であり、(3)径方向補強層
は、シャフト軸に対する繊維の配向角度が+75〜+9
0°、−75〜−90°または±75〜±90°(複号
同順)の繊維強化樹脂層であり、(4)表層は、シャフ
ト軸に対する繊維の配向角度が径方向補強層の繊維の配
向角度より絶対値で少なくとも20°小さい繊維強化樹
脂層、または樹脂含浸された強化繊維織布からなる繊維
強化樹脂層、であることを特徴とする繊維強化樹脂製駆
動力伝達用シャフトに関するものである。
The inventors of the present invention have reached the present invention as a result of extensive studies to solve these problems. That is, the present invention is a fiber-reinforced resin drive force transmitting shaft to be joined with a joint element,
The joint portion of the shaft is composed of (1) a plurality of laminated layers / surface layers of a torque transmission layer / a radial direction reinforcement layer / a surface layer, or a (torque transmission layer / a radial direction reinforcement layer) from the inside to the outside of the shaft, (2) ) In the torque transmission layer, the orientation angle of the fiber with respect to the shaft axis is 0 to + 60 °, 0 to -60 ° or 0 ±.
It is a fiber-reinforced resin layer of 60 °, and (3) the radial direction reinforcing layer has an orientation angle of the fiber with respect to the shaft axis of +75 to +9.
A fiber reinforced resin layer of 0 °, −75 to −90 ° or ± 75 to ± 90 ° (same order of compound numbers), and (4) the surface layer has a fiber orientation angle with respect to the shaft axis of the radial direction reinforcing layer. A fiber-reinforced resin layer made of a fiber-reinforced resin woven fabric impregnated with a resin or a fiber-reinforced resin layer impregnated with a resin having an absolute value smaller by 20 ° than the orientation angle of the fiber-reinforced resin. Is.

【0008】さらに、本発明は、前記の表層の外層部に
樹脂が含浸した、化学繊維織布および/または天然繊維
織布の層を設けてなることを特徴とする繊維強化樹脂製
駆動力伝達用シャフトに関するものである。
Further, according to the present invention, a driving force transmission made of a fiber reinforced resin is characterized in that the outer layer portion of the surface layer is provided with a layer of a chemical fiber woven fabric and / or a natural fiber woven fabric impregnated with a resin. It relates to a shaft for use.

【0009】また、本発明は、継手要素と接合される繊
維強化樹脂製駆動力伝達用シャフトの製造において、
(1)シャフトの接合部が、シャフトの内側から外側に
向かって、トルク伝達層/径方向補強層/表層という積
層構成または(トルク伝達層/径方向補強層)の複数積
層/表層という積層構成をとるように、(2)トルク伝
達層として、フィラメントワインディング法により、液
状の熱硬化性樹脂を含浸しつつ、巻き付け角度が0〜±
60°で繊維をヘリカル巻きでマンドレルに巻き付け、
またはシャフトの軸方向へ引き抜き成形法により液状の
熱硬化性樹脂を含浸させた繊維をマンドレル上に形成
し、またはシャフトの軸方向に対する繊維の角度が0〜
+60°もしくは0〜−60°のプリプレグまたは0〜
+60°、0〜−60°の交互積層のプリプレグをマン
ドレルに巻き付け、(3)径方向補強層として、フィラ
メントワインディング法により液状の熱硬化性樹脂を含
浸しつつ、巻き付け角度が±75〜±90°(複号同
順)で繊維をヘリカル巻きで巻き付け、またはシャフト
の軸方向に対する繊維の角度が+75〜+90°もしく
は−75〜−90°のプリプレグまたは+75〜+90
°、−75〜−90°の交互積層のプリプレグを巻き付
け、(4)表層として、フィラメントワインディング法
により、液状の熱硬化性樹脂を含浸しつつ、径方向補強
層の繊維の配向角度より絶対値で少なくとも20°小さ
い巻き付け角度で、繊維をヘリカル巻きで巻き付け、ま
たは径方向補強層の繊維の配向角度より絶対値で少なく
とも20°小さい配向角度の一方向プリプレグもしくは
交互積層のプリプレグを巻き付け、または液状の熱硬化
性樹脂を含浸しつつ、強化繊維からなる織布を巻き付
け、(5)樹脂を熱硬化することを特徴とする繊維強化
樹脂製駆動力伝達用シャフトの製造方法に関するもので
ある。
The present invention also provides a method for manufacturing a driving force transmitting shaft made of fiber reinforced resin, which is joined to a joint element,
(1) The joint portion of the shaft is a laminated structure of a torque transmission layer / a radial reinforcement layer / a surface layer or a plurality of (torque transmission layer / a radial reinforcement layer) / a laminated structure of a surface layer from the inner side to the outer side of the shaft. (2) As the torque transmission layer, the winding angle is 0 to ± while impregnating the liquid thermosetting resin by the filament winding method.
Wrap the fiber around the mandrel with a helical winding at 60 °,
Alternatively, fibers impregnated with a liquid thermosetting resin are formed on the mandrel by a drawing method in the axial direction of the shaft, or the angle of the fibers with respect to the axial direction of the shaft is 0 to 0.
+ 60 ° or 0-60 ° prepreg or 0
A prepreg of + 60 ° and 0 to -60 ° alternately laminated is wound around a mandrel, and (3) as a radial reinforcing layer, a winding angle is ± 75 to ± 90 while impregnating a liquid thermosetting resin by a filament winding method. The fiber is helically wound at a temperature of 90 degrees (the same number as the double number), or a prepreg or an angle of the fiber with respect to the axial direction of the shaft is +75 to + 90 ° or −75 to −90 ° or +75 to +90.
The prepregs, which are alternately laminated at an angle of −75 to −90 °, are wound, and (4) as a surface layer, while being impregnated with a liquid thermosetting resin by a filament winding method, an absolute value is obtained from the orientation angle of the fibers of the radial direction reinforcing layer. At a winding angle of at least 20 ° smaller than the helical winding of the fiber, or a unidirectional prepreg or an alternating prepreg having an orientation angle smaller than the orientation angle of the fiber of the radial reinforcing layer by at least 20 ° in absolute value, or in a liquid state. The present invention relates to a method for manufacturing a drive force transmitting shaft made of fiber reinforced resin, which is characterized in that a woven fabric made of reinforcing fibers is wound while impregnated with the thermosetting resin of (1), and the resin is thermally cured.

【0010】さらに、本発明は、前記の表層の外層部に
樹脂が含浸した、合成繊維織布、半合成繊維織布および
天然繊維織布からなる群から選ばれた少なくとも1種の
織布を1層以上巻き付け、樹脂を該織布の上に滲み出さ
せ、樹脂を熱硬化することを特徴とする繊維強化樹脂製
駆動力伝達用シャフトの製造方法に関するものである。
Further, according to the present invention, at least one kind of woven fabric selected from the group consisting of synthetic fiber woven fabric, semi-synthetic fiber woven fabric and natural fiber woven fabric, wherein the outer layer portion of the surface layer is impregnated with resin. The present invention relates to a method for producing a driving force transmitting shaft made of fiber reinforced resin, which comprises winding one or more layers, allowing the resin to ooze onto the woven fabric, and thermosetting the resin.

【0011】本発明の繊維強化樹脂製駆動力伝達用シャ
フトの接合部は、シャフトの内側から外側に向かって、
トルク伝達層、径方向補強層、表層から構成されている
ことが好ましい。トルク伝達層と径方向補強層の部分に
ついては、(トルク伝達層/径方向補強層)の複数積層
であってもよい。また、トルク伝達層と径方向補強層
が、フィラメントワインディング法により形成される場
合には、トルク伝達層の繊維の巻き付けと径方向補強層
の繊維の巻き付けを同時に行って、トルク伝達層と径方
向補強層が実質的に一体となっていてもよい。また、本
発明のシャフトにおいては、該接合部はシャフトの片端
にあっても両端にあってもよいが、両端にある方が好ま
しい。
The joint portion of the fiber-reinforced resin driving force transmitting shaft of the present invention is formed from the inside to the outside of the shaft.
It is preferably composed of a torque transmission layer, a radial reinforcing layer, and a surface layer. Regarding the portions of the torque transmission layer and the radial reinforcing layer, a plurality of (torque transmission layer / radial reinforcing layer) may be laminated. Further, when the torque transmission layer and the radial direction reinforcement layer are formed by the filament winding method, the fibers of the torque transmission layer and the radial direction reinforcement layer are simultaneously wound to form the torque transmission layer and the radial direction reinforcement layer. The reinforcing layer may be substantially integrated. Further, in the shaft of the present invention, the joint may be at one end or both ends of the shaft, but it is preferable that the joint is at both ends.

【0012】トルク伝達層とは、トルクの伝達を主とし
て担う層である。トルク伝達層は、シャフトの接合部だ
けでなく、シャフトの全体にわたって存在することが好
ましい。径方向補強層とは、継手要素をシャフトの接合
部に嵌入するときにシャフトの接合部の径方向への拡張
に抗して、周方向に繊維を配向させて接合部を補強する
ための層である。表層とは、接合部の径方向補強層に発
生するクラックを隠蔽するための層である。表層は、シ
ャフトの接合部だけでなく、シャフトの全体にわたって
存在してもよい。
The torque transmission layer is a layer mainly responsible for transmission of torque. It is preferable that the torque transmission layer exists not only at the joint portion of the shaft but also throughout the shaft. The radial reinforcing layer is a layer for reinforcing fibers by orienting fibers in the circumferential direction against the radial expansion of the joint portion of the shaft when the joint element is fitted in the joint portion of the shaft. Is. The surface layer is a layer for concealing cracks generated in the radial reinforcing layer at the joint. The surface layer may exist not only at the joints of the shaft but also throughout the shaft.

【0013】トルク伝達層は、シャフト軸に対する繊維
の配向角度が0〜+60°、0〜−60°または0°〜
±60°の範囲の繊維強化樹脂層が好ましい。トルク伝
達層は、具体的には、シャフト軸に対する繊維の巻き付
け角度が0〜±60°のヘリカル巻きの繊維強化樹脂
層、シャフトの軸方向への引き抜き成形による繊維強化
樹脂層、シャフト軸に対する繊維の角度が0〜+60°
もしくは0〜−60°の一方向繊維強化樹脂層および0
〜+60°、0〜−60°の交互積層の繊維強化樹脂層
からなる群から選ばれた少なくとも1種の繊維強化樹脂
層であることが好ましい。
In the torque transmission layer, the orientation angle of the fiber with respect to the shaft axis is 0 to + 60 °, 0 to -60 ° or 0 ° to
A fiber reinforced resin layer in the range of ± 60 ° is preferable. Specifically, the torque transmission layer is a helically wound fiber reinforced resin layer having a fiber winding angle of 0 to ± 60 ° with respect to the shaft axis, a fiber reinforced resin layer formed by drawing the shaft in the axial direction, and a fiber with respect to the shaft axis. Angle is 0 to + 60 °
Alternatively, a unidirectional fiber-reinforced resin layer of 0 to -60 ° and 0
It is preferably at least one kind of fiber-reinforced resin layer selected from the group consisting of alternately laminated fiber-reinforced resin layers of + 60 ° and 0--60 °.

【0014】好ましいトルク伝達層としては、シャフト
軸に対する繊維の巻き付け角度が0〜±60°のヘリカ
ル巻きの繊維強化樹脂層またはシャフトの軸方向への引
き抜き成形による繊維強化樹脂層が挙げられる。
The preferred torque transmission layer includes a helically wound fiber reinforced resin layer having a fiber winding angle of 0 to ± 60 ° with respect to the shaft axis, or a fiber reinforced resin layer formed by pultrusion in the axial direction of the shaft.

【0015】トルク伝達層の、シャフト軸に対する繊維
の配向角度は、高ねじりトルクの伝達のためには、シャ
フトの軸方向に対して±30°〜±60°(複号同順)
が好ましく、高共振周波数を狙うためには0°〜±30
°の範囲が好ましいが、要求特性に応じて繊維巻角は適
切な範囲を選択することができる。
The orientation angle of the fibers of the torque transmission layer with respect to the shaft axis is ± 30 ° to ± 60 ° with respect to the axial direction of the shaft for transmitting high torsional torque (same order of compound symbols).
Is preferable, and 0 ° to ± 30 in order to aim for a high resonance frequency.
The range of ° is preferable, but the fiber wrap angle can be selected in an appropriate range depending on the required characteristics.

【0016】径方向補強層は、シャフト軸に対する繊維
の巻き付け角度が±75〜±90°(複号同順)のヘリ
カル巻きの繊維強化樹脂層、またはシャフト軸に対する
繊維の角度が+75〜+90°もしくは−75〜−90
°の一方向繊維強化樹脂層、または+75〜+90°、
−75〜−90°の交互積層の繊維強化樹脂層が好まし
い。さらに好ましくは、径方向補強層は、シャフト軸に
対する繊維の巻き付け角度が±80〜±90°(複号同
順)のヘリカル巻きの繊維強化樹脂層、またはシャフト
軸に対する繊維の角度が+80〜+90°もしくは−8
0〜−90°の一方向繊維強化樹脂層、または+80〜
+90°、−80〜−90°の交互積層の繊維強化樹脂
層が好ましい。
The radial reinforcing layer is a helically wound fiber reinforced resin layer in which the winding angle of the fiber with respect to the shaft axis is ± 75 to ± 90 ° (same order of compound numbers), or the angle of the fiber with respect to the shaft axis is +75 to + 90 °. Or -75 to -90
Unidirectional fiber reinforced resin layer, or +75 to + 90 °,
A fiber-reinforced resin layer of -75 to -90 ° alternately laminated is preferable. More preferably, the radial reinforcing layer is a helically wound fiber reinforced resin layer having a fiber winding angle with respect to the shaft axis of ± 80 to ± 90 ° (same order of compound numbers), or a fiber angle with respect to the shaft axis of +80 to +90. ° or -8
0 to -90 ° unidirectional fiber reinforced resin layer, or +80 to
A fiber-reinforced resin layer of + 90 ° and alternate lamination of −80 to −90 ° is preferable.

【0017】表層は、繊維の配向角度が径方向補強層の
繊維の配向角度より絶対値で少なくとも20°小さい繊
維強化樹脂層、または樹脂含浸された強化繊維織布から
なる繊維強化樹脂層が好ましい。径方向補強層の繊維の
巻き付け角度より絶対値で20°未満小さい配向の繊維
強化樹脂層では、径方向補強層のクラックの隠蔽が不十
分であるので、好ましくない。
The surface layer is preferably a fiber-reinforced resin layer whose fiber orientation angle is at least 20 ° smaller in absolute value than the fiber orientation angle of the radial reinforcement layer, or a fiber-reinforced resin layer made of resin-impregnated reinforced fiber woven fabric. .. A fiber-reinforced resin layer having an orientation smaller than the winding angle of the fiber of the radial reinforcing layer by less than 20 ° in absolute value is not preferable because the hiding of cracks in the radial reinforcing layer is insufficient.

【0018】表層は、具体的には、径方向補強層の繊維
の配向角度より絶対値で少なくとも20°小さい巻き付
け角度のヘリカル巻きの繊維強化樹脂層、径方向補強層
の繊維の配向角度より絶対値で少なくとも20°小さい
配向角度の一方向繊維強化樹脂層もしくは交互積層繊維
強化樹脂層、および樹脂含浸された強化繊維織布からな
る繊維強化樹脂層からなる群から選ばれた少なくとも1
種の繊維強化樹脂層が好ましい。
Specifically, the surface layer is a helically wound fiber reinforced resin layer having a winding angle smaller by at least 20 ° in absolute value than the fiber orientation angle of the radial direction reinforcing layer, and an absolute value more than the fiber orientation angle of the radial direction reinforcing layer. At least 1 selected from the group consisting of unidirectional fiber-reinforced resin layers or alternating fiber-reinforced resin layers having an orientation angle smaller by at least 20 ° in value, and fiber-reinforced resin layers made of resin-impregnated reinforced fiber woven cloth
Seed fiber reinforced resin layers are preferred.

【0019】好ましい表層としては、径方向補強層の繊
維の巻き付け角度より絶対値で少なくとも20°小さい
巻き付け角度のヘリカル巻きの繊維強化樹脂層または樹
脂含浸された強化繊維織布からなる繊維強化樹脂層が挙
げられる。ここで、強化繊維織布としては、平織、目抜
き平織、綾織、繻子織、簾織などの織布が挙げられる。
表層は、本発明の効果を損なわない範囲で、薄い方がよ
As a preferable surface layer, a helically wound fiber reinforced resin layer or a fiber reinforced resin layer made of a resin-impregnated reinforced fiber woven cloth having a winding angle smaller than the winding angle of the fibers of the radial direction reinforcing layer by at least 20 ° in absolute value. Is mentioned. Here, examples of the reinforced fiber woven fabric include woven fabrics such as plain weave, plain plain weave, twill weave, satin weave, and blind weave.
The surface layer is preferably thin as long as the effect of the present invention is not impaired.

【0020】さらに、表層の外層に化学繊維または天然
繊維からなる織布を設けることが好ましい。該織布とし
ては、平織、目抜き平織、綾織、繻子織、簾織などの織
布が挙げられる。該織布を設けると、繊維強化樹脂内部
のボイドを減少させることができる。また、内部の樹脂
が該織布を通して外側に滲み出て表面をコートすること
ができる。したがって、表層の表面がより平滑となるの
で好ましい。
Furthermore, it is preferable to provide a woven fabric made of chemical fiber or natural fiber on the outer layer of the surface layer. Examples of the woven cloth include woven cloth such as plain woven cloth, plain plain woven cloth, twill woven cloth, satin woven cloth, and woven cloth. When the woven cloth is provided, voids inside the fiber reinforced resin can be reduced. Further, the resin inside can be exuded to the outside through the woven fabric to coat the surface. Therefore, the surface of the surface layer becomes smoother, which is preferable.

【0021】化学繊維からなる織布としては、合成繊
維、半合成繊維または再生繊維からなる織布が挙げられ
る。合成繊維からなる織布としては、ポリエステル系繊
維、ポリアミド系繊維、ポリビニルアルコール系繊維な
どからなる織布が挙げられる。半合成繊維からなる織布
としては、アセテート繊維などからなる織布が挙げられ
る。再生繊維からなる織布としては、ビスコースレーヨ
ン繊維、銅アンモニアレーヨン繊維などからなる織布が
挙げられる。天然繊維からなる織布としては、木綿、麻
などからなる織布が挙げられる。これらの中では、耐熱
性、耐候性、価格などの点から合成繊維からなる織布が
好ましく、ポリエステル系繊維またはポリアミド系繊維
からなる織布がさらに好ましい。
Examples of the woven cloth made of chemical fibers include woven cloth made of synthetic fibers, semi-synthetic fibers or recycled fibers. Examples of the woven fabric made of synthetic fibers include woven fabrics made of polyester fibers, polyamide fibers, polyvinyl alcohol fibers and the like. Examples of the woven cloth made of semi-synthetic fibers include woven cloth made of acetate fibers and the like. Examples of the woven fabric made of recycled fibers include woven fabric made of viscose rayon fiber, copper ammonia rayon fiber and the like. Examples of the woven fabric made of natural fibers include woven fabric made of cotton, hemp and the like. Among these, woven fabrics made of synthetic fibers are preferable, and woven fabrics made of polyester fibers or polyamide fibers are more preferable, from the viewpoints of heat resistance, weather resistance, price, and the like.

【0022】また、トルク伝達層の内側に、高ねじりト
ルクによる膨れを抑えるために、繊維の配向角度が高角
度、たとえば絶対値で75°以上、好ましくは絶対値で
80°以上である繊維強化樹脂層を設けることは、好ま
しい。
Further, in order to suppress swelling due to a high torsional torque inside the torque transmission layer, the fiber orientation angle is a high angle, for example, an absolute value of 75 ° or more, preferably an absolute value of 80 ° or more. It is preferable to provide a resin layer.

【0023】本発明に用いられる駆動力伝達用シャフト
の強化繊維材料は、高ねじりトルクの伝達のため、また
駆動力伝達用シャフトの回転時の共振周波数を高めるた
め、シャフトの接合部のトルク伝達層、径方向補強層、
表層においても接合部以外のパイプ部においても、弾性
率、強度の高い繊維が好ましい。
The reinforcing fiber material of the driving force transmitting shaft used in the present invention transmits torque at the joint portion of the shaft in order to transmit high torsional torque and to increase the resonance frequency of the driving force transmitting shaft during rotation. Layers, radial reinforcement layers,
Fibers having high elastic modulus and strength are preferable both in the surface layer and in the pipe portion other than the joint portion.

【0024】そのような繊維として主に炭素繊維、ガラ
ス繊維、 アラミド繊維およびセラミック繊維が挙げられ
る。また、これらの繊維は、必要に応じて2種以上組合
せて用いてもよい。比強度、比剛性が大きい繊維の方
が、軽量化の効果が顕著であるので好ましい。そのよう
な例として炭素繊維が挙げられるが、炭素繊維とガラス
繊維のハイブリット使用もコストの面で好ましい。繊維
の形態は特に限定されるものではなく、ロービング状、
織布状、プリプレグ状等で使用できる。
Such fibers mainly include carbon fibers, glass fibers, aramid fibers and ceramic fibers. Moreover, you may use these fibers in combination of 2 or more types as needed. Fibers having a large specific strength and specific rigidity are preferable because the effect of weight reduction is remarkable. Although carbon fiber is mentioned as such an example, the hybrid use of carbon fiber and glass fiber is also preferable in terms of cost. The form of the fiber is not particularly limited, roving,
It can be used in the form of woven cloth, prepreg, etc.

【0025】また、本発明に用いられる駆動力伝達用シ
ャフトのマトリックス樹脂は、シャフトのパイプ部にお
いても接合部においても、特に制限されるものではな
い。具体的には、エポキシ樹脂、不飽和ポリエステル樹
脂、 ビニルエステル樹脂、ウレタン樹脂、フェノール樹
脂、アルキッド樹脂、キシレン樹脂、メラミン樹脂、フ
ラン樹脂、シリコン樹脂等の熱硬化性樹脂、ポリエチレ
ン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポ
リメタクリレート樹脂、ABS樹脂、フッ素樹脂、ポリ
カーボネート樹脂、 ポリエステル樹脂、ポリアミド樹脂
(ナイロン6、6.6、6.10、6.11、6.12
など)、ポリフェニレンサルファイド樹脂、ポリスルフ
ォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテル
エーテルケトン樹脂、ポリフェニレンオキシド樹脂等の
熱可塑性樹脂を挙げることができる。
The matrix resin of the driving force transmitting shaft used in the present invention is not particularly limited in the pipe portion or the joint portion of the shaft. Specifically, epoxy resins, unsaturated polyester resins, vinyl ester resins, urethane resins, phenol resins, alkyd resins, xylene resins, melamine resins, furan resins, thermosetting resins such as silicone resins, polyethylene resins, polypropylene resins, Polyvinyl chloride resin, polymethacrylate resin, ABS resin, fluorine resin, polycarbonate resin, polyester resin, polyamide resin (nylon 6, 6.6, 6.10, 6.11, 6.12)
Etc.), thermoplastic resins such as polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, and polyphenylene oxide resin.

【0026】これらの中で、熱硬化性樹脂、特にエポキ
シ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂
が、取扱い性の面から好ましい。また、これらの樹脂
は、必要に応じて2種以上を組み合わせて用いてもよ
い。
Of these, thermosetting resins, particularly epoxy resins, unsaturated polyester resins, and vinyl ester resins are preferable from the viewpoint of handleability. Moreover, you may use these resins in combination of 2 or more types as needed.

【0027】本発明の、繊維強化樹脂製駆動力伝達用シ
ャフトの製造方法について説明する。特に、マトリック
ス樹脂として、熱硬化性樹脂を用いる場合を説明する。
継手要素と接合される繊維強化樹脂製駆動力伝達用シャ
フトの製造において、(1)シャフトの接合部が、シャ
フトの内側から外側に向かって、トルク伝達層/径方向
補強層/表層という積層構成または(トルク伝達層/径
方向補強層)の複数積層/表層という積層構成をとるよ
うに、(2)トルク伝達層として、フィラメントワイン
ディング法により、液状の熱硬化性樹脂を含浸しつつ、
巻き付け角度が0〜±60°で繊維をヘリカル巻きでマ
ンドレルに巻き付け、またはシャフトの軸方向へ引き抜
き成形法により液状の熱硬化性樹脂を含浸させた繊維を
マンドレル上に形成し、またはシャフトの軸方向に対す
る繊維の角度が0〜+60°もしくは0〜−60°のプ
リプレグまたは0〜+60°、0〜−60°の交互積層
のプリプレグをマンドレルに巻き付け、(3)径方向補
強層として、フィラメントワインディング法により液状
の熱硬化性樹脂を含浸しつつ、巻き付け角度が±75〜
±90°(複号同順)で繊維をヘリカル巻きで巻き付
け、またはシャフトの軸方向に対する繊維の角度が+7
5〜+90°もしくは−75〜−90°のプリプレグま
たは+75〜+90°、−75〜−90°の交互積層の
プリプレグを巻き付け、(4)表層として、フィラメン
トワインディング法により、液状の熱硬化性樹脂を含浸
しつつ、径方向補強層の繊維の配向角度より絶対値で少
なくとも20°小さい巻き付け角度で、繊維をヘリカル
巻きで巻き付け、または径方向補強層の繊維の配向角度
より絶対値で少なくとも20°小さい配向角度の一方向
プリプレグもしくは交互積層のプリプレグを巻き付
け、、または液状の熱硬化性樹脂を含浸しつつ、強化繊
維からなる織布を巻き付け、(5)樹脂を熱硬化するこ
とによって、繊維強化樹脂製駆動力伝達用シャフトを製
造する方法が好ましい。また、このときシャフトのパイ
プ部から接合部へかけての部分はなだらかにテーパをつ
けた方が好ましい。
A method of manufacturing the fiber-reinforced resin driving force transmitting shaft of the present invention will be described. In particular, the case where a thermosetting resin is used as the matrix resin will be described.
In the production of a fiber-reinforced resin drive force transmission shaft that is joined to a joint element, (1) a laminated structure in which the joint portion of the shaft is a torque transmission layer / a radial direction reinforcement layer / a surface layer from the inside of the shaft to the outside. Alternatively, (2) the torque transmission layer is impregnated with a liquid thermosetting resin by a filament winding method so as to have a laminated structure of a plurality of layers (torque transmission layer / radial reinforcement layer) / surface layer,
A fiber is wound on a mandrel by helical winding with a winding angle of 0 to ± 60 °, or a fiber impregnated with a liquid thermosetting resin is formed on the mandrel by a drawing method in the axial direction of the shaft, or the shaft of the shaft is formed. A prepreg having a fiber angle with respect to the direction of 0 to + 60 ° or 0 to -60 ° or a prepreg of alternating lamination of 0 to + 60 ° and 0 to -60 ° is wound around a mandrel, and (3) as a radial reinforcing layer, filament winding The wrapping angle is ± 75 ~ while impregnating the liquid thermosetting resin by the method
The fiber is helically wound at ± 90 ° (same order of compound numbers), or the fiber angle to the axial direction of the shaft is +7.
A prepreg of 5 to + 90 ° or -75 to -90 ° or a prepreg of alternate lamination of +75 to + 90 ° and -75 to -90 ° is wound, and (4) as a surface layer, a liquid thermosetting resin by a filament winding method. While being impregnated with the fiber, the fiber is helically wound at a winding angle smaller than the orientation angle of the fiber of the radial reinforcing layer by at least 20 ° in absolute value, or at least 20 ° in absolute value from the orientation angle of the fiber of the radial reinforcing layer. Fiber reinforced by winding a unidirectional prepreg with a small orientation angle or prepregs of alternating lamination, or by winding a woven fabric of reinforcing fibers while impregnating a liquid thermosetting resin, and (5) thermosetting the resin. A method of manufacturing a resin drive force transmission shaft is preferable. Further, at this time, it is preferable that the portion of the shaft from the pipe portion to the joint portion is gently tapered.

【0028】さらに、硬化前の表層の外層に化学繊維ま
たは天然繊維からなる織布を巻き付けることが好まし
い。該織布を巻き付けると、繊維強化樹脂内部のボイド
を減少させることができる。また、内部の樹脂が該織布
を通して外側に滲み出て表面をコートすることができ
る。したがって、表層の硬化後、表面がより平滑となる
ので、硬化前の表層の外層に該織布を巻き付けることは
好ましい。
Furthermore, it is preferable to wrap a woven cloth made of chemical fibers or natural fibers around the outer layer of the surface layer before curing. By winding the woven cloth, voids inside the fiber reinforced resin can be reduced. Further, the resin inside can be exuded to the outside through the woven fabric to coat the surface. Therefore, it is preferable to wind the woven fabric around the outer layer of the surface layer before curing, because the surface becomes smoother after the surface layer is cured.

【0029】また、マトリックス樹脂として、熱可塑性
樹脂を用いる場合も、公知の方法によって、本発明の繊
維強化樹脂製駆動力伝達用シャフトを製造することがで
きる。
Also, when a thermoplastic resin is used as the matrix resin, the fiber-reinforced resin driving force transmitting shaft of the present invention can be manufactured by a known method.

【0030】また、シャフトと継手要素との接合法とし
ては、セレーション接合、六角、八角などの多角形接合
などが挙げられる。ここで、セレーション接合とは、継
手要素とFRP製シャフトの接合部をそれぞれセレーシ
ョン形状にして接合したり、セレーション加工のされて
いる継手要素の接合部をFRP製シャフトの内壁に切り
込ませるようにして接合したりする方法などをいう。セ
レーション形状とは、接合部に形成される軸方向に伸び
る凹凸の筋を総称したものをいう。セレーション形状と
して具体的には、継手要素およびFRP製シャフトの接
合部の半径方向の断面の形状が三角、四角または台形と
いった山状の形状が挙げられる。
As a method of joining the shaft and the joint element, serration joining, polygonal joining such as hexagonal or octagonal joining, and the like can be mentioned. Here, the serration joint is formed by joining the joint portion of the joint element and the FRP shaft into a serration shape, or by cutting the joint portion of the joint element which is serrated into the inner wall of the FRP shaft. It is a method of joining and joining. The serration shape is a general term for the uneven streaks extending in the axial direction formed at the joint. Specific examples of the serration shape include a mountain shape such as a triangular shape, a square shape, or a trapezoidal shape in the cross section in the radial direction of the joint portion between the joint element and the FRP shaft.

【0031】[0031]

【実施例】炭素繊維(以下、CFということがある)と
しては、住化ハーキュレス社製商品名マグナマイトAS
−4W(12kf、弾性率24ton/mm2 、強度3
90kg/mm2 )を用いた。ガラス繊維(以下、GF
ということがある)としては、旭ファイバーグラス
(株)製R1150TKF08を用いた。エポキシ樹脂
としては、ビスフェノールAタイプエポキシ樹脂(住友
化学工業(株)製、商品名スミエポキシELA−12
8)に芳香族アミン硬化剤(ユニ・ロイヤル社製、商品
名TONOX60/40)を用いた。ポリエステル織布
としては、ジャルト(株)製ポリエステル絶縁テープW
T07−05を用いた。
[Example] As carbon fiber (hereinafter sometimes referred to as CF), Sumika Hercules Co., Ltd., trade name Magnamite AS
-4W (12 kf, elastic modulus 24 ton / mm 2 , strength 3
90 kg / mm 2 ) was used. Glass fiber (hereinafter GF
As a result, R1150TKF08 manufactured by Asahi Fiber Glass Co., Ltd. was used. As the epoxy resin, bisphenol A type epoxy resin (Sumitomo Chemical Co., Ltd., trade name Sumiepoxy ELA-12)
Aromatic amine curing agent (manufactured by Uni Royal Co., trade name TONOX 60/40) was used for 8). As polyester woven fabric, polyester insulation tape W manufactured by JALTO Co., Ltd.
T07-05 was used.

【0032】実施例1 外径70mm、長さ1500mmのステンレスパイプ製
マンドレルをフィラメントワインディング装置に装着し
た。シャフトと継手要素との接合については、両端にお
いて、八角形接合、すなわちシャフトの接合部の径方向
の断面の形状および継手要素の径方向の断面の形状を正
八角形とした。
Example 1 A mandrel made of stainless pipe having an outer diameter of 70 mm and a length of 1500 mm was mounted on a filament winding apparatus. Regarding the joint between the shaft and the joint element, at both ends, octagonal joint, that is, the shape of the radial cross section of the joint portion of the shaft and the shape of the radial cross section of the joint element are regular octagon.

【0033】次に、GFを液状のエポキシ樹脂に含浸し
つつその上からヘリカル巻き(繊維の巻付角度は±89
°、ただしこれを慣用上、以下90°巻きと表す)で、
巻付厚み0.4mmで巻き付けた。次に、CFを液状の
エポキシ樹脂に含浸しつつその上から、ヘリカル巻き
(繊維の巻付角度は±20°)で、巻付厚みは2.0m
mで巻き付けた。
Next, while GF was impregnated in the liquid epoxy resin, helical winding (fiber winding angle was ± 89
°, but this is conventionally referred to as 90 ° winding)
It was wound with a winding thickness of 0.4 mm. Next, while impregnating CF into the liquid epoxy resin, helically winding (fiber winding angle is ± 20 °) from above and winding thickness is 2.0 m.
wrapped around with m.

【0034】次に、シャフトの接合部については、GF
を液状のエポキシ樹脂に含浸しつつその上から、90°
巻きで、巻付厚み4.0mmで巻き付けた。さらに、シ
ャフト全体にわたって、CFを液状のエポキシ樹脂に含
浸しつつ、ヘリカル巻き(繊維の巻付角度は±20°)
で、巻付厚みは0.5mmで巻き付けた。最後に、ポリ
エステル織布をシャフト全体にわたって、一層巻き付け
た。なお、シャフトの接合部からパイプ部にかけて、な
だらかなテーパーを付けた。
Next, regarding the joint portion of the shaft, GF
While impregnating with liquid epoxy resin, 90 ° from above
It was wound with a winding thickness of 4.0 mm. Furthermore, helical impregnation (fiber winding angle is ± 20 °) while impregnating CF into liquid epoxy resin over the entire shaft
The winding thickness was 0.5 mm. Finally, the polyester woven fabric was wrapped once over the entire shaft. A gentle taper was applied from the joint of the shaft to the pipe.

【0035】このようにして得られた積層構成を、次の
ように表す。 パイプ部 内層 [GF90°/CF±20°/ポリエス
テル布] 外層 厚み 0.4mm /2.5mm/0.07mm 接合部 内層 [GF90°/CF±20°/GF90
°/CF±20°/ポリエステル布] 外層 厚み 0.4mm /2.0mm/4.0mm/0.5
mm/0.07mm また、繊維体積含有率は、いずれにおいても60±2%
になるように調整した。
The laminated structure thus obtained is represented as follows. Pipe part inner layer [GF90 ° / CF ± 20 ° / polyester cloth] Outer layer thickness 0.4 mm / 2.5 mm / 0.07 mm Joint part inner layer [GF90 ° / CF ± 20 ° / GF90
° / CF ± 20 ° / polyester cloth] Outer layer thickness 0.4 mm / 2.0 mm / 4.0 mm / 0.5
mm / 0.07mm Moreover, the fiber volume content is 60 ± 2% in any case.
I adjusted it to be.

【0036】次に、マンドレルごと熱硬化炉中に入れ、
回転させながら150℃で2時間硬化した。硬化後、マ
ンドレルから脱型し、両端部の不要部分を切断除去し、
第1図の符号1に示すような形状の、全長1100m
m、接合部の長さ50mm、テーパー部の長さ30mm
のFRP製シャフトを得た。次に、第1図の符号2で示
される継手要素をFRPシャフトの接合部にあてがい、
油圧によって圧入嵌合させ、第1図に示すような形状の
FRPシャフトを得た。得られたFRPシャフトの継手
要素圧入後のシャフト接合部の外観の観察および静ねじ
り試験を行った。それらの結果を表1に示す。
Next, the mandrel is placed in a thermosetting oven,
It was cured at 150 ° C. for 2 hours while rotating. After curing, remove from the mandrel, cut off unnecessary parts on both ends,
1100m in total length of the shape shown by reference numeral 1 in FIG.
m, joint length 50 mm, taper length 30 mm
The FRP shaft was obtained. Next, apply the joint element indicated by reference numeral 2 in FIG. 1 to the joint portion of the FRP shaft,
By press-fitting and fitting by hydraulic pressure, an FRP shaft having a shape as shown in FIG. 1 was obtained. The appearance and static torsion test of the shaft joint portion of the obtained FRP shaft after press fitting of the joint element were performed. The results are shown in Table 1.

【0037】実施例2 接合部の積層構成を表1に示すような構成に変更した以
外は、実施例1に準じてFRPシャフトを製造した。得
られたFRPシャフトの継手要素圧入後のシャフト接合
部の外観の観察および静ねじり試験を行った。それらの
結果を表1に示す。
Example 2 An FRP shaft was manufactured according to Example 1 except that the laminated structure of the joint portion was changed to that shown in Table 1. The appearance and static torsion test of the shaft joint portion of the obtained FRP shaft after press fitting of the joint element were carried out. The results are shown in Table 1.

【0038】実施例3 接合部においてCFのヘリカル巻き(繊維の巻付角度は
±20°)と、GFの90°巻きを同時に行ない、径方
向補強部材をヘリカル巻きの中に分散して巻き付けた。
それらの巻き付け量については、CFのヘリカル巻き部
分が単独では2.5mmの厚み、GFの90°巻きの部
分が単独では4.0mmの厚みとなるような量を巻き付
けた。上記以外は、実施例1に準じてFRPシャフトを
製造した。得られたFRPシャフトの継手要素圧入後の
シャフト接合部の外観の観察および静ねじり試験を行っ
た。それらの結果を表1に示す。
Example 3 Helical winding of CF (fiber winding angle is ± 20 °) and 90 ° of GF were simultaneously performed at the joint portion, and the radial reinforcing member was dispersed and wound in the helical winding. ..
Regarding the amount of winding, the helical winding portion of CF was 2.5 mm alone, and the 90 ° winding portion of GF was 4.0 mm alone. An FRP shaft was manufactured according to Example 1 except for the above. The appearance and static torsion test of the shaft joint portion of the obtained FRP shaft after press fitting of the joint element were carried out. The results are shown in Table 1.

【0039】実施例4 最外層にポリエステル織布を巻き付けない以外は、実施
例1に準じてFRPシャフトを製造した。得られたFR
Pシャフトの継手要素圧入後のシャフト接合部の外観の
観察および静ねじり試験を行った。それらの結果を表1
に示す。
Example 4 An FRP shaft was manufactured in the same manner as in Example 1, except that the outermost layer was not wrapped with a polyester woven cloth. FR obtained
The appearance of the shaft joint after press fitting of the joint element of the P shaft and the static torsion test were performed. The results are shown in Table 1.
Shown in.

【0040】比較例1 接合部の積層構成を表1に示すような構成に変更した以
外は、実施例1に準じてFRPシャフトを製造した。得
られたFRPシャフトの継手要素圧入後のシャフト接合
部の外観の観察および静ねじり試験を行った。それらの
結果を表1に示す。
Comparative Example 1 An FRP shaft was manufactured in accordance with Example 1 except that the laminated structure of the joint portion was changed to the structure shown in Table 1. The appearance and static torsion test of the shaft joint portion of the obtained FRP shaft after press fitting of the joint element were carried out. The results are shown in Table 1.

【0041】比較例2 接合部の積層構成を表1に示すような構成に変更した以
外は、実施例1に準じてFRPシャフトを製造した。得
られたFRPシャフトの継手要素圧入後のシャフト接合
部の外観の観察および静ねじり試験を行った。それらの
結果を表1に示す。
Comparative Example 2 An FRP shaft was manufactured in accordance with Example 1 except that the laminated structure of the joint portion was changed to the structure shown in Table 1. The appearance and static torsion test of the shaft joint portion of the obtained FRP shaft after press fitting of the joint element were carried out. The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明の繊維強化樹脂製駆動力伝達用シ
ャフトは、接合部の最外層に、言い換えれば径方向補強
層の上に表層が存在する。したがって、接合部の径方向
補強層のクラックの発生を抑制する。さらに、クラック
が補強層の径方向に発生しても、表層が外側に存在する
ので外観上クラックが見えないため,商品価値を失わな
い。また、クラックが補強層の径方向に発生しても、表
層が外側に存在するので水やオイルなどの侵入を防ぐこ
とができる。
The fiber-reinforced resin driving force transmitting shaft of the present invention has a surface layer on the outermost layer of the joint, in other words, on the radial direction reinforcing layer. Therefore, the generation of cracks in the radial reinforcing layer at the joint is suppressed. Furthermore, even if cracks occur in the radial direction of the reinforcing layer, the surface layer is on the outside, so the cracks are not visible in appearance, so the commercial value is not lost. Further, even if cracks occur in the radial direction of the reinforcing layer, the surface layer is on the outer side, so that intrusion of water, oil, etc. can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】継手要素を一体化した駆動力伝達用シャフトの
平面図。
FIG. 1 is a plan view of a drive force transmitting shaft that has a joint element integrated therein.

【図2】実施例1のFRPシャフトの一部断面図。(G
F90°(厚み0.4mm)およびポリエステル織布の
図示は省略した。)
FIG. 2 is a partial cross-sectional view of the FRP shaft according to the first embodiment. (G
Illustration of F90 ° (thickness 0.4 mm) and polyester woven fabric is omitted. )

【図3】比較例1のFRPシャフトの一部断面図。(G
F90°(厚み0.4mm)およびポリエステル織布の
図示は省略した。)
FIG. 3 is a partial cross-sectional view of an FRP shaft of Comparative Example 1. (G
Illustration of F90 ° (thickness 0.4 mm) and polyester woven fabric is omitted. )

【符号の説明】[Explanation of symbols]

1.FRP製駆動力伝達用シャフトのパイプ部 2.FRP製駆動力伝達用シャフトの接合部 3.継手要素 4.パイプ部のCF配向角度±20°の部分 5.接合部のCF配向角度±20°の部分(トルク伝達
層) 6.接合部のGF配向角度90°の部分(径方向補強
層) 7.接合部のCF配向角度±20°の部分(表層)
1. FRP drive force transmission shaft pipe 2. FRP driving force transmission shaft joint 3. Coupling element 4. 4. Portion of pipe with CF orientation angle of ± 20 ° Part of the CF orientation angle of the joint of ± 20 ° (torque transmission layer) 6. 6. GF orientation angle of 90 ° at the joint (radial reinforcing layer) 7. Part of the CF orientation angle of the joint ± 20 ° (surface layer)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 105:08 B29L 31:24 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // B29K 105: 08 B29L 31:24 4F

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】継手要素と接合される繊維強化樹脂製駆動
力伝達用シャフトにおいて、シャフトの接合部が、
(1)シャフトの内側から外側に向かって、トルク伝達
層/径方向補強層/表層、または(トルク伝達層/径方
向補強層)の複数積層/表層からなり、(2)トルク伝
達層は、シャフト軸に対する繊維の配向角度が0〜+6
0°、0〜−60°または0〜±60°の繊維強化樹脂
層であり、(3)径方向補強層は、シャフト軸に対する
繊維の配向角度が+75〜+90°、−75〜−90°
または±75〜±90°(複号同順)の繊維強化樹脂層
であり、(4)表層は、シャフト軸に対する繊維の配向
角度が径方向補強層の繊維の配向角度より絶対値で少な
くとも20°小さい繊維強化樹脂層、または樹脂含浸さ
れた強化繊維織布からなる繊維強化樹脂層、であること
を特徴とする繊維強化樹脂製駆動力伝達用シャフト。
1. In a fiber-reinforced resin drive force transmitting shaft that is joined to a joint element, the joint portion of the shaft is
(1) From the inner side to the outer side of the shaft, the torque transmission layer / the radial reinforcement layer / the surface layer, or the plurality of laminated layers / the surface layer of the (torque transmission layer / the radial reinforcement layer), and (2) the torque transmission layer, The fiber orientation angle with respect to the shaft axis is 0 to +6
The fiber reinforced resin layer is 0 °, 0 to −60 ° or 0 to ± 60 °, and (3) the radial direction reinforcement layer has an orientation angle of the fiber with respect to the shaft axis of +75 to + 90 °, −75 to −90 °.
Or ± 75 to ± 90 ° (same order of compound numbers), and in the surface layer (4), the orientation angle of the fiber with respect to the shaft axis is at least 20 in absolute value from the orientation angle of the fiber of the radial direction reinforcing layer. A shaft for driving force transmission made of fiber-reinforced resin, characterized in that it is a small fiber-reinforced resin layer or a fiber-reinforced resin layer made of resin-impregnated reinforced fiber woven cloth.
【請求項2】表層の外層部に樹脂が含浸した、化学繊維
織布および/または天然繊維織布の層を設けてなること
を特徴とする請求項1記載の繊維強化樹脂製駆動力伝達
用シャフト。
2. A fiber reinforced resin driving force transmission according to claim 1, wherein a layer of chemical fiber woven cloth and / or natural fiber woven cloth impregnated with resin is provided on the outer layer portion of the surface layer. shaft.
【請求項3】継手要素と接合される繊維強化樹脂製駆動
力伝達用シャフトの製造において、(1)シャフトの接
合部が、シャフトの内側から外側に向かって、トルク伝
達層/径方向補強層/表層という積層構成または(トル
ク伝達層/径方向補強層)の複数積層/表層という積層
構成をとるように、(2)トルク伝達層として、フィラ
メントワインディング法により、液状の熱硬化性樹脂を
含浸しつつ、巻き付け角度が0〜±60°で繊維をヘリ
カル巻きでマンドレルに巻き付け、またはシャフトの軸
方向へ引き抜き成形法により液状の熱硬化性樹脂を含浸
させた繊維をマンドレル上に形成し、またはシャフトの
軸方向に対する繊維の角度が0〜+60°もしくは0〜
−60°のプリプレグまたは0〜+60°、0〜−60
°の交互積層のプリプレグをマンドレルに巻き付け、
(3)径方向補強層として、フィラメントワインディン
グ法により液状の熱硬化性樹脂を含浸しつつ、巻き付け
角度が±75〜±90°(複号同順)で繊維をヘリカル
巻きで巻き付け、またはシャフトの軸方向に対する繊維
の角度が+75〜+90°もしくは−75〜−90°の
プリプレグまたは+75〜+90°、−75〜−90°
の交互積層のプリプレグを巻き付け、(4)表層とし
て、フィラメントワインディング法により、液状の熱硬
化性樹脂を含浸しつつ、径方向補強層の繊維の配向角度
より絶対値で少なくとも20°小さい巻き付け角度で、
繊維をヘリカル巻きで巻き付け、または径方向補強層の
繊維の配向角度より絶対値で少なくとも20°小さい配
向角度の一方向プリプレグもしくは交互積層のプリプレ
グを巻き付け、または液状の熱硬化性樹脂を含浸しつ
つ、強化繊維からなる織布を巻き付け、(5)樹脂を熱
硬化することを特徴とする請求項1記載の繊維強化樹脂
製駆動力伝達用シャフトの製造方法。
3. A manufacturing method of a fiber-reinforced resin drive force transmission shaft joined to a joint element, wherein (1) the joint portion of the shaft is a torque transmission layer / a radial reinforcement layer from the inside of the shaft to the outside thereof. In order to take a laminated structure of / surface layer or a plurality of laminated layers of (torque transmission layer / radial reinforcing layer) / surface layer, (2) the torque transmission layer is impregnated with a liquid thermosetting resin by a filament winding method. While the fiber is wound around the mandrel by helical winding with a winding angle of 0 to ± 60 °, or a fiber impregnated with a liquid thermosetting resin is formed on the mandrel by a drawing method in the axial direction of the shaft, or The angle of the fiber with respect to the axial direction of the shaft is 0 to + 60 ° or 0
-60 ° prepreg or 0 to + 60 °, 0 to -60
Wrap the prepreg of alternating layers of ° around the mandrel,
(3) As the radial reinforcing layer, while impregnating the liquid thermosetting resin by the filament winding method, the winding angle is ± 75 to ± 90 ° (double sign same order), the fiber is helically wound, or the shaft Prepreg in which the angle of the fiber with respect to the axial direction is +75 to + 90 ° or −75 to −90 ° or +75 to + 90 °, −75 to −90 °
(4) As a surface layer, while being impregnated with a liquid thermosetting resin by a filament winding method, at a winding angle smaller than the orientation angle of the fibers of the radial reinforcing layer by at least 20 ° in absolute value. ,
The fibers are wound by helical winding, or the unidirectional prepregs or the prepregs of the alternate lamination having an orientation angle smaller than the orientation angle of the fibers of the radial reinforcing layer by at least 20 ° are wound, or while being impregnated with a liquid thermosetting resin. The method for producing a driving force transmitting shaft made of fiber reinforced resin according to claim 1, wherein a woven fabric made of reinforcing fibers is wound, and (5) the resin is heat-cured.
【請求項4】表層の外層部に樹脂が含浸した、化学繊維
織布および/または天然繊維織布を1層以上巻き付け、
樹脂を該織布の上に滲み出させ、樹脂を熱硬化すること
を特徴とする請求項2記載の繊維強化樹脂製駆動力伝達
用シャフトの製造方法。
4. One or more layers of a chemical fiber woven fabric and / or a natural fiber woven fabric in which a resin is impregnated in the outer layer portion of the surface layer,
The method for producing a driving force transmitting shaft made of fiber reinforced resin according to claim 2, wherein the resin is exuded onto the woven fabric and the resin is thermally cured.
JP4111272A 1992-04-30 1992-04-30 Power transmitting shaft made of fiber reinforced resin and its manufacture Pending JPH05306709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111272A JPH05306709A (en) 1992-04-30 1992-04-30 Power transmitting shaft made of fiber reinforced resin and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111272A JPH05306709A (en) 1992-04-30 1992-04-30 Power transmitting shaft made of fiber reinforced resin and its manufacture

Publications (1)

Publication Number Publication Date
JPH05306709A true JPH05306709A (en) 1993-11-19

Family

ID=14557017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111272A Pending JPH05306709A (en) 1992-04-30 1992-04-30 Power transmitting shaft made of fiber reinforced resin and its manufacture

Country Status (1)

Country Link
JP (1) JPH05306709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080748A (en) * 2006-09-28 2008-04-10 Mitsubishi Rayon Co Ltd Laminate and bonnet for automobile using it
JP2009097717A (en) * 2007-09-25 2009-05-07 Toray Ind Inc Torque transmission shaft and its manufacturing method
JP2009184348A (en) * 2008-01-04 2009-08-20 Snecma Composite coupling having machining portion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080748A (en) * 2006-09-28 2008-04-10 Mitsubishi Rayon Co Ltd Laminate and bonnet for automobile using it
JP2009097717A (en) * 2007-09-25 2009-05-07 Toray Ind Inc Torque transmission shaft and its manufacturing method
JP2009184348A (en) * 2008-01-04 2009-08-20 Snecma Composite coupling having machining portion

Similar Documents

Publication Publication Date Title
US4605385A (en) Fibre reinforced plastics power transmission shaft
CA1130594A (en) Power transmission shaft
US4664644A (en) Fiber reinforced plastic drive shaft and method of manufacturing thereof
US5601493A (en) Drive shaft made of fiber reinforced plastics, and method for connecting pipe made of fire-reinforced plastics
US4238540A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
US9555588B2 (en) Insert for forming an end connection in a uni-axial composite material
US4259382A (en) Fiber reinforced composite shaft with metal connector sleeves secured by adhesive
US4187135A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
JP2805327B2 (en) FIBER REINFORCED COMPOSITE RESIN BAR AND MANUFACTURING METHOD THEREOF
EP0844072B1 (en) Large-sized columnar body of fiber-reinforced plastic
JPH06200951A (en) Joint method for driving force transmission shaft made of frp with pipe made of frp
JPH05306709A (en) Power transmitting shaft made of fiber reinforced resin and its manufacture
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JP2007271079A (en) Torque transmission shaft
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
JPS6041246B2 (en) Fiber-reinforced plastic propeller shaft
GB2406154A (en) Composite shaft with metal sleeve
EP0440461A1 (en) Drive shaft made of fiber-reinforced plastics
JPH0592488A (en) Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin
GB2154299A (en) A rack bar housing assembly
JP3183432B2 (en) Propeller shaft and method of manufacturing the same
CA3064091A1 (en) Hybrid metallic/composite tube design to transfer bending, axial, and flexural shear
JP3191528B2 (en) Propeller shaft and method of manufacturing the same
JPS6287332A (en) Manufacture of fiber reinforced plastic transmission shaft
CN111498077B (en) Marine thick wall composite construction stern axle