JPH06200951A - Joint method for driving force transmission shaft made of frp with pipe made of frp - Google Patents

Joint method for driving force transmission shaft made of frp with pipe made of frp

Info

Publication number
JPH06200951A
JPH06200951A JP5258556A JP25855693A JPH06200951A JP H06200951 A JPH06200951 A JP H06200951A JP 5258556 A JP5258556 A JP 5258556A JP 25855693 A JP25855693 A JP 25855693A JP H06200951 A JPH06200951 A JP H06200951A
Authority
JP
Japan
Prior art keywords
joint
fiber
joining
pipe
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5258556A
Other languages
Japanese (ja)
Inventor
Akiko Nakazono
明子 中園
Yoshifumi Nakanou
佳史 中納
Koji Yamatsuta
浩治 山蔦
Yasuo Shinohara
泰雄 篠原
Hitoshi Murotani
均 室谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5258556A priority Critical patent/JPH06200951A/en
Publication of JPH06200951A publication Critical patent/JPH06200951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To strengthen joint, prevent invasion of moisture, and improve durabil ity and torque transmission capacity, by pressingly fitting a combining element into a pipe made of FRP so as to join them together by spline engagement, and filling adhesive in the clearance of the engaged part. CONSTITUTION:Serration is worked on the joining face 6 of a combining element 2. Meanwhile, serration in not worked on the joining face 5 of a pipe 1 made of FRP. The inner diameter of the joining part 3 of the pipe 1 made of FRP is set smaller than the outer diameter of the joining part 4 of the combining element 2. By pressingly fitting the joining part 4 of the combining element 2 in the joining part 3 of the pipe 1 made of FRP pressure is applied between these respective joining faces 5, 6, and the teeth 7 of the serration on the joining face 6 of the combining element 2 are made to bite the joining face 5 of the pipe 1. At this time, adhesive is filled in the clearance between the respective joining faces 5, 6. Hereby, joint is strengthened, prevention of invasion of moisture, and improvement of durability and torque transmission capacity are attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化樹脂(以下、F
RPと称することがある)製駆動力伝達用シャフト、特
に自動車用、船舶用およびヘリコプター用に適した高ト
ルクの駆動力伝達用シャフトに関する。また、本発明は
FRP製パイプと結合部品の接合方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a fiber reinforced resin (hereinafter referred to as F
(Hereinafter sometimes referred to as RP) drive force transmission shaft, and particularly to a high torque drive force transmission shaft suitable for automobiles, ships and helicopters. The present invention also relates to a method for joining the FRP pipe and the joining component.

【0002】[0002]

【従来の技術】車両、船舶等の駆動力伝達用シャフトは
一般に金属製中実棒または金属製中空パイプの両端に金
属製の結合要素(継手要素とも称する)を接合したもの
が使用されている。近年、自動車の軽量化が注目される
ようになり、車体の金属をFRP化するだけでなく、構
造部材の軽量化も注目を集めている。その中で駆動力を
伝達するシャフトの軽量化はそれが回転部分であるため
軽量化のもたらす効果は大きく、FRP化が特に注目さ
れている。従来の鉄鋼製からFRP製にすることにより
重量が1/4〜1/2にも軽減するので、 各種の自動車
に搭載されるようになってきた。
2. Description of the Related Art Generally, a shaft for transmitting a driving force of a vehicle, a ship, etc. is formed by joining a metal coupling element (also referred to as a coupling element) to both ends of a metal solid rod or a metal hollow pipe. . In recent years, attention has been paid to the weight reduction of automobiles, and not only is the metal of the vehicle body made of FRP, but also the weight reduction of structural members has been attracting attention. Among them, the weight reduction of the shaft for transmitting the driving force has a great effect on the weight reduction because it is a rotating portion, and the FRP type has been particularly noted. Since the weight is reduced to 1/4 to 1/2 by changing from conventional steel to FRP, it has come to be mounted on various automobiles.

【0003】船舶においても快適な乗り心地を追求し
て、 共振周波数を実用域から外すために駆動力伝達用シ
ャフトのFRP化が注目されつつある。それはFRPが
比強度(強度/密度)と比剛性(弾性率/密度)が鋼や
アルミニウム等の金属に比べて優れていることと、繊維
の配向角度を変更することによって曲げ剛性とねじり剛
性を自由に変えることができるので、ねじりの強度を維
持したまま、共振周波数を高くしたり、また逆に低くし
たりすることが可能であることによる。
In the pursuit of comfortable riding comfort in ships as well, attention has been paid to the use of FRP for the drive force transmission shaft in order to remove the resonance frequency from the practical range. FRP is superior in specific strength (strength / density) and specific rigidity (elastic modulus / density) to metals such as steel and aluminum, and by changing the orientation angle of the fiber, bending rigidity and torsional rigidity can be improved. Since it can be freely changed, it is possible to increase the resonance frequency and, conversely, decrease it while maintaining the strength of the twist.

【0004】FRP製駆動力伝達用シャフトの場合、一
般にFRP製の中空のパイプの両端に結合要素を設けな
ければならず、結合要素の接合部にフィラメントワイン
ディング法によりFRP製パイプを成形し接合させる
か、FRP製パイプと結合要素を別々に準備し、後で何
等かの方法で接合することにより製造されている。例え
ば接着剤による接合が知られているが、高いねじりトル
クを伝達するには接着力が不十分であったり、経時的に
接着力が低下するなどの問題がある。また、接合部を正
多角形状にする方法も知られているが、加工に手間がか
かり、生産性が低いという問題がある。
In the case of an FRP driving force transmitting shaft, generally, a joining element must be provided at both ends of a hollow FRP pipe, and the joining portion of the joining element is molded and joined by the filament winding method. Alternatively, it is manufactured by separately preparing the FRP pipe and the coupling element and then joining them by some method. For example, bonding with an adhesive is known, but there are problems that the adhesive force is insufficient to transmit a high torsion torque, or the adhesive force decreases with time. Further, a method of forming a regular polygonal shape of the joint is also known, but there is a problem in that it takes time and labor for processing and productivity is low.

【0005】高いねじりトルクを伝達させるため、他に
も様々な方法が提案されている。実開昭53−9378
号公報、実開昭54−97541号公報、特開昭55−
159311号公報、特開昭54−132039号公
報、特公昭62−53373号公報には結合要素とFR
P製パイプの接合部をそれぞれセレーション加工して結
合したり、セレーション加工のされている結合要素の結
合部をFRP製パイプの内壁に切り込ませるようにして
結合するなどの方法が提案されている。
Various other methods have been proposed to transmit a high torsion torque. Actual exploitation 53-9378
JP-A-54-97541, JP-A-55-
No. 159311, JP-A-54-132039, and JP-B-62-53373 disclose a coupling element and FR.
Methods have been proposed in which the joints of the P pipes are joined by serration processing, or the joints of the serrated joint elements are cut into the inner wall of the FRP pipe to join them. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前者の
手法ではFRP製パイプの内壁にセレーションの歯を成
形時に形成することは困難である。機械加工によりセレ
ーションを形成すると強化繊維が切断されてしまうた
め、接合部の強度が低下してしまい、高いねじりトルク
を伝達することが不可能である。また、後者の場合も接
合部の強化繊維が結合要素の接合部のセレーションの歯
によって切断され易いため高いねじりトルクを伝達でき
ない等の問題があった。接合を確実なものとするために
接合部の外側に金属製のアウターリングをかぶせて補強
する方法も提案されているが軽量化の効果を減殺すると
いう問題点があった。
However, with the former method, it is difficult to form serration teeth on the inner wall of the FRP pipe during molding. When the serration is formed by machining, the reinforcing fiber is cut, so that the strength of the joint is reduced and it is impossible to transmit a high torsion torque. Also, in the latter case, there is a problem in that the reinforcing fiber of the joint portion is easily cut by the serration teeth of the joint portion of the coupling element and thus high torsion torque cannot be transmitted. In order to secure the joining, a method has been proposed in which a metal outer ring is put on the outside of the joining portion to reinforce the joining portion, but there is a problem that the effect of weight reduction is diminished.

【0007】[0007]

【課題を解決するための手段】本発明は、つぎに記す発
明からなる。 (1)繊維強化樹脂製パイプの接合部と、外面または内
面にセレーション加工が施された結合要素の接合部を、
接合してなる繊維強化樹脂製駆動力伝達用シャフトであ
って、該繊維強化樹脂製パイプの接合部と該結合要素の
接合部は、圧入嵌合により形成される繊維強化樹脂製パ
イプの接合部への結合要素のセレーションの噛み込みに
より接合され、しかも噛み込み部の間隙が接着剤により
充填されていることを特徴とする繊維強化樹脂製駆動力
伝達用シャフト。 (2)結合要素のセレーションが噛み込む繊維強化樹脂
製パイプの接合部の接合面に、円周方向弾性率が30G
Pa以下の保護層が積層されており、セレーションの噛
み込みは該保護層を介して形成される前記(1)記載の
繊維強化樹脂製駆動力伝達用シャフト。 (3)繊維強化樹脂製パイプの接合部の中間部、外面ま
たは内面に補強層を設け、補強された接合部の厚み(t
j)とパイプの厚み(tp)の比(tj/tp)が3以
下である前記(1)または(2)記載の繊維強化樹脂製
駆動力伝達用シャフト。 (4)繊維強化樹脂製パイプの端部に設けられた接合部
と結合部品の端部に設けられた接合部との接合におい
て、該繊維強化樹脂製パイプの接合部の内面または外面
にはセレーションの加工を施すことなく、該結合部品の
接合部の外面または内面にはセレーションの加工を施し
て、該繊維強化樹脂製パイプおよび結合部品の少なくと
も一方の接合部に接着剤を塗布して、該繊維強化樹脂製
パイプの接合部に該結合部品の接合部を、または該結合
部品の接合部に該繊維強化樹脂製パイプを圧入嵌合する
ことを特徴とする繊維強化樹脂製パイプと結合部品の接
合方法。 (5)繊維強化樹脂製パイプの接合部の接合面に円周方
向弾性率が30GPa以下の保護層が積層されている前
記(4)記載の繊維強化樹脂製パイプと結合部品の接合
方法。 (6)結合部品が駆動力伝達用シャフトの結合要素であ
る前記(4)または(5)記載の繊維強化樹脂製パイプ
と結合部品の接合方法。
The present invention comprises the following inventions. (1) A joint portion of a fiber reinforced resin pipe and a joint portion of a coupling element having an outer surface or an inner surface serrated.
In the shaft for driving force transmission made of fiber reinforced resin, which is joined, the joint portion of the fiber reinforced resin pipe and the joint portion of the coupling element are joint portions of the fiber reinforced resin pipe formed by press fitting. A driving force transmission shaft made of fiber reinforced resin, characterized in that the coupling element is joined by serration biting into the coupling element, and the gap between the biting parts is filled with an adhesive. (2) The elastic modulus in the circumferential direction is 30 G on the joint surface of the joint portion of the fiber-reinforced resin pipe into which the serration of the coupling element is bitten.
The fiber-reinforced resin driving force transmission shaft according to (1), in which a protective layer having a pressure of Pa or less is laminated, and the serrations are bitten through the protective layer. (3) A reinforcing layer is provided on the middle portion, outer surface, or inner surface of the joint portion of the fiber-reinforced resin pipe, and the thickness (t
The fiber-reinforced resin drive force transmission shaft according to (1) or (2), wherein the ratio (tj / tp) of j) to the thickness (tp) of the pipe is 3 or less. (4) When joining the joint portion provided at the end portion of the fiber reinforced resin pipe and the joint portion provided at the end portion of the joint component, serration is applied to the inner surface or the outer surface of the joint portion of the fiber reinforced resin pipe. Without performing the processing of (1), the outer surface or the inner surface of the joint portion of the joint component is subjected to serration processing, and an adhesive is applied to at least one joint portion of the fiber-reinforced resin pipe and joint component, A fiber-reinforced resin pipe and a connecting part are characterized in that the joint part of the fiber-reinforced resin pipe is press-fitted to the joint part or the joint part of the joint part is press-fitted with the fiber-reinforced resin pipe. Joining method. (5) The method for joining a fiber-reinforced resin pipe and a connecting component according to the above (4), wherein a protective layer having a circumferential elastic modulus of 30 GPa or less is laminated on the joint surface of the joint portion of the fiber-reinforced resin pipe. (6) The method for joining a fiber-reinforced resin pipe and a joining component according to the above (4) or (5), wherein the joining component is a joining element of a driving force transmitting shaft.

【0008】本発明による繊維強化樹脂製駆動力伝達用
シャフトの典型的な1例を図1および図2(図1の繊維
強化樹脂製駆動力伝達用シャフトのA−A断面図)に示
す。FRP製パイプ(1)は公知の手法、例えば、フィ
ラメントワインディング法やローリングテーブル法など
により成形、硬化して得られる。結合要素(2)の接合
面(6)には予め図4に示すようなセレーションの加工
を施す。FRP製パイプの接合面(5)にはセレーショ
ンの加工を施さず、FRP製パイプの接合部(3)の内
径は結合要素の接合部(4)の最外径(セレーションの
歯の先端から測った径)よりわずかに小さくし、荷重を
かけてFRP製パイプの接合部(3)に結合要素の接合
部(4)を圧入嵌合することにより、FRP製パイプの
接合面(5)および結合要素の接合面(6)の間に圧力
がかかり、結合要素の接合面(6)上のセレーションの
歯(7)がFRP製パイプの接合面(5)に噛み込むよ
うにして接合する。このとき、FRP製パイプの接合面
(5)と結合要素の接合面(6)の間に接着剤(8)を
充填し、両接合面間の間隙を埋める。このようにして得
られるセレーションの噛み込みの状態は図2の拡大図に
示されるとおりである。接着剤を用いることによって接
合が強固になり、かつ、接合部の間隙への水分の侵入を
防ぐことができるため、ねじり伝達性能が向上するとと
もに、耐蝕性が向上し、耐環境性、耐久性が改良され
る。ここで接着剤の充填の方法は特に限定されない。圧
入嵌合の前にFRP製パイプの接合面(5)および/ま
たは結合要素の接合面のセレーション(6)に接着剤を
塗布して接合する方法は、圧入嵌合に際して接着剤が潤
滑剤として機能し、圧入荷重(圧入力)を軽減するとと
もに、圧入時にFRP製パイプの接合面(5)がセレー
ションの歯(7)で損傷するのを防止するので特に好ま
しい方法である。また、別法として圧入嵌合した後に接
着剤を噛み合い部の間隙に充填することもできる。
A typical example of the fiber-reinforced resin driving force transmitting shaft according to the present invention is shown in FIGS. 1 and 2 (A-A sectional view of the fiber-reinforced resin driving force transmitting shaft in FIG. 1). The FRP pipe (1) is obtained by molding and curing by a known method such as a filament winding method or a rolling table method. The joining surface (6) of the coupling element (2) is previously subjected to serration processing as shown in FIG. The joint surface (5) of the FRP pipe is not subjected to serration processing, and the inner diameter of the joint portion (3) of the FRP pipe is the outermost diameter of the joint portion (4) of the coupling element (measured from the tip of the serration teeth). The joint surface (5) of the FRP pipe and the joint (4) by press-fitting the joint portion (4) of the coupling element into the joint portion (3) of the FRP pipe by applying a load. Pressure is applied between the joining surfaces (6) of the elements so that the serration teeth (7) on the joining surfaces (6) of the joining elements bite into the joining surfaces (5) of the FRP pipe to join them. At this time, an adhesive (8) is filled between the joint surface (5) of the FRP pipe and the joint surface (6) of the coupling element to fill the gap between both joint surfaces. The state of biting of the serration thus obtained is as shown in the enlarged view of FIG. The use of an adhesive strengthens the joint and prevents water from entering the gaps in the joint, which improves torsional transmission performance, corrosion resistance, environment resistance, and durability. Is improved. Here, the method of filling the adhesive is not particularly limited. Before press-fitting and fitting, an adhesive is applied to the joint surface (5) of the FRP pipe and / or the serrations (6) of the joint surface of the coupling element to join them. This is a particularly preferable method because it functions and reduces the press-fitting load (pressurizing input) and prevents the joint surface (5) of the FRP pipe from being damaged by the serration teeth (7) during press-fitting. Alternatively, it is also possible to fill the gap between the meshing parts with an adhesive after press-fitting and fitting.

【0009】また、図3に示すようにFRP製パイプの
接合面(5)に保護層(9)を設け、セレーションの歯
(7)が該保護層(9)を介してFRP製パイプの接合
面(5)に噛み込むようにすることが好ましい。かかる
保護層を設けることにより、接合を一層強固にすると同
時に、FRP製パイプの実質荷重を負担する部分に直接
セレーションの歯が当たって損傷することを防止するこ
とができる。
Further, as shown in FIG. 3, a protective layer (9) is provided on the joint surface (5) of the FRP pipe, and the serration teeth (7) join the FRP pipe through the protective layer (9). It is preferable to be caught in the surface (5). By providing such a protective layer, it is possible to further strengthen the joint and at the same time prevent the serration teeth from directly hitting and damaging the portion of the FRP pipe that bears the substantial load.

【0010】本発明に用いる強化繊維材料は駆動力伝達
用シャフトの回転時の共振周波数を高める必要から弾性
率、強度の高い繊維が望ましい。また、比強度、比剛性
が大きい繊維を用いる方が軽量化の効果が顕著であるの
で好ましい。そのような繊維の例として炭素繊維、ガラ
ス繊維、アラミド繊維、セラミック繊維等が挙げられ
る。これらの繊維を2種以上組合せて用いることもでき
る。なかでも炭素繊維が好ましく用いられ、炭素繊維と
ガラス繊維のハイブリッド使用も強度と経済性の観点か
ら好ましい。
The reinforcing fiber material used in the present invention is preferably a fiber having a high elastic modulus and strength because it is necessary to increase the resonance frequency of the driving force transmitting shaft during rotation. Further, it is preferable to use a fiber having a large specific strength and a large specific rigidity because the effect of weight reduction is remarkable. Examples of such fibers include carbon fibers, glass fibers, aramid fibers, ceramic fibers and the like. It is also possible to use two or more of these fibers in combination. Among them, carbon fiber is preferably used, and hybrid use of carbon fiber and glass fiber is also preferable from the viewpoint of strength and economy.

【0011】繊維の形態は特に限定されるものではな
く、ロービング状、織布状、プリプレグ状等で用いるこ
とができる。繊維の配向角度は高ねじりトルクの伝達の
ためには±30°〜±90°が好ましく、高共振周波数
をねらうためには0°〜±30°の範囲が好ましいが、
要求特性に応じて、繊維の配向角度は計算によって最適
な範囲内で選択することができる。
The form of the fiber is not particularly limited and may be roving, woven, prepreg or the like. The orientation angle of the fibers is preferably ± 30 ° to ± 90 ° for transmitting high torsional torque, and is preferably in the range of 0 ° to ± 30 ° for aiming for high resonance frequency.
Depending on the required properties, the orientation angle of the fibers can be selected within an optimum range by calculation.

【0012】繊維強化樹脂のマトリックス樹脂は特に限
定されるものではなく、エポキシ樹脂、不飽和ポリエス
テル樹脂、 ビニルエステル樹脂、ウレタン樹脂、フェノ
ール樹脂、アルキッド樹脂、イミド樹脂、ビスマレイミ
ド樹脂、キシレン樹脂、メラミン樹脂、フラン樹脂、シ
リコン樹脂等の熱硬化性樹脂、ポリエチレン樹脂、ポリ
プロピレン樹脂、ポリ塩化ビニール樹脂、ポリメチルメ
タクリレート樹脂、ABS樹脂、フッソ樹脂、ポリカー
ボネート樹脂、 ポリエステル樹脂、ポリアミド樹脂(ナ
イロン6, 6.6,6.10,6.11,6.12な
ど)、ポリフェニレンサルファイド樹脂、ポリスルフォ
ン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエ
ーテルケトン樹脂、ポリフェニレンオキシド樹脂等の熱
可塑性樹脂を挙げることができる。これらの中でエポキ
シ樹脂,不飽和ポリエステル樹脂、ビニルエステル樹脂
が性能、取扱い性の面から好ましい。さらに樹脂および
繊維は必要に応じてそれぞれ2種以上を組み合わせるこ
とができる。
The matrix resin of the fiber reinforced resin is not particularly limited, and includes epoxy resin, unsaturated polyester resin, vinyl ester resin, urethane resin, phenol resin, alkyd resin, imide resin, bismaleimide resin, xylene resin, melamine. Resin, furan resin, thermosetting resin such as silicone resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polymethylmethacrylate resin, ABS resin, fluorine resin, polycarbonate resin, polyester resin, polyamide resin (nylon 6, 6. 6, 6.10, 6.11, 6.12), a thermoplastic resin such as a polyphenylene sulfide resin, a polysulfone resin, a polyether sulfone resin, a polyether ether ketone resin, and a polyphenylene oxide resin. be able to. Of these, epoxy resin, unsaturated polyester resin and vinyl ester resin are preferable from the viewpoint of performance and handleability. Further, two or more kinds of resins and fibers can be combined as required.

【0013】FRP製パイプの繊維体積含有率は40%
以上75%以下、好ましくは50%以上70%以下であ
る。含有率が40%未満の時は、強化効果が低く、厚肉
のパイプにしなくてはならず、重量軽減の効果が少な
い。75%を越えると繊維同士の接触の確率が高くなり
ねじり強度が低くなる。
The fiber volume content of FRP pipe is 40%
Or more and 75% or less, preferably 50% or more and 70% or less. If the content is less than 40%, the strengthening effect is low, and a thick pipe must be used, so that the effect of reducing the weight is small. If it exceeds 75%, the probability of contact between fibers becomes high and the torsional strength becomes low.

【0014】FRP製パイプの成形方法は特に限定され
ず、公知の手法で製造できるが、成形効率と性能の面で
フィラメントワインディング法やローリングテーブル法
が好適である。
The method of molding the FRP pipe is not particularly limited and can be manufactured by a known method, but the filament winding method and rolling table method are preferable in terms of molding efficiency and performance.

【0015】本発明に用いる結合要素の材質は機械的物
性が優れ、加工が容易なことから金属が好ましい。特に
強度および剛性の面から鉄、アルミニウム、チタニウ
ム、マグネシウム、およびこれらの金属を主成分とする
合金が好ましい。
The material of the connecting element used in the present invention is preferably metal because of its excellent mechanical properties and easy processing. From the viewpoint of strength and rigidity, iron, aluminum, titanium, magnesium, and alloys containing these metals as main components are particularly preferable.

【0016】本発明において、結合部品または結合要素
の接合部に加工して付与されるセレーションとは、軸方
向または大略軸方向に伸びる山状の筋であって隣接して
全周面に設けられた、半径方向の断面形状が鋸歯状(以
下、セレーションの山状の筋を単にセレーションの歯と
いうことがある)のものをいう。加工方法や形状などに
より、ローレット、スプラインなどと呼ばれているもの
も含む。本発明において、セレーションの歯の形状(半
径方向断面の形状)は必ずしも限定されないが、好まし
い形状を例示すると、図4に示すような三角、四角また
は台形といった凸形の形状を挙げることができる。これ
らのセレーションを用いることにより強い結合力を得る
ことができる。
In the present invention, the serration applied to the joint portion of the joint component or joint element by machining is a mountain-shaped streak extending in the axial direction or substantially the axial direction, and is provided on the entire circumferential surface adjacent to each other. The radial cross-sectional shape is a serrated shape (hereinafter, the serrated mountain-like streaks may be simply referred to as serration teeth). Depending on the processing method and shape, what is called a knurl or spline is also included. In the present invention, the shape of the serration teeth (the shape of the radial cross section) is not necessarily limited, but a preferable shape is exemplified by a convex shape such as a triangle, a square or a trapezoid as shown in FIG. A strong binding force can be obtained by using these serrations.

【0017】セレーションの歯の高さ(図5においてh
で示す)は、要求される伝達トルクの大きさ、結合要素
やFRP製パイプの寸法、保護層の有無あるいは保護層
の材質や厚みにより必ずしも限定されないが、0.00
5〜10mm、好ましくは0.05〜3.0mmの範囲
で選ぶことができる。0.005mm未満の場合はFR
P製パイプへのセレーションの噛み込みが少なくなり、
セレーションの一つの山で保持するねじりトルクが大き
くなり過ぎ、またFRP製パイプの内層が破壊し易くな
る。セレーションの歯のピッチ(図5においてpで示
す)は、要求される伝達トルクの大きさ、結合要素やF
RP製パイプの寸法、保護層の有無あるいは保護層の材
質や厚みにより必ずしも限定されないが、0.05〜1
0mm、好ましくは0.1〜5.0mmの範囲で選ぶこ
とができる。
Height of serration teeth (h in FIG. 5)
Is not necessarily limited by the magnitude of the required transmission torque, the dimensions of the coupling element or the FRP pipe, the presence or absence of the protective layer, and the material and thickness of the protective layer.
It can be selected in the range of 5 to 10 mm, preferably 0.05 to 3.0 mm. FR is less than 0.005mm
Less bite of serration in P pipe,
The torsion torque held by one crest of serration becomes too large, and the inner layer of the FRP pipe is easily broken. The pitch of the serration teeth (indicated by p in FIG. 5) is determined by the magnitude of the required transmission torque, the coupling element and the F
Although it is not necessarily limited depending on the size of the RP pipe, the presence or absence of a protective layer, and the material and thickness of the protective layer, 0.05 to 1
It can be selected in the range of 0 mm, preferably 0.1 to 5.0 mm.

【0018】セレーションの歯は結合要素の軸に対して
平行であるのが好ましいが、結合要素の軸に対して15
°以下の範囲の角度を有していてもよい。
The serration teeth are preferably parallel to the axis of the coupling element, but 15 to the axis of the coupling element.
It may have an angle in the range of ° or less.

【0019】FRP製パイプの内側に接合要素を接合す
る場合、セレーションの歯の先端までの結合要素の接合
部の外径(df)はFRP製パイプの内径(dp、保護
層がある場合は保護層を含めての内径)よりやや大きく
する。このdf/dp比の最適値は、要求されるトルク
の伝達力、FRP製パイプの内径とその厚み、用いる保
護層の材質や厚みおよびセレーションの形状やその寸法
によって異なるので必ずしも限定されず、圧入嵌合時に
保護層を切断したり、FRP製パイプに損傷を与えずに
高いトルク伝達力を達成する範囲で適宜選択することが
できる。df/dp比は、好ましくは1.0002〜
1.020、より好ましくは1.001〜1.010の
範囲で選ぶことができるが、この範囲に限定されるもの
ではない。
When joining the joining element to the inside of the FRP pipe, the outer diameter (df) of the joining portion of the joining element up to the tips of the serration teeth is the inner diameter of the FRP pipe (dp, if there is a protective layer, it is protected). (Inner diameter including layers) The optimum value of the df / dp ratio is not necessarily limited because it depends on the required torque transmission force, the inner diameter and thickness of the FRP pipe, the material and thickness of the protective layer used, and the shape and size of the serration. It can be appropriately selected within a range in which the protective layer is cut at the time of fitting and a high torque transmission force is achieved without damaging the FRP pipe. The df / dp ratio is preferably 1.0002-
It can be selected in the range of 1.020, more preferably 1.001 to 1.010, but is not limited to this range.

【0020】例えば、FRP製パイプの内径が70mm
程度のものであるときに、この比が1.028位になる
と圧入嵌合時に大きな圧入力を必要とし、またFRP製
パイプの接合部に大きなひずみを生じるため低いトルク
で接合面の破壊が生じる。反対にこの比が1.0002
より小さい場合は、圧入は比較的容易になるがセレーシ
ョンのFRPシャフト部分への十分な噛み込みが起こら
ず、ねじりトルクに対する保持力が発生しにくく、トル
クの伝達能力は低い。
For example, the inner diameter of the FRP pipe is 70 mm
When the ratio is about 1.028, a large press force is required for press fitting and fitting, and a large strain is generated in the joint portion of the FRP pipe, so that the joint surface is broken with low torque. . On the contrary, this ratio is 1.0002.
When it is smaller, the press-fitting becomes relatively easy, but the serration is not sufficiently caught in the FRP shaft portion, the holding force against the torsion torque is hard to be generated, and the torque transmitting ability is low.

【0021】結合要素の接合部の先端の外面形状は滑ら
かにFRP製パイプの接合部に挿入できるように、FR
P製パイプの接合部の対応する内面形状より小さく、結
合要素の先端部から根元向きに滑らかに広がるテーパー
状をなしているのが好ましい。 例えば、結合要素の先
端部のテーパー角度は30°以下であることが好まし
い。また、逆にFRP製パイプ接合部の先端部から奥向
きに滑らかに狭まるテーパー状を成していてもよい。接
合部の長さは要求破壊トルクによっても異なるが、接着
剤や好ましくはさらに保護層を用いることにより短縮す
ることができる。接合部の長さは結合要素の大きさや要
求される破壊トルクにより必ずしも限定されないが、好
ましくは結合部の長さとFRPパイプの内径の比が0.
1〜1.5になるように選ばれる。例えば、内径が70
mmのFRP製パイプの場合には、結合部の長さは10
〜100mm程度が好ましい。
The outer shape of the tip of the joint portion of the coupling element is FR so that it can be smoothly inserted into the joint portion of the FRP pipe.
It is preferable that it has a taper shape that is smaller than the corresponding inner surface shape of the joint portion of the P pipe and that spreads smoothly from the tip portion of the coupling element toward the root. For example, the taper angle of the tip of the coupling element is preferably 30 ° or less. On the contrary, it may have a taper shape that narrows smoothly from the tip of the FRP pipe joint to the back. The length of the joint varies depending on the required breaking torque, but can be shortened by using an adhesive or preferably a protective layer. The length of the joint is not necessarily limited by the size of the coupling element and the required breaking torque, but preferably the ratio of the length of the joint to the inner diameter of the FRP pipe is 0.
It is selected to be 1 to 1.5. For example, the inner diameter is 70
In the case of mm FRP pipe, the joint length is 10
It is preferably about 100 mm.

【0022】本発明に用いられる接着剤は、液状かつそ
の粘度が室温で50〜10,000ポイズであることが
好ましい。接着剤を結合要素のセレーションの接合面お
よびFRP製パイプの接合面の少なくとも一方に塗布
し、圧入嵌合して接合する。接合後、必要に応じて接着
剤の硬化処理、例えば熱処理を行う。これにより接合が
より強固に達成され、伝達トルクが向上する。また、接
合部の噛み込み部に生じる空隙部分が充填され、水分の
侵入を防止し、耐環境性能、耐久性能が向上できる。さ
らにこの接着剤の使用は、結合要素をFRP製パイプに
圧入嵌合するとき潤滑剤としての効果を発揮し、圧入荷
重を軽減すると同時に、強度低下の原因となる圧入嵌合
によるFRP面やその保護層の損傷を防ぐことができ
る。接着剤の粘度が50ポイズより低いときは接合時に
接着剤が流れてしまい、また10,000ポイズより高
いときは粘性抵抗により結合要素を圧入嵌合することが
難しい。接着剤としては特に限定されるものではなく、
エポキシ系、ウレタン系、シアノアクリレート系、変性
アクリレート系、各種ゴム系、ポリエステル系、ポリイ
ミド系等の各種接着剤が用いられる。中でもエポキシ系
のものが接着性能、耐環境性、取扱い性等の面で好まし
い。好適な接着剤としては、例えば、エポキシパッチキ
ット(ハイソール社製)、テクノダイン HT18−X
(田岡化学(株)製)、ソニーボンド(ソニーケミカル
社製)などがあげられるが、これらに限定されるもので
はない。
The adhesive used in the present invention is preferably liquid and has a viscosity of 50 to 10,000 poise at room temperature. An adhesive is applied to at least one of the joining surfaces of the serrations of the joining element and the joining surface of the FRP pipe, and press-fitted to join them. After joining, the adhesive is subjected to a curing treatment, for example, a heat treatment, if necessary. As a result, the joining is achieved more firmly and the transmission torque is improved. In addition, the void portion generated in the biting portion of the joint portion is filled, the invasion of moisture can be prevented, and the environmental resistance performance and the durability performance can be improved. Further, the use of this adhesive exerts an effect as a lubricant when the coupling element is press-fitted to the FRP pipe, and reduces the press-fitting load, and at the same time, reduces the strength and causes the press-fitting of the FRP surface and its It is possible to prevent damage to the protective layer. When the viscosity of the adhesive is lower than 50 poise, the adhesive flows at the time of joining, and when it is higher than 10,000 poise, it is difficult to press-fit the coupling element due to viscous resistance. The adhesive is not particularly limited,
Various adhesives such as epoxy type, urethane type, cyanoacrylate type, modified acrylate type, various rubber type, polyester type and polyimide type adhesives are used. Among them, epoxy type is preferable in terms of adhesion performance, environment resistance, handleability and the like. Suitable adhesives include, for example, Epoxy Patch Kit (manufactured by Hysole Co., Ltd.), Technodyne HT18-X.
(Taoka Chemical Co., Ltd.), Sony Bond (manufactured by Sony Chemical Co., Ltd.), and the like, but not limited to these.

【0023】本発明の好ましい実施態様において用いら
れる保護層とは、FRP製パイプの接合部の接合面すな
わち噛み込み部の表面に存在する円周方向弾性率が4G
Pa以上30GPa以下の薄い層であって、FRP製パ
イプに直接セレーションの歯が当たってFRP製パイプ
の繊維が損傷することがないように設けられたものであ
る。4GPaより低い時は、セレーションの歯を圧入
後、回転力により容易に保護層が弾性変形を起こし、セ
レーションの歯が低回転力下でもズレる原因になる。3
0GPaよりも高い場合は、圧入時にセレーションの歯
の噛込が不十分だったり、保護層の損傷が起こり、結果
として回転力保持が難しくなる。保護層の材質としては
繊維強化樹脂が例示され、繊維強化樹脂層の形態で用い
ることができる。この保護層は、フィラメントワインデ
ィング法またはテープワインディング法によりFRP製
パイプを製作する時に、予めマンドレルに巻き回してお
くかFRP製パイプを成形後その内面に貼合しておくか
等してFRP製パイプと一体化されていることが特に好
ましい。また、この保護層は、FRP製パイプの接合部
付近のみの表面に設けてもよいし、製造工程の簡便さか
ら、パイプ全体に設けてもよい。
The protective layer used in the preferred embodiment of the present invention means that the elastic modulus in the circumferential direction existing on the joint surface of the joint portion of the FRP pipe, that is, the surface of the biting portion is 4G.
It is a thin layer of Pa or more and 30 GPa or less and is provided so that the serration teeth do not directly hit the FRP pipe and the fibers of the FRP pipe are not damaged. When it is lower than 4 GPa, the serration teeth are easily elastically deformed by the rotational force after the serration teeth are press-fitted, and the serration teeth are displaced even under a low rotational force. Three
If the pressure is higher than 0 GPa, the serration teeth are not sufficiently caught during the press-fitting or the protective layer is damaged, resulting in difficulty in maintaining the rotational force. A fiber reinforced resin is exemplified as the material of the protective layer, and it can be used in the form of the fiber reinforced resin layer. When the FRP pipe is manufactured by the filament winding method or the tape winding method, this protective layer may be wound around a mandrel in advance or may be pasted on the inner surface after molding the FRP pipe. It is particularly preferable that it is integrated with. The protective layer may be provided on the surface of the FRP pipe only in the vicinity of the joint, or may be provided on the entire pipe for the convenience of the manufacturing process.

【0024】保護層としての繊維強化樹脂層は、各種の
強化繊維の不織布または織物(織布)をマトリックス樹
脂に含浸させて硬化させた層である。強化繊維として
は、ガラス繊維、炭素繊維、アルミナ繊維などの無機繊
維、芳香族ポリアミド繊維などの有機繊維が例示され
る。具体的には例えば、サーフェイスマットと一般に呼
称されるガラス繊維等の不織布をマトリックス樹脂に含
浸させ薄い層状に形成したもの、スクリムと一般に呼称
されるガラス繊維等の薄い織物をマトリックス樹脂に含
浸させ薄い層に形成したもの等が用いられるが、これら
に限定されるものではない。
The fiber-reinforced resin layer as a protective layer is a layer obtained by impregnating a matrix resin with a non-woven fabric or woven fabric (woven fabric) of various reinforcing fibers and curing it. Examples of the reinforcing fiber include glass fiber, carbon fiber, inorganic fiber such as alumina fiber, and organic fiber such as aromatic polyamide fiber. Specifically, for example, a non-woven fabric such as glass fiber generally referred to as a surface mat is impregnated into a matrix resin to form a thin layer, and a thin fabric such as scrim generally referred to as glass fiber is impregnated into a matrix resin to be thin. For example, those formed in layers are used, but the present invention is not limited to these.

【0025】保護層に用いるマトリックス樹脂材料とし
ては、前記したFRP製パイプの成形に用いられるマト
リックス樹脂を例示することができる。保護層のマトリ
ックス樹脂として熱硬化性樹脂を用いた場合にはFRP
製パイプのマトリックス樹脂の硬化時に同時に硬化する
ことができる。
As the matrix resin material used for the protective layer, the matrix resin used for molding the FRP pipe can be exemplified. When a thermosetting resin is used as the matrix resin for the protective layer, FRP is used.
It can be simultaneously cured when the matrix resin of the pipe made is cured.

【0026】本発明にて用いる保護層としては、その周
方向弾性率(Ef)と結合要素の周方向弾性率(Em)
との比(Ef/Em)が約0.2以下であるものが好ま
しい。この特性範囲を選ぶことにより結合要素の接合部
のセレーションの歯が保護層に噛み込み易くなり、トル
クの伝達性能が一層向上する。
As the protective layer used in the present invention, the circumferential elastic modulus (Ef) and the circumferential elastic modulus (Em) of the coupling element are used.
It is preferable that the ratio (Ef / Em) is about 0.2 or less. By selecting this characteristic range, the serration teeth of the joint portion of the coupling element are easily engaged with the protective layer, and the torque transmission performance is further improved.

【0027】本発明にて用いる保護層の厚み(tf)お
よびセレーションの歯の高さ(図5においてhで示す)
は、要求される破壊トルクの大きさ、結合要素やFRP
製パイプの寸法、保護層の材質や厚みにより適宜選ばれ
るが、その比(tf/h)が0.5以上5以下であるこ
とが好ましい。比(tf/h)が0.5より小さい時
は、セレーションの歯の噛み込みが少なくなり、トルク
の伝達性能が悪くなったり、結合要素の圧入時にパイプ
の接続部のFRPの破壊が起こったりする。また比(t
f/h)が5より大きい場合は、成形時にマンドレル上
に保護層を巻き込むことが困難になる等、成形しにくい
といった問題が生じる。また、FRP製パイプに結合要
素のセレーションの歯の十分な噛み込みが生じず、トル
クの伝達性能が悪くなったり、結合要素を圧入嵌合する
際にセレーションの歯の噛み込みを生じさせるために非
常に大きな荷重を要することになる。
The thickness (tf) of the protective layer and the height of the serration teeth used in the present invention (indicated by h in FIG. 5).
Depends on the required breaking torque, coupling element and FRP
The ratio (tf / h) is preferably 0.5 or more and 5 or less, though it is appropriately selected depending on the dimensions of the pipe to be manufactured and the material and thickness of the protective layer. When the ratio (tf / h) is less than 0.5, the serration teeth are less likely to be bitten, the torque transmission performance deteriorates, and the FRP at the pipe connection part is destroyed when the coupling element is press-fitted. To do. Also, the ratio (t
If f / h) is larger than 5, it is difficult to form the protective layer on the mandrel during forming, which makes the forming difficult. In addition, since the serration teeth of the coupling element are not sufficiently caught in the FRP pipe, the torque transmission performance is deteriorated, and the serration teeth are caught when the coupling element is press-fitted. A very large load will be required.

【0028】結合要素とFRP製パイプの接合を強固に
し、かつ負荷ねじりトルクを確実に結合要素からFRP
製パイプに伝達するために、FRP製パイプの接合部に
補強層を持つことが好ましい。補強層とは、FRP製パ
イプのパイプ(直管)部の積層構成に対して、その外
側、内側あるいは中間に、接合部のみに余分に設けられ
た層をいう。補強層を設けることにより結合要素の圧入
嵌合時にセレーションの歯のFRP製パイプ部分への噛
み込みを容易にすることができ、ねじりトルクに対する
保持力を確実なものにすることができる。補強層の周方
向弾性率が高いほどその効果は大きい。補強層としては
特に限定されず、例えば、FRP製補強層や金属製補強
管などがあげられる。
The joint between the coupling element and the FRP pipe is strengthened, and the load torsion torque is surely secured from the coupling element to the FRP.
It is preferable to have a reinforcing layer at the joint of the FRP pipe for transmission to the pipe. The reinforcing layer refers to a layer that is provided only at the joint portion outside, inside, or in the middle of the laminated structure of the pipe (straight pipe) portion of the FRP pipe. By providing the reinforcing layer, it is possible to easily engage the serration teeth with the FRP pipe portion when the coupling element is press-fitted, and to secure the holding force against the torsion torque. The higher the circumferential elastic modulus of the reinforcing layer, the greater the effect. The reinforcing layer is not particularly limited, and examples thereof include a FRP reinforcing layer and a metal reinforcing tube.

【0029】強化繊維によるこの部分の補強は、金属製
の補強管を取りつける場合に比べて軽量化の点で多大な
利点がある。FRP製補強層はFRP製パイプと一体成
形することができる。補強用に用いる強化繊維は上記さ
れた繊維が好ましく、炭素繊維が弾性率の面から、ガラ
ス繊維がコストの面から好ましい。補強繊維の巻き付け
角度は±60〜90°が好ましい。±60°より小さい
角度で巻き付けた場合には、結合要素を圧入嵌合すると
きFRP製パイプの拡管力を抑えられず、セレーション
の歯の噛み込みが不十分になりやすく、ねじりトルクの
伝達が不十分なものとなりやすい。また、接合部とパイ
プ部の間には角度10°以下でなめらかに肉厚が変化す
るようにテーパー部を設けることが好ましく、トルク負
荷時のパイプ部とテーパー部あるいは接合部との境界部
での応力集中を緩和する効果があるが必ずしも必要では
ない。また、金属製補強管を用いてこの部分を補強する
こともできる。
Reinforcing this portion with the reinforcing fibers has a great advantage in terms of weight reduction as compared with the case where a metal reinforcing tube is attached. The FRP reinforcing layer can be integrally formed with the FRP pipe. The reinforcing fibers used for reinforcement are preferably the above-mentioned fibers, carbon fibers are preferred in terms of elastic modulus, and glass fibers are preferred in terms of cost. The winding angle of the reinforcing fiber is preferably ± 60 to 90 °. When wound at an angle smaller than ± 60 °, the expansion force of the FRP pipe cannot be suppressed when the coupling element is press-fitted, and the serration teeth are likely to be caught insufficiently, resulting in the transmission of torsional torque. It tends to be insufficient. Further, it is preferable to provide a taper portion between the joint portion and the pipe portion so that the wall thickness changes smoothly at an angle of 10 ° or less, and at the boundary portion between the pipe portion and the taper portion or the joint portion at the time of torque load. It has the effect of alleviating the stress concentration, but it is not always necessary. It is also possible to reinforce this part by using a metal reinforcing tube.

【0030】補強層の厚みは、FRPシャフトの接合部
の厚み(tj)のパイプ部の厚み、すなわちパイプ壁の
厚み(tp)に対する比(tj/tp)が3以下になる
ように選ばれることが好ましい。比(tj/tp)が3
以上のときは補強効果は飽和し、径の増大、重量の増加
等の不利益が大きくなる。
The thickness of the reinforcing layer is selected so that the ratio (tj / tp) of the thickness (tj) of the joint portion of the FRP shaft to the thickness of the pipe portion, that is, the thickness (tp) of the pipe wall is 3 or less. Is preferred. Ratio (tj / tp) is 3
In the above case, the reinforcing effect is saturated and the disadvantages such as an increase in diameter and an increase in weight increase.

【0031】上記した本発明のFRP製駆動力伝達用シ
ャフトの製造方法は、結合要素の接合部の外周面にセレ
ーションを形成しておき、FRP製パイプの該接合部の
内周面に前記結合要素の接合部を接着剤を用いて充填し
ながら圧入嵌合する方法を述べたが、その応用としての
他の実施態様として結合要素の接合部の内周面にセレー
ションを形成しておき、その中にFRP製パイプの接合
部を圧入嵌合する第2の方法を提案することができる。
この第2の方法を実施する場合、圧入嵌合時のFRP製
パイプの変形を防止するために、該FRP製パイプの接
合部の内周面に前記した補強層を用いることができる。
In the method of manufacturing the FRP driving force transmitting shaft of the present invention described above, serrations are formed on the outer peripheral surface of the joint portion of the coupling element, and the joint is formed on the inner peripheral surface of the joint portion of the FRP pipe. Although a method of press-fitting while fitting the joint portion of the element with an adhesive has been described, as another embodiment as its application, serration is formed on the inner peripheral surface of the joint portion of the coupling element, It is possible to propose a second method in which the joint portion of the FRP pipe is press-fitted therein.
When the second method is carried out, the above-mentioned reinforcing layer can be used on the inner peripheral surface of the joint portion of the FRP pipe in order to prevent the deformation of the FRP pipe during press fitting.

【0032】なお、上記した本発明のFRP製駆動力伝
達用シャフトの製造方法は、一般的にFRP製パイプと
各種の結合部品の接合方法に広く適用することができ、
FRP製パイプの用途の拡大に有用である。FRP製パ
イプと接合すべき該結合部品の接合部の接合面に上記し
たようなセレーションの加工を施して、FRP製パイプ
との嵌合を行い、噛み込み部に接着剤を使用することに
より、より小さな圧入力で強固な接合力を容易に達成す
ることができる。ここで、結合部品とはFRP製パイプ
と接合して用いる部品であり、特に限定されない。
The above-described method of manufacturing the FRP driving force transmitting shaft of the present invention can be widely applied to a method of joining an FRP pipe and various connecting parts in general.
It is useful for expanding the applications of FRP pipes. By performing the serration process as described above on the joint surface of the joint part to be joined to the FRP pipe, the fitting with the FRP pipe is performed, and the adhesive is used in the biting part, A strong joining force can be easily achieved with a smaller pressure input. Here, the coupling component is a component used by being joined to the FRP pipe, and is not particularly limited.

【0033】結合部品としては、例えば、FRP製パイ
プから製造されるFRP製ロールの端部を形成する部品
や軸受け等のFRP製パイプと他の部品の結合のために
用いられるジョイント類などがあげられる。該結合部品
の材質は、強固なセレーションが形成できるものであれ
ば、特に限定されない。例えば、鋼で代表される各種金
属類、アルミナで代表される各種セラミック類、高剛性
の各種樹脂類などをあげることができる。
Examples of the connecting parts include parts forming the end of the FRP roll manufactured from the FRP pipe and joints used for connecting the FRP pipe such as a bearing and other parts. To be The material of the joint component is not particularly limited as long as it can form strong serrations. For example, various metals typified by steel, various ceramics typified by alumina, and various resins having high rigidity can be cited.

【0034】セレーションの形状やその寸法は、目的や
製品の寸法に応じて適宜選択され決められる。以下に本
発明の実施例として、FRP製パイプと金属製ヨークの
接合により得られる駆動力伝達用シャフトについて詳述
する。高いトルク伝達力を示す点において、本発明は駆
動力伝達用シャフトの製造においてその特徴を発揮する
ことができるが、本発明の方法およびそれにより得られ
る製品はこれらの実施例に限定されず、広く応用が考え
られるものである。
The shape and size of the serration are appropriately selected and determined according to the purpose and the size of the product. As an embodiment of the present invention, a driving force transmitting shaft obtained by joining a FRP pipe and a metal yoke will be described in detail below. The present invention can exhibit its characteristics in the production of the driving force transmission shaft in that it exhibits a high torque transmission force, but the method of the present invention and the product obtained thereby are not limited to these examples, It can be widely applied.

【0035】[0035]

【実施例】【Example】

実施例1〜7 (1)FRP製パイプの製造例 外径70.0mm、長さ1500mmのステンレス製マ
ンドレルをフィラメントワインディング装置に装着し
た。保護層を用いる場合は、該マンドレルの中央100
0mmの両端それぞれ50mmの長さに表1に示される
各種の材料、厚みの保護層を巻き付けた。次に下記の要
領で炭素繊維およびガラス繊維を液状のエポキシ樹脂に
含浸しつつその上から巻き付けた。炭素繊維は住化ハー
キュレス社製、商品名:マグナマイトAS−4(汎用グ
レード炭素繊維:弾性率24ton/mm2 ,強度39
0kg/mm2 )を、ガラス繊維は、旭ファイバーグラ
ス(株)製、T−30ロービング(製品記号:R115
0F08)を、エポキシ樹脂としてはビスフェノールA
型エポキシ樹脂(商品名:スミエポキシELA−12
8、住友化学工業(株)製)に芳香族アミン硬化剤(商
品名:TONOX60/40、ユニ・ロイヤル社製)系
を用いた。
Examples 1 to 7 (1) Manufacturing example of FRP pipe A stainless steel mandrel having an outer diameter of 70.0 mm and a length of 1500 mm was attached to a filament winding device. If a protective layer is used, the mandrel center 100
Protective layers of various materials and thicknesses shown in Table 1 were wound around each of the lengths of 0 mm at a length of 50 mm. Next, the carbon fiber and the glass fiber were impregnated in a liquid epoxy resin and wound from above in the following manner. Carbon fiber manufactured by Sumika Hercules Co., Ltd., product name: Magnamite AS-4 (general-purpose carbon fiber: elastic modulus 24 ton / mm 2 , strength 39)
0 kg / to mm 2), glass fibers, Asahi Fiber Glass Co., Ltd., T-30 roving (product designation: R115
0F08) and bisphenol A as epoxy resin
Type epoxy resin (trade name: Sumiepoxy ELA-12
8. An aromatic amine curing agent (trade name: TONOX 60/40, manufactured by Uni Royal Co., Ltd.) was used for Sumitomo Chemical Co., Ltd.

【0036】まず前記のエポキシ樹脂を含浸させたガラ
ス繊維を、角度(パイプの軸に対して)±85〜90
°、厚み0.4mmで巻き付けた。ただし実施例2、実
施例5および後に述べる比較例2においては、この±8
5〜90°巻き層は形成しなかった。ついで、その上か
ら前記のエポキシ樹脂を含浸させた炭素繊維を角度±1
6°、厚み2.85mmで巻き付けた。このとき繊維体
積含有率は60±2%になるように調節した。両端の接
合部には表1に示される繊維、厚み、角度±85〜90
°で巻き付けて補強層(図1および図2の10)を形成
した。接合部とパイプ部の間には角度約6°で肉厚が変
化するテーパー部を設けた。次いで、マンドレルごと熱
硬化炉中に入れ、回転させながら150℃で2時間硬化
した。硬化後マンドレルから脱型し、両端部の不要部分
を切断除去し、両端に補強層を有する、長さ1100m
m、内径70.1〜70.2mmのFRP製パイプ(図
1および図3の1)を得た。
First, the glass fiber impregnated with the epoxy resin is set to an angle (with respect to the axis of the pipe) of ± 85 to 90.
Wound with a thickness of 0.4 mm. However, in Examples 2 and 5 and Comparative Example 2 described later, this ± 8
No 5-90 ° wound layer was formed. Then, the carbon fiber impregnated with the epoxy resin is angled ± 1 from above.
It was wound at 6 ° and a thickness of 2.85 mm. At this time, the fiber volume content was adjusted to 60 ± 2%. The fibers shown in Table 1 at the joints on both ends, the thickness, and the angle ± 85 to 90
The reinforcing layer (10 in FIGS. 1 and 2) was formed by wrapping at 0 °. A taper portion whose thickness changes at an angle of about 6 ° was provided between the joint portion and the pipe portion. Then, the mandrel was placed in a thermosetting oven and cured at 150 ° C. for 2 hours while rotating. After curing, remove from the mandrel, cut off unnecessary parts at both ends, and have reinforcing layers at both ends, length 1100m
An FRP pipe (1 in FIGS. 1 and 3) having an inner diameter of 70.1 to 70.2 mm was obtained.

【0037】(2)鋼製結合要素(ヨーク) 鋼製結合要素の接合部の外周面にセレーションとして、
JISB0951−1962−に規定されている平目の
モジュール(m)0.3を用いてセレーション(ローレ
ット目ともいう)を形成した。得られたセレーション
(ローレット目)は、その断面は頂角が約90°の二等
辺三角形の先端部が平坦になった形状をしており、図5
に示すような形状を呈していた。そのセレーションの歯
の高さ(h)は約0.2mm、ピッチ(p)は約0.9
28mmであった。セレーションの歯の先端までの接合
部の外径は70.4〜70.5mmであった。すなわ
ち、df/dp比は1.002〜1.006の範囲に入
っていた。
(2) Steel Connection Element (Yoke) As serrations on the outer peripheral surface of the joint of the steel connection element,
Serrations (also called knurls) were formed using the flat module (m) 0.3 specified in JIS B0951-1962. The cross section of the obtained serration (knurled eye) has an isosceles triangle with an apex angle of about 90 °, and the tip is flat.
It had a shape as shown in. The tooth height (h) of the serration is about 0.2 mm, and the pitch (p) is about 0.9.
It was 28 mm. The outer diameter of the joint to the tip of the serration tooth was 70.4 to 70.5 mm. That is, the df / dp ratio was in the range of 1.002 to 1.006.

【0038】(3)FRP製駆動力伝達用シャフトの製
作と評価 前記のとおり製作したFRP製パイプと結合要素を用い
て本発明のFRP製駆動力伝達用シャフトを製作した。
FRP製パイプの端部に、接着剤を塗布した鋼製の結合
要素のセレーションを有する接合部をあてがい、油圧に
よって圧入嵌合した。接合長さは、接合部のトルク伝達
能力を相対評価するために20mmとした。工業的に実
際のシャフトを製作するときは、目的に応じてより長い
接合長さを採用し、接合部の伝達トルクがパイプのねじ
り破壊トルクより高くなるようにすることもできる。得
られたFRP製駆動力伝達用シャフトの静ねじり試験を
行い、接合部のトルク伝達能力を評価した結果を表1に
記した。
(3) Production and evaluation of FRP driving force transmitting shaft The FRP driving force transmitting shaft of the present invention was produced using the FRP pipe and the connecting element produced as described above.
At the end of the FRP pipe, a joint having serrations of adhesive-bonded steel coupling elements was applied and press-fitted by hydraulic pressure. The joint length was set to 20 mm in order to relatively evaluate the torque transmission capability of the joint. When manufacturing an actual shaft industrially, it is possible to adopt a longer joint length according to the purpose so that the transmission torque of the joint is higher than the torsional breaking torque of the pipe. The static torsion test of the obtained FRP drive force transmission shaft was performed, and the results of evaluating the torque transmission capability of the joint are shown in Table 1.

【0039】なお、実施例に用いた接着剤、保護層は次
に示すものである。 ・接着剤:田岡化学工業(株)製:エポキシ系接着剤 商品名:テクノダイン HT−18X(室温で600ポ
イズ) ・保護層に用いられる不織布等 (1)ガラスサーフェイスマット:旭ファイバーグラス
(株)製 :サーフェイシングマット 製品記号:SM3600E(目付 30g/m2 ) (2)ガラススクリム:日東紡績(株)製:電気絶縁用
クロス 製品記号:WE 106 104(目付 25g/
2
The adhesives and protective layers used in the examples are shown below. -Adhesive: Taoka Chemical Industry Co., Ltd .: Epoxy adhesive Product name: Technodyne HT-18X (600 poise at room temperature) -Nonwoven fabric used for the protective layer (1) Glass surface mat: Asahi Fiber Glass ): Surface mats Product code: SM3600E (Basis weight 30 g / m 2 ) (2) Glass scrim: Nitto Boseki Co., Ltd .: Electrical insulation cloth Product code: WE 106 104 (Basis weight 25 g /
m 2 )

【0040】比較例1〜3 接合時に接着剤を用いないほかは前記の実施例と同様に
して、表2に示される各種の材料の保護層を用いたFR
P製駆動力伝達用シャフトを製作した。実施例と同様に
静ねじり試験を行い結果を表2に示した。
Comparative Examples 1 to 3 FR using protective layers of various materials shown in Table 2 in the same manner as in the above Examples except that no adhesive was used during bonding.
A drive force transmission shaft made of P was manufactured. The static torsion test was conducted in the same manner as in the example, and the results are shown in Table 2.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明を用いたFRP製駆動力伝達用シ
ャフトは、比較例に示すように接着剤を用いない単なる
セレーションの歯の噛み込みによる接合に比べて高いト
ルク伝達能力がある。接着剤を併用しない場合は、比較
例1〜3に示すように、結合要素接合時の圧入嵌合に大
きな荷重を要する上に、トルク伝達能力が劣る。また、
本発明のFRP製駆動力伝達用シャフトはFRP製パイ
プと結合要素の接合が強固であるため、円筒形状同士の
単なる摩擦接合や接着接合、正多角形状同士の接合に比
して、高いトルク伝達能力があり、また接着剤の充填効
果により、水分の接合部間隙への侵入が防止されるため
腐蝕しにくく、耐久性、耐環境性に優れている。また正
多角形状の接合部に比較して接合部の加工は容易であ
り、接合工程は極めて生産性に優れているという特徴を
有する。
The FRP drive force transmission shaft according to the present invention has a higher torque transmission capability than that obtained by simply engaging serration teeth without using an adhesive as shown in the comparative example. When the adhesive is not used together, as shown in Comparative Examples 1 to 3, a large load is required for press-fitting and fitting at the time of joining the coupling elements, and the torque transmission capability is poor. Also,
Since the FRP driving force transmission shaft of the present invention has a strong joint between the FRP pipe and the coupling element, the torque transmission is higher than that of simple friction joining or adhesive joining of cylindrical shapes, or joining of regular polygon shapes. It has the ability, and because of the filling effect of the adhesive, water is prevented from entering the joint gap, so it is less likely to corrode, and has excellent durability and environmental resistance. Further, compared to a regular polygonal joint, the joint is easier to process, and the joining process is extremely excellent in productivity.

【0044】実施例3、6、7のように円周方向弾性率
が30GPa以下の保護層を有し、該保護層の弾性率と
結合要素の弾性率の比Ef/Emが0.2以下で、保護
層の厚みとセレーションの歯の高さの比tf/hが5.
0以下で、接合部の厚みとパイプ部の厚みの比tj/t
pが3以下のものは、保護層を有しない実施例1、2、
4もしくは5に比べて特に優れている。
As in Examples 3, 6 and 7, a protective layer having a circumferential elastic modulus of 30 GPa or less was used, and the ratio Ef / Em of the elastic modulus of the protective layer and the elastic modulus of the coupling element was 0.2 or less. And the ratio tf / h of the thickness of the protective layer and the height of the serration tooth is 5.
When the ratio is 0 or less, the ratio of the thickness of the joint portion to the thickness of the pipe portion tj / t
When p is 3 or less, Examples 1 and 2 having no protective layer,
Especially superior to 4 or 5.

【0045】本発明は駆動力伝達用シャフトに限らず、
FRP製パイプと各種の結合部品、特に金属製の結合部
品の一般的な接合方法を提供するものであり、FRP製
パイプの軽量性と高い強度を活用する種々の機械・設備
の製造において有用なものである。
The present invention is not limited to the driving force transmitting shaft,
The present invention provides a general method for joining FRP pipes and various types of joint parts, particularly metal joint parts, and is useful in the manufacture of various machines and equipment that utilize the light weight and high strength of FRP pipes. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の繊維強化樹脂製駆動力伝達用シャフト
の1例の軸方向の部分断面図を表す。
FIG. 1 shows an axial partial sectional view of an example of a fiber-reinforced resin drive force transmitting shaft of the present invention.

【図2】図1の繊維強化樹脂製駆動力伝達用シャフトの
A−A断面(半径方向断面)の部分断面図を表す。円内
はセレーションの噛み込みによる接合の状態を表す接合
部の一部の拡大図。
FIG. 2 is a partial cross-sectional view taken along the line AA (radial cross section) of the fiber-reinforced resin driving force transmitting shaft of FIG. The inside of the circle is an enlarged view of a part of the joining portion showing the joining state by biting of the serration.

【図3】繊維強化樹脂製パイプの接合部の内面(接合
面)に保護層を施した本発明の繊維強化樹脂製駆動力伝
達用シャフトの1例の軸方向の部分断面図を表す。
FIG. 3 is a partial cross-sectional view in the axial direction of an example of a fiber-reinforced resin drive force transmitting shaft of the present invention in which a protective layer is provided on the inner surface (joint surface) of a fiber-reinforced resin pipe joint.

【図4】本発明にて用いられるセレーションの例を二種
類(AおよびB)表す。
FIG. 4 shows two types (A and B) of examples of serrations used in the present invention.

【図5】セレーションの歯の高さ(h)及びピッチ
(p)の説明図を表す。
FIG. 5 is an explanatory diagram of tooth height (h) and pitch (p) of serrations.

【符号の説明】[Explanation of symbols]

1.FRP製パイプ 2.結合要素(鋼製ヨーク) 3.FRP製パイプの接合部 4.結合要素の接合部 5.FRP製パイプの接合面 6.結合要素の接合面 7.セレーション 8.接着剤 9.保護層 10.補強層 1. FRP pipe 2. Coupling element (steel yoke) 3. FRP pipe joint 4. 4. Joints of coupling elements FRP pipe joint surface 6. Joining surface of connecting element 7. Serration 8. Adhesive 9. Protective layer 10. Reinforcement layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 105:06 B29L 31:06 4F (72)発明者 篠原 泰雄 茨城県つくば市北原6 住友化学工業株式 会社内 (72)発明者 室谷 均 茨城県つくば市北原6 住友化学工業株式 会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location // B29K 105: 06 B29L 31:06 4F (72) Inventor Yasuo Shinohara 6 Sumitomo Kitahara, Tsukuba, Ibaraki Prefecture Chemical Industry Co., Ltd. (72) Inventor Hitoshi Murotani 6, Kitahara, Tsukuba, Ibaraki Prefecture Sumitomo Chemical Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】繊維強化樹脂製パイプの接合部と、外面ま
たは内面にセレーション加工が施された結合要素の接合
部を、接合してなる繊維強化樹脂製駆動力伝達用シャフ
トであって、該繊維強化樹脂製パイプの接合部と該結合
要素の接合部は、圧入嵌合により形成される繊維強化樹
脂製パイプの接合部への結合要素のセレーションの噛み
込みにより接合され、しかも噛み込み部の間隙が接着剤
により充填されていることを特徴とする繊維強化樹脂製
駆動力伝達用シャフト。
1. A shaft for driving force transmission made of fiber reinforced resin, which is formed by joining a joint portion of a fiber reinforced resin pipe and a joint portion of a coupling element having an outer surface or an inner surface serrated. The joint portion of the fiber-reinforced resin pipe and the joint portion of the joint element are joined by the serration biting of the joint element into the joint portion of the fiber-reinforced resin pipe formed by press-fitting. A shaft for driving force transmission made of fiber reinforced resin, characterized in that the gap is filled with an adhesive.
【請求項2】結合要素のセレーションが噛み込む繊維強
化樹脂製パイプの接合部の接合面に、円周方向弾性率が
30GPa以下の保護層が積層されており、セレーショ
ンの噛み込みは該保護層を介して形成される請求項1記
載の繊維強化樹脂製駆動力伝達用シャフト。
2. A protective layer having a circumferential elastic modulus of 30 GPa or less is laminated on a joint surface of a joint portion of a fiber-reinforced resin pipe into which serrations of coupling elements are caught, and the serrations are caught in the protective layer. The fiber-reinforced resin drive force transmission shaft according to claim 1, which is formed through the shaft.
【請求項3】繊維強化樹脂製パイプの接合部の中間部、
外面または内面に補強層を設け、補強された接合部の厚
み(tj)とパイプの厚み(tp)の比(tj/tp)
が3以下である請求項1または2記載の繊維強化樹脂製
駆動力伝達用シャフト。
3. An intermediate portion of a joint portion of a fiber-reinforced resin pipe,
A reinforcing layer is provided on the outer surface or the inner surface, and the ratio (tj / tp) between the thickness (tj) of the reinforced joint and the thickness (tp) of the pipe.
The fiber-reinforced resin drive force transmitting shaft according to claim 1 or 2, wherein
【請求項4】繊維強化樹脂製パイプの端部に設けられた
接合部と結合部品の端部に設けられた接合部との接合に
おいて、該繊維強化樹脂製パイプの接合部の内面または
外面にはセレーションの加工を施すことなく、該結合部
品の接合部の外面または内面にはセレーションの加工を
施して、該繊維強化樹脂製パイプおよび結合部品の少な
くとも一方の接合部に接着剤を塗布して、該繊維強化樹
脂製パイプの接合部に該結合部品の接合部を、または該
結合部品の接合部に該繊維強化樹脂製パイプを圧入嵌合
することを特徴とする繊維強化樹脂製パイプと結合部品
の接合方法。
4. When joining a joint portion provided at an end portion of a fiber-reinforced resin pipe and a joint portion provided at an end portion of a joint component, the inner surface or the outer surface of the joint portion of the fiber-reinforced resin pipe is joined. Is subjected to serration processing without applying serration processing to the outer surface or inner surface of the joint portion of the joint component, and applying an adhesive to the joint portion of at least one of the fiber-reinforced resin pipe and joint component. A fiber-reinforced resin pipe, wherein the joint part of the fiber-reinforced resin pipe is press-fitted to the joint part of the joint part or the joint part of the joint part is press-fitted. How to join parts.
【請求項5】繊維強化樹脂製パイプの接合部の接合面に
円周方向弾性率が30GPa以下の保護層が積層されて
いる請求項4記載の繊維強化樹脂製パイプと結合部品の
接合方法。
5. The method for joining a fiber-reinforced resin pipe and a connecting component according to claim 4, wherein a protective layer having a circumferential elastic modulus of 30 GPa or less is laminated on the joint surface of the joint portion of the fiber-reinforced resin pipe.
【請求項6】結合部品が駆動力伝達用シャフトの結合要
素である請求項4または5記載の繊維強化樹脂製パイプ
と結合部品の接合方法。
6. The method for joining a fiber-reinforced resin pipe and a joining component according to claim 4, wherein the joining component is a joining element of a driving force transmitting shaft.
JP5258556A 1992-10-22 1993-10-15 Joint method for driving force transmission shaft made of frp with pipe made of frp Pending JPH06200951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5258556A JPH06200951A (en) 1992-10-22 1993-10-15 Joint method for driving force transmission shaft made of frp with pipe made of frp

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28422992 1992-10-22
JP4-284229 1992-10-22
JP5258556A JPH06200951A (en) 1992-10-22 1993-10-15 Joint method for driving force transmission shaft made of frp with pipe made of frp

Publications (1)

Publication Number Publication Date
JPH06200951A true JPH06200951A (en) 1994-07-19

Family

ID=26543726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5258556A Pending JPH06200951A (en) 1992-10-22 1993-10-15 Joint method for driving force transmission shaft made of frp with pipe made of frp

Country Status (1)

Country Link
JP (1) JPH06200951A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783240A (en) * 1993-09-13 1995-03-28 Toho Rayon Co Ltd Joint structure of frp(fiber reinforced plastic) shaft and joint, and joining method
JPH08105427A (en) * 1994-09-30 1996-04-23 Toray Ind Inc Propeller shaft and manufacture of it
EP0800007A3 (en) * 1996-04-06 1998-04-15 Daimler-Benz Aktiengesellschaft Transmission shaft comprising a reinforced plastic tube and a rigidly connected end coupling element
US6692365B2 (en) 2000-07-28 2004-02-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Propeller shaft and method for producing the same
US6883997B1 (en) * 1999-11-16 2005-04-26 Robert Bosch Gmbh Device for connecting a shaft to a ring
JP2006103017A (en) * 2004-10-01 2006-04-20 Showa Denko Kk Joining method of polyester pipe and adhesive therefor
WO2010076866A1 (en) * 2009-01-05 2010-07-08 Ntn株式会社 Housing for joint of tripod system
JP2014222069A (en) * 2013-05-13 2014-11-27 本田技研工業株式会社 Torque transfer device
JP2015100967A (en) * 2013-11-22 2015-06-04 株式会社ジェイテクト Method for manufacturing bar shaped component and bar shaped component
JP2016153671A (en) * 2015-02-20 2016-08-25 東レ株式会社 Propeller shaft
US9956987B2 (en) 2013-11-22 2018-05-01 Jtekt Corporation Manufacturing method of bar component and bar component
JP2019163823A (en) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 Power transmission shaft
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle
JP2020159534A (en) * 2019-03-28 2020-10-01 藤倉コンポジット株式会社 FRP composite molded product
US11525482B2 (en) * 2018-04-27 2022-12-13 Bayerische Motoren Werke Aktiengesellschaft Method for producing a shaft-hub connection, and motor vehicle shaft having such a connection

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783240A (en) * 1993-09-13 1995-03-28 Toho Rayon Co Ltd Joint structure of frp(fiber reinforced plastic) shaft and joint, and joining method
JPH08105427A (en) * 1994-09-30 1996-04-23 Toray Ind Inc Propeller shaft and manufacture of it
EP0800007A3 (en) * 1996-04-06 1998-04-15 Daimler-Benz Aktiengesellschaft Transmission shaft comprising a reinforced plastic tube and a rigidly connected end coupling element
US6883997B1 (en) * 1999-11-16 2005-04-26 Robert Bosch Gmbh Device for connecting a shaft to a ring
US6692365B2 (en) 2000-07-28 2004-02-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Propeller shaft and method for producing the same
JP2006103017A (en) * 2004-10-01 2006-04-20 Showa Denko Kk Joining method of polyester pipe and adhesive therefor
WO2010076866A1 (en) * 2009-01-05 2010-07-08 Ntn株式会社 Housing for joint of tripod system
JP2014222069A (en) * 2013-05-13 2014-11-27 本田技研工業株式会社 Torque transfer device
JP2015100967A (en) * 2013-11-22 2015-06-04 株式会社ジェイテクト Method for manufacturing bar shaped component and bar shaped component
US9956987B2 (en) 2013-11-22 2018-05-01 Jtekt Corporation Manufacturing method of bar component and bar component
JP2016153671A (en) * 2015-02-20 2016-08-25 東レ株式会社 Propeller shaft
JP2019163823A (en) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 Power transmission shaft
WO2019181204A1 (en) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 Power transmission shaft
US11525482B2 (en) * 2018-04-27 2022-12-13 Bayerische Motoren Werke Aktiengesellschaft Method for producing a shaft-hub connection, and motor vehicle shaft having such a connection
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle
JP2020159534A (en) * 2019-03-28 2020-10-01 藤倉コンポジット株式会社 FRP composite molded product

Similar Documents

Publication Publication Date Title
US5601493A (en) Drive shaft made of fiber reinforced plastics, and method for connecting pipe made of fire-reinforced plastics
AU642594B2 (en) Drive shaft made of fiber reinforced plastics, method for producing the same, and method for connecting pipe made of fiber reinforced plastics
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
US6409606B1 (en) Power transmission shaft
JPH06200951A (en) Joint method for driving force transmission shaft made of frp with pipe made of frp
US4664644A (en) Fiber reinforced plastic drive shaft and method of manufacturing thereof
US4238540A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
US4238539A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a knurl interlock
US7419435B2 (en) Composite torque tube captured end fitting
JPS6352251B2 (en)
KR20000006487A (en) Power transmission shaft
JPH0592488A (en) Drive force transmitting shaft made of fiber-reinforced resin, production thereof, and method for bonding pipe made of fiber-reinforced resin
JP2007271079A (en) Torque transmission shaft
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JP2620607B2 (en) Drive shaft made of fiber reinforced resin and method of manufacturing the same
JP3269287B2 (en) FRP cylinder and manufacturing method thereof
JPH04347006A (en) Fiber reinforced plastic driving shaft
EP0440461A1 (en) Drive shaft made of fiber-reinforced plastics
WO2010116883A1 (en) Intermediate shaft for drive shaft
JP2010083253A (en) Propeller shaft
JP3191234B2 (en) Joint structure and joining method between FRP shaft and joint
JP3183432B2 (en) Propeller shaft and method of manufacturing the same
JPH04301437A (en) Shaft made of fiber-reinforced resin for transmitting driving force
JPH0742974B2 (en) Manufacturing method of transmission shaft made of fiber reinforced plastic
JPH03254926A (en) Driving force transmission shaft made of fiber-reinforced resin