JPH0530646A - Method and apparatus for detecting ground fault section of distribution line - Google Patents

Method and apparatus for detecting ground fault section of distribution line

Info

Publication number
JPH0530646A
JPH0530646A JP18090691A JP18090691A JPH0530646A JP H0530646 A JPH0530646 A JP H0530646A JP 18090691 A JP18090691 A JP 18090691A JP 18090691 A JP18090691 A JP 18090691A JP H0530646 A JPH0530646 A JP H0530646A
Authority
JP
Japan
Prior art keywords
phase
ground fault
zero
distribution line
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18090691A
Other languages
Japanese (ja)
Inventor
Soji Nishimura
荘治 西村
Yoshio Kuroiwa
良雄 黒岩
Hiroshi Kumegawa
宏 久米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP18090691A priority Critical patent/JPH0530646A/en
Publication of JPH0530646A publication Critical patent/JPH0530646A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect ground fault section easily with no misjudgment by judging ground fault information based on zero-phase higher harmonic components. CONSTITUTION:Each phase current is detected at the measuring point located at the end of each section of a distribution line and zero-phase higher harmonic components I<(n)> is determined through filtering based on the respective phase currents thus decising a ground fault. Upon decision of ground fault, phase difference between a zero-phase current 10 and a basic wave component I0<(1)> is determined with reference to predetermined phase voltages Vab, V0, Va. Ground fault point can be detected readily from the distribution of the phase difference theta at each measuring point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配電線上の一定区間ご
とに設けた端末局において配電線の電流を測定すること
により、地絡情報及び方向地絡情報を検出して配電線の
地絡故障区間を検出することができる配電線の地絡故障
区間検出方法及び地絡故障区間検出装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects the ground fault information and the direction ground fault information by measuring the current of the distribution line at a terminal station provided for each fixed section on the distribution line to detect the ground fault of the distribution line. The present invention relates to a ground fault section detection method and a ground fault section detection apparatus for a distribution line capable of detecting a failure section.

【0002】[0002]

【従来の技術】配電線は、変電所から需要家までの間に
設置される電線路であり、一般に1つの変電所から多数
本の配電線が引き出される。各配電線には、変電所内に
設けられる送り出し用遮断器の他、変電所外において一
定間隔ごとに区分開閉器が設けられている。
2. Description of the Related Art A distribution line is an electric line installed between a substation and a consumer, and generally a large number of distribution lines are drawn from one substation. Each distribution line is provided with a breaker for sending out provided inside the substation, and a division switch outside the substation at regular intervals.

【0003】配電線の途中において地絡等の事故が起こ
ると、遮断器が開路され、それに応じて区分開閉器も開
路され、配電線が保護されるが、この場合、地絡故障の
原因究明をし地絡区間以外にすみやかに電力供給を行う
ために地絡故障区間がいずれにあるかを検出することが
重要である。そこで、従来においては、配電線の一定間
隔ごとに端末局(区分開閉器と同じ場所に設けてもよ
く、別の場所に設けてもよい。また、区分開閉器の数と
一致していなくてもよい)を設けていた。
When an accident such as a ground fault occurs in the middle of the distribution line, the circuit breaker is opened, and accordingly the section switch is also opened to protect the distribution line. In this case, the cause of the ground fault is investigated. Therefore, it is important to detect where the ground fault section is in order to supply power promptly other than the ground fault section. Therefore, in the past, the terminal station (may be provided at the same place as the division switch or at a different place at regular intervals of the distribution line. In addition, the number of the division switches does not match. Was good).

【0004】この端末局は、各相(a,b,c相)の電
流を測定する3つの電流センサと、各相電圧を測定する
3つの電圧センサとを有し、3つの電流センサから零相
電流I0 を算出し、3つの電圧センサから零相電圧V0
を算出し、「零相電流I0 及び零相電圧V0 が発生して
いることと、零相電流I0 と零相電圧V0 との位相差を
算出すること」により端末局内において地絡情報と方向
地絡情報とを判定して親局に送信し、親局は、変電所の
存在する方向に地絡を検出した端末局と負荷の存在する
方向に地絡を検出した端末局との間に位置する区間を地
絡故障区間であるとしていた。
This terminal station has three current sensors for measuring the current of each phase (a, b, c phases) and three voltage sensors for measuring the voltage of each phase. The phase current I0 is calculated, and the zero phase voltage V0 is calculated from the three voltage sensors.
And calculate the phase difference between the zero-phase current I0 and the zero-phase voltage V0 and the phase difference between the zero-phase current I0 and the zero-phase voltage V0. It determines the ground fault information and sends it to the master station, and the master station is located between the terminal station that detected the ground fault in the direction of the substation and the terminal station that detected the ground fault in the direction of the load. It was assumed that the section to do is a ground fault section.

【0005】[0005]

【発明が解決しようとする課題】前記地絡情報を判定す
る場合、基本波成分が大部分である零相電流そのものの
大きさを判定していたのであるが、地絡が発生しても、
基本波成分が大部分であるような地絡電流(零相電流)
が常に現れるとは限らない。というのは、ケーブル配電
線に生じる地絡故障のように故障点で絶縁破壊とその回
復を頻繁にくりかえすような地絡(間欠弧光地絡)で
は、地絡電流の高調波成分が増加し、基本波成分は相当
少なくなっている。したがって、従来のように、零相電
流(基本波成分)の大きさにより判定していたのでは、
地絡故障が発生しても基本波成分が少ないため適確な判
断がつきにくく誤判定につながる場合が多くあった。
When the ground fault information is determined, the magnitude of the zero-phase current itself, which is mostly the fundamental wave component, is determined. However, even if a ground fault occurs,
Ground-fault current (zero-phase current) with most of the fundamental wave component
Does not always appear. This is because in a ground fault (intermittent arc optical ground fault) that frequently repeats dielectric breakdown and its recovery at the failure point, such as a ground fault in a cable distribution line, the harmonic component of the ground fault current increases, The fundamental wave component is considerably reduced. Therefore, as in the past, if the determination was made based on the magnitude of the zero-phase current (fundamental wave component),
Even if a ground fault occurs, the fundamental wave component is small and it is difficult to make a proper judgment, which often leads to an erroneous judgment.

【0006】本発明の目的とするところは、従来と比べ
て、より確実に地絡判定をすることができ、かつ、地絡
が判定された場合には、地絡故障区間を容易に知ること
ができる配電線の地絡故障区間検出方法及び地絡故障区
間検出装置を提供することである。
An object of the present invention is to enable more reliable ground fault determination as compared with the conventional one, and to easily know a ground fault fault section when a ground fault is determined. It is an object of the present invention to provide a method of detecting a ground fault fault section and a ground fault fault section detection device for a distribution line.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1記載の配電線の地絡故障区間検出方法は、
配電線を複数区間に区分し、各区間の測定点において配
電線の各相電流を検出し、これらの検出電流に基づいて
零相電流を求め、その零相電流の高調波成分がしきい値
を超えた場合に、零相電流の基本波成分と、当該測定点
で得られる配電線のa,b,cいずれかの相の電圧、正
相電圧、逆相電圧若しくは零相電圧又は所定の2相間の
線間電圧との位相差を算出し、配電線に沿って各測定点
において算出された前記位相差の分布を求め、位相差が
ほぼ180°転換する測定点同士の間に存在する区間を
地絡故障区間として決定する方法である。
A method of detecting a ground fault section of a distribution line according to claim 1 for achieving the above object,
The distribution line is divided into multiple sections, the phase currents of the distribution line are detected at the measurement points in each section, the zero-phase current is determined based on these detected currents, and the harmonic component of the zero-phase current is the threshold value. When the voltage exceeds the fundamental wave component of the zero-phase current, the voltage of any of the phases a, b, and c of the distribution line obtained at the measurement point, the positive-phase voltage, the negative-phase voltage, the zero-phase voltage, or the predetermined voltage. The phase difference with the line voltage between the two phases is calculated, the distribution of the phase difference calculated at each measurement point along the distribution line is obtained, and the phase difference exists between the measurement points where the phase difference changes by approximately 180 °. This is a method of determining the section as a ground fault section.

【0008】請求項2記載の配電線の地絡故障区間検出
方法は、零相高調波成分の算出を、各相電流の高調波成
分の算出後、合算して行うようにした方法である。上記
の目的を達成するための請求項3記載の配電線の地絡故
障区間検出装置は、複数区間に区分された配電線の各区
間に端末局を配置し、各端末局には当該端末局で得られ
たデータを送信する送信手段が設けられ、さらに、前記
端末局からデータを受信するための親局を配置し、端末
局には次の手段(a) 〜(g) のうち手段(a) を、親局には
手段(g) を設け、他の手段(b) 〜(f) は端末局又は親局
のいずれかに設けたものである。(a) 各区間の測定点に
おいて配電線の各相電流を検出する電流センサ、(b) 電
流センサの検出電流に基づいて零相電流を求める零相電
流検出手段、(c) その零相電流の高調波成分を算出する
手段、(d) その零相電流の基本波成分を算出する手段、
(e) 前記(c) の手段により算出された零相高調波成分を
しきい値と比較し、しきい値を超えている場合に、地絡
故障のあることを判定する地絡判定手段、(f) 地絡判定
手段により地絡と判定された場合に、前記(d) の手段で
求められた零相電流の基本波成分と、当該測定点で得ら
れる配電線のa,b,cいずれかの相の電圧、正相電
圧、逆相電圧若しくは零相電圧又は所定の2相間の線間
電圧との位相差を算出する位相差算出手段、(g) 各端末
局の算出手段により検出された前記位相差のデータに含
まれる前記位相差の分布に基づいて、位相差がほぼ18
0°異なる端末局群を区別し、これら区別された端末局
群のうち互いに隣接する端末局の間に存在する区間を配
電線の地絡故障区間として決定する地絡故障区間決定手
段。
According to a second aspect of the present invention, there is provided a ground fault fault section detection method for a distribution line, wherein the zero-phase harmonic component is calculated and then summed after the harmonic components of the respective phase currents are calculated. A ground fault fault section detection device for a distribution line according to claim 3 for achieving the above object, wherein a terminal station is arranged in each section of the distribution line divided into a plurality of sections, and each terminal station has the terminal station concerned. A transmitting means for transmitting the data obtained in step (1) is further provided, and a master station for receiving the data from the terminal station is arranged, and the terminal station is provided with means (a) to (g) among the following means (a) to (g): The means (g) is provided in the parent station and the other means (b) to (f) are provided in either the terminal station or the parent station. (a) Current sensor that detects each phase current of the distribution line at the measurement point in each section, (b) Zero-phase current detection means that calculates the zero-phase current based on the current detected by the current sensor, (c) The zero-phase current Means for calculating the harmonic component of ,, (d) means for calculating the fundamental wave component of the zero-phase current,
(e) The zero-phase harmonic component calculated by the means of (c) is compared with a threshold value, and when the threshold value is exceeded, a ground fault determination means for determining that there is a ground fault, (f) When a ground fault is judged by the ground fault judging means, the fundamental wave component of the zero-phase current obtained by the means of (d) and a, b, c of the distribution line obtained at the measurement point Phase difference calculation means for calculating the phase difference between the voltage of any phase, the positive phase voltage, the negative phase voltage or the zero phase voltage or the line voltage between the predetermined two phases, (g) detected by the calculation means of each terminal station Based on the distribution of the phase difference included in the phase difference data thus obtained, the phase difference is approximately 18
A ground fault section determining unit that distinguishes terminal station groups that differ by 0 ° and determines a section existing between mutually adjacent terminal stations in the distinguished terminal station groups as a ground fault failure section of the distribution line.

【0009】請求項4記載の配電線の地絡故障区間検出
装置は、請求項2記載の方法により零相高調波成分を算
出する手段を有していることのほかは、請求項3の地絡
故障区間検出装置と同じ構成をとる。
The ground fault section detecting device for a distribution line according to claim 4 has means for calculating a zero-phase harmonic component by the method according to claim 2, and the ground fault according to claim 3 is also provided. It has the same configuration as the faulty fault section detection device.

【0010】[0010]

【作用】前記請求項1〜4記載の発明によれば、零相高
調波成分の変化を検出することにより配電線の地絡故障
を検出することができ、配電線に地絡故障が発生したと
きは、零相電流の基本波成分と、当該測定点で得られる
配電線のa,b,cいずれかの相の電圧、正相電圧、逆
相電圧若しくは零相電圧又は所定の2相間の線間電圧と
の位相差θが地絡故障点と端末局との位置関係によって
約180°逆転することを利用して、送電端の存在する
方向に地絡点を検出する端末局群と、送電端の存在する
方向と反対の方向に地絡点を検出する端末局群とを区別
し、これら区別された端末局のうち互いに隣接するもの
の間に位置する区間を配電線の地絡故障区間として決定
することができる。
According to the present invention, the ground fault of the distribution line can be detected by detecting the change of the zero-phase harmonic component, and the ground fault has occurred in the distribution line. In this case, the fundamental wave component of the zero-phase current and the voltage of any phase of a, b, or c of the distribution line obtained at the measurement point, the positive-phase voltage, the negative-phase voltage, or the zero-phase voltage, or between two predetermined phases A terminal station group that detects the ground fault point in the direction in which the power transmission end exists by utilizing the fact that the phase difference θ with the line voltage is reversed by about 180 ° depending on the positional relationship between the ground fault point and the terminal station. The terminal station group that detects a ground fault in the direction opposite to the direction in which the power transmission end exists is distinguished, and the section located between adjacent ones of these distinguished terminal stations is the ground fault fault section of the distribution line. Can be determined as

【0011】このことを詳細に説明する。図2は3相の
配電線を示す図であり、例えばa相において地絡故障
(地絡抵抗Rg)が発生しているとする。図3は、対称
座標法を用いたよく知られた等価回路を示している。図
3において、電源Ea は正相回路にのみ現れ、零相回
路、逆相回路には現れない。零相回路には中性点抵抗R
nが存在するが、この抵抗値は対地インピーダンスより
も十分大きく無限大としてもよい。地絡故障点から見た
電源側のインピーダンス及び地絡故障点から見た負荷側
のインピーダンスは、対地静電容量C1,C2 で決定され
る。地絡抵抗は等価的には3Rgとなり、等価地絡電流
(1/3)Igが流れる。この電流は、正相回路、逆相
回路においてはインピーダンスの小さい電源側を流れる
が、零相回路においては地絡故障点から見た電源側のイ
ンピーダンス及び地絡故障点から見た負荷側のインピー
ダンスに応じて地絡故障点で分流する。
This will be described in detail. FIG. 2 is a diagram showing a three-phase distribution line, and it is assumed that, for example, a ground fault (ground fault resistance Rg) occurs in the a phase. FIG. 3 shows a well-known equivalent circuit using the symmetric coordinate method. In FIG. 3, the power source Ea appears only in the positive phase circuit, and does not appear in the zero phase circuit and the negative phase circuit. Neutral resistance R in the zero-phase circuit
Although there is n, this resistance value may be sufficiently larger than the ground impedance and may be infinite. The impedance on the power supply side as seen from the ground fault point and the impedance on the load side as seen from the ground fault point are determined by the ground capacitances C1 and C2. The ground fault resistance is equivalently 3Rg, and the equivalent ground fault current (1/3) Ig flows. This current flows through the power source side with low impedance in the positive-phase circuit and negative-phase circuit, but in the zero-phase circuit the impedance on the power source side from the ground fault point and the load side impedance from the ground fault point. According to, the shunt is made at the ground fault point.

【0012】なお、地絡設定点の両側に存在する端末局
に設けられた電流センサをCT1,CT2 とする。地絡の
ない正常時においては、零相電流I0 は0、逆相電流I
2 は0であり、正相電流I1 は、 I1 =jωC2 Ea となる。
The current sensors provided at the terminal stations existing on both sides of the ground fault set point are CT1 and CT2. In a normal state with no ground fault, the zero-phase current I0 is 0 and the negative-phase current I
2 is 0, and the positive-phase current I1 is I1 = jωC2Ea.

【0013】地絡発生時においては、地絡点の零相電圧
V0 は、 V0 =−Ea/(1+3jωCRg) で表され、地絡電流は、 Ig=jωCEa/(1+3jωCRg) で表される。ここに、 C=C1 +C2 である。零相電流I0 、正相電流I1 及び逆相電流I2
は、電流センサCT1 で検出されるものは、 I0 =C1 Ig/3C (1) I1 =jωC2 Ea +Ig/3 I2 =Ig/3 であり、電流センサCT2 で検出されるものは、 I0 =−C2 Ig/3C (2) I1 =jωC2 Ea I2 =0 である。
When a ground fault occurs, the zero-phase voltage V0 at the ground fault point is represented by V0 = -Ea / (1 + 3jωCRg), and the ground fault current is represented by Ig = jωCEa / (1 + 3jωCRg). Where C = C1 + C2. Zero-phase current I0, positive-phase current I1 and negative-phase current I2
The one detected by the current sensor CT1 is: I0 = C1 Ig / 3C (1) I1 = jωC2 Ea + Ig / 3 I2 = Ig / 3, and the one detected by the current sensor CT2 is I0 = -C2 Ig / 3C (2) I1 = jωC2 Ea I2 = 0.

【0014】前記(1) 式と(2) 式から、地絡発生時に
は、電流センサCT1 とCT2 は、何らかの大きさの零
相電流を検出することになる。ここで、特定の次数nの
高調波成分(高調波成分を表すときには、添字(n) を付
す)に着目すると、電源Eaは基本波のみを供給するも
のであるから、 Ea(n) =0 とおいてもよい。逆に、地絡点は高調波発生源となる。
特に、ケーブル配電線に生じる地絡故障のように、故障
点で絶縁破壊とその回復を頻繁にくりかえすような地絡
(間欠孤光地絡)であるとき、地絡電流は針状波とな
り、多量の高周波成分が含まれる。したがって、高調波
成分に着目した等価回路は図1のようになる。
From the expressions (1) and (2), the current sensors CT1 and CT2 detect a zero-phase current of some magnitude when a ground fault occurs. Here, focusing on a harmonic component of a specific order n (when the harmonic component is represented, a subscript (n) is attached), since the power source Ea supplies only the fundamental wave, Ea (n) = 0 You can save it. On the contrary, the ground fault becomes a harmonic generation source.
In particular, when there is a ground fault (intermittent isolated ground fault) in which breakdown and recovery are frequently repeated at the fault point, such as a ground fault that occurs in a cable distribution line, the ground fault current becomes a needle wave, It contains a large amount of high frequency components. Therefore, an equivalent circuit focusing on the harmonic components is as shown in FIG.

【0015】図1において、地絡のない正常時において
は、零相高調波成分I0 (n) 、正相高調波成分I1
(n) 、逆相高調波成分I2 (n) は、電源に高調波成分
が含まれていないと、すべて0となる。地絡時には、零
相高調波成分I0 (n)、正相高調波成分I1 (n) 及び逆
相高調波成分I2 (n) は、電流センサCT1 で検出され
るものは、電源電圧の高調波成分Ea(n) =0であるか
ら、 I0 (n) =C1 Ig(n) /3C (3) I1 (n) =Ig(n) /3 I2 (n) =Ig(n) /3 であり、電流センサCT2 で検出されるものは、 I0 (n) =−C2 Ig(n) /3C (4) I1 (n) =0 I2 (n) =0 である。
In FIG. 1, the zero-phase harmonic component I0 (n) and the positive-phase harmonic component I1 are normal when there is no ground fault.
(n) and the anti-phase harmonic component I2 (n) are all 0 if the power source does not contain the harmonic component. When there is a ground fault, the zero-phase harmonic component I0 (n) , the positive-phase harmonic component I1 (n), and the negative-phase harmonic component I2 (n) are detected by the current sensor CT1 and are the harmonics of the power supply voltage. Since the component Ea (n) = 0, I0 (n) = C1 Ig (n) / 3C (3) I1 (n) = Ig (n) / 3I2 (n) = Ig (n) / 3 What is detected by the current sensor CT2 is I0 (n) =-C2Ig (n) / 3C (4) I1 (n) = 0 I2 (n) = 0.

【0016】前記(3) 式と(4) 式から、地絡時には、何
らかの大きさの零相高調波成分I0 (n) が現れることに
なる。そこで、この零相高調波成分I0 (n) の変化に着
目して、地絡の発生を検出すれば、高い感度で地絡を検
出することができる。また、地絡を検出した後は、前記
(1) 式と(2) 式から分かるように、地絡故障点と測定点
との位置関係によって、零相電流の位相が逆転すること
に着目する。すなわち、端末局T1と端末局T2とで共
通の位相を有する要素、例えば当該測定点で得られる配
電線のa,b,cいずれかの相の電圧、正相電圧、逆相
電圧若しくは零相電圧又は所定の2相間の線間電圧をと
って、それと零相電流の基本波成分との相対位相差を算
出し、親局に送信するようにすれば、親局には、各端末
局から受信されたデータに含まれる前記零相電流の基本
波成分との位相差の分布に基づいて、送電端の存在する
方向に地絡点を検出する端末局群と、送電端の存在する
方向と反対の方向に地絡点を検出する端末局群とを区別
できるので、これら区別された端末局のうち互いに隣接
するものの間に位置する区間を配電線の地絡故障区間と
して決定することができる。
From the equations (3) and (4), what is
Zero-phase harmonic component I0 of a certain magnitude (n)To appear
Become. Therefore, this zero-phase harmonic component I0(n)To change
If the occurrence of a ground fault is detected, the ground fault can be detected with high sensitivity.
Can be issued. Also, after detecting a ground fault,
As can be seen from Eqs. (1) and (2), ground fault points and measurement points
The phase of the zero-phase current is reversed depending on the positional relationship with
Pay attention to. That is, both the terminal station T1 and the terminal station T2
An element having a common phase, such as the distribution obtained at the measurement point
Voltage of any phase of wire a, b, c, positive phase voltage, negative phase
Voltage or zero-phase voltage or line voltage between two specified phases
Then, calculate the relative phase difference between it and the fundamental wave component of the zero-phase current.
If you send it to the master station and send it to the master station,
The basis of the zero-phase current contained in the data received from the station
Presence of the transmitting end based on the distribution of the phase difference with the wave component
There is a terminal station group that detects a ground fault in the direction and a power transmission end
Distinguish from terminal stations that detect ground faults in the opposite direction
Therefore, it is possible to
The section located between the two is called the ground fault section of the distribution line.
Can be decided.

【0017】[0017]

【実施例】以下実施例を示す添付図面によって詳細に説
明する。図4は、配電系統図であり、配電用変電所1に
はΔ−Δ結線の変圧器11が備えられており、変圧器1
1により6.6kVに降圧された電力が前記変電所1内
に設けられた遮断器3a,3b,・・・・を通して配電線4
a,4b,・・・・に供給される。配電線4a,4b,・・・・
には、需要家に対して電力を分配するためのY−Y結線
の変圧器5a1,5a2,・・・・,5b1,5b2,・・・・が接続さ
れ、各変圧器5a1,5a2,・・・・の近傍に端末局7a1,7
a2,・・・・,7b1,7b2,・・・・が設けられている。
Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments. FIG. 4 is a distribution system diagram. The distribution substation 1 is provided with a transformer 11 with a Δ-Δ connection.
The electric power stepped down to 6.6 kV by the electric power source 1 passes through the circuit breakers 3a, 3b, ...
a, 4b, ... Distribution lines 4a, 4b, ...
Are connected to transformers 5a1, 5a2, ..., 5b1, 5b2, ... With Y-Y connection for distributing electric power to consumers, and each transformer 5a1, 5a2 ,. ... near the terminal stations 7a1, 7
a2, ..., 7b1, 7b2 ,.

【0018】各端末局7a1,7a2,・・・・はすべて同じ構
成を有し、各相の電流を検出するCT1,CT2,CT3 か
ら取り出される各相電流情報と、変圧器5a1,5a2,・・
・・から取り出されるab相間の線間電圧情報(このab
相間の線間電圧は端末局の駆動電源用に利用されるもの
を流用するものであり、電圧センサは特に新しく設ける
必要はない)とに基づいて零相電流I0 、正相電流I1
、逆相電流I2 、零相電流I0 の高調波成分及び零相
電流I0 の基本波成分と線間電圧Vabとの位相差θ等を
算出し、地絡、短絡又は断線の判定を行う演算処理部7
1と、演算処理部71によって得られた判定結果を4ビ
ットのデータにして親局9(図8参照)に送信する送信
部72とを備えている。
Each of the terminal stations 7a1, 7a2, ... Has the same configuration, and each phase current information extracted from CT1, CT2, CT3 for detecting the current of each phase and the transformers 5a1, 5a2 ,.・
.. Information on line voltage between phases ab extracted from
The line voltage between the phases is the one used for the driving power source of the terminal station, and it is not necessary to newly install the voltage sensor).
, Calculation processing for calculating the phase difference θ between the line voltage Vab and the harmonic component of the negative phase current I2, the harmonic component of the zero phase current I0 and the fundamental wave component of the zero phase current I0, and determining the ground fault, short circuit or disconnection Part 7
1 and a transmission unit 72 that transmits the determination result obtained by the arithmetic processing unit 71 to the master station 9 (see FIG. 8) as 4-bit data.

【0019】演算処理部71は、図5に示すように、零
相電流の値を算出する加算回路716と、a相電流Ia の
値をサンプリングするサンプルホールド回路711 と、b
相電流Ib の値をサンプリングするサンプルホールド回
路712 と、c相電流Ic の値をサンプリングするサンプ
ルホールド回路713 と、零相電流I0 の値をサンプリン
グするサンプルホールド回路714 と、線間電圧Vabの値
をサンプリングするサンプルホールド回路715 とを有
し、それぞれサンプルホールドされた値を時間順に並べ
て送り出すマルチプレクサ720 と、マルチプレクサ720
から出力されるデータをA/D変換する変換回路730
と、A/D変換されたデータをディジタル演算して線間
電圧Vab、各相電流Ia,Ib,Ic 、零相電流I0 、正相
電流I1 、逆相電流I2 の大きさ、零相電流I0 の高調
波成分および基本波成分を算出するとともに、線間電圧
Vabと零相電流I0 の基本波成分との位相差θを算出す
る算出回路740 と、算出回路740 の算出データに基づい
て地絡、短絡又は断線の判定を行う判定回路750 とを有
する。
As shown in FIG. 5, the arithmetic processing unit 71 includes an adder circuit 716 for calculating the value of the zero-phase current, a sample hold circuit 711 for sampling the value of the a-phase current Ia, and b.
A sample and hold circuit 712 that samples the value of the phase current Ib, a sample and hold circuit 713 that samples the value of the c phase current Ic, a sample and hold circuit 714 that samples the value of the zero phase current I0, and a value of the line voltage Vab. A sample-hold circuit 715 for sampling the sample and hold values, and a multiplexer 720 that outputs sampled and held values arranged in time order and a multiplexer 720.
Conversion circuit 730 for A / D converting the data output from the
And digitally operating the A / D converted data, the line voltage Vab, the phase currents Ia, Ib, Ic, the zero-phase current I0, the positive-phase current I1, the magnitude of the negative-phase current I2, and the zero-phase current I0. Of the ground fault based on the calculation data of the calculation circuit 740, which calculates the phase difference θ between the line voltage Vab and the fundamental wave component of the zero-phase current I0 while calculating the harmonic component and the fundamental wave component of And a judgment circuit 750 for judging short circuit or disconnection.

【0020】さらに、演算処理部71は、線間電圧Vab
の1周期ごとに基本波パルスを発生させる基本波パルス
発生回路760 と、このように発生したパルスを所定の分
周比率(例えば1/12倍)で分周する分周器761 と、
分周器761 の分周比をサンプルホールド回路の数で割っ
たさらに細かな分周比率(例えば1/60倍)で分周す
る分周器762 と、分周器762 の出力パルスに基づいてサ
ンプルホールド回路711 〜715 に切換え制御信号を供給
する切換え制御器763 とを有し、算出回路740は分周器7
61 の出力パルスを同期信号として算出処理を行ってい
る。
Further, the arithmetic processing unit 71 is configured to detect the line voltage Vab
A fundamental wave pulse generation circuit 760 that generates a fundamental wave pulse for each cycle of, and a frequency divider 761 that divides the pulse thus generated at a predetermined frequency division ratio (for example, 1/12 times),
Based on the output pulse of the frequency divider 762 and the frequency divider 762 that divides the frequency division ratio of the frequency divider 761 by a finer frequency division ratio (for example, 1/60 times) divided by the number of sample and hold circuits. The calculation circuit 740 has a switching controller 763 for supplying a switching control signal to the sample and hold circuits 711 to 715.
Calculation is performed using the 61 output pulse as a synchronization signal.

【0021】算出回路740 が電流や電圧の大きさと位相
角を算出する方法は、従来公知の方法を使用できる。例
えば、1周期にわたるフーリエ正弦成分とフーリエ余弦
成分とを求め、両方の成分の二乗平均をとることによっ
て大きさを求めることができる。また、フーリエ正弦成
分とフーリエ余弦成分との比のtan-1をとることによ
り位相角を求めることができる。また、高調波成分を算
出するには、例えば、零相電流I0 に対してフィルタ演
算 I0 (n) =(1/T)∫I0 exp( -jnωt)dt 〔0<t<T〕 を行い、高調波成分I0 (n) を求めればよい。
As a method of calculating the magnitude of the current or voltage and the phase angle by the calculation circuit 740, a conventionally known method can be used. For example, the magnitude can be obtained by obtaining the Fourier sine component and the Fourier cosine component over one period and taking the root mean square of both components. Further, the phase angle can be obtained by taking tan −1 of the ratio of the Fourier sine component and the Fourier cosine component. To calculate the harmonic component, for example, the filter operation I0 (n) = (1 / T) ∫I0exp (-jnωt) dt [0 <t <T] is performed on the zero-phase current I0. The harmonic component I0 (n) may be obtained.

【0022】同様にして、n=1のときのI0 (1) を求
めれば零相電流の基本波成分が得られる。さらに、上の
例は、特定の単一次数の高調波成分を求めるものであっ
たが、2つ以上の特定の次数の高調波成分(例えばn=
9,12,15のように3の倍数を選ぶことが好まし
い。)をそれぞれ求め、実効値 I0 (HF) =(I0 (9)2+I0 (12)2 +I0 (15)2 1/2 を算出して、しきい値を超えているかどうかを判定して
もよい。このように多数の次数の高調波成分を加味する
ことにより、単一の次数の高調波成分のみを判定すると
きよりも、検出感度を向上させることができる。
Similarly, if I 0 (1) when n = 1 is obtained, the fundamental wave component of the zero-phase current can be obtained. Furthermore, although the above example is for obtaining a specific single order harmonic component, two or more specific harmonic components (for example, n =
It is preferable to select a multiple of 3, such as 9, 12, and 15. ) Is calculated, and the effective value I0 (HF) = (I0 (9) 2 + I0 (12) 2 + I0 (15) 2 ) 1/2 is calculated to determine whether or not the threshold value is exceeded. Good. In this manner, by adding a large number of harmonic components, the detection sensitivity can be improved as compared with the case of determining only a single harmonic component.

【0023】判定回路750 の行う地絡、短絡、断線判定
の手順を表わすフローチャートを図6に示す。図6によ
れば、判定回路750 は、算出回路740 から供給される各
種データに基づいて、短絡判定(ステップ(1) )を行
い、短絡と判定されれば短絡を表わす符号“0001”
を送信部72に送出する。短絡判定手法は、公知の手法
を採用することができる。
FIG. 6 is a flow chart showing the procedure of the judgment circuit 750 for judging a ground fault, a short circuit, and a disconnection. According to FIG. 6, the determination circuit 750 makes a short-circuit determination (step (1)) based on various data supplied from the calculation circuit 740.
Is transmitted to the transmission unit 72. A well-known method can be adopted as the short circuit determination method.

【0024】短絡でないと判定されれば、断線判定(ス
テップ(2) )を行い、断線と判定されれば、断線を表わ
す符号“0010”を送出する。断線判定手法について
も公知の手法を採用することができる。断線でもないと
判定されれば、地絡判定(ステップ(3),(4) )を行う。
ステップ(3) では、零相高調波成分I0 (n) を閾値k
(n) と比較し、が閾値k(n) を越えていれば、ステップ
(4)において線間電圧Vabと零相電流I0 の基本波成分
I0 (1) との位相差θが、360°を8等分した領域
I,II,・・・・,VIII(図7参照)のいずれに入るのか判
定し、ステップ(7) において対応する符号を送出する。
例えば0<θ≦π/4であれば領域Iに入るので符号“1
000”を送出する。π/4<θ≦π/2 であれば領域II
に入るので符号“1001”を送出する。なお、このス
テップ(3),(4) での地絡判定は1線地絡を判定を意味
し、2線地絡、3線地絡の場合は、ステップ(1) の短絡
判定により判定できるので、ステップ(3),(4) で2線地
絡、3線地絡を判定することはない。
If it is judged that it is not a short circuit, a disconnection judgment (step (2)) is carried out, and if it is judged that it is a disconnection, the code "0010" representing the disconnection is sent out. A well-known method can be adopted as the disconnection determination method. If it is determined that the line is not broken, the ground fault is determined (steps (3) and (4)).
In step (3), the zero-phase harmonic component I0 (n) is set to the threshold value k.
compared (n), and if it exceeds but the threshold k (n), step
In (4), the phase difference θ between the line voltage Vab and the fundamental wave component I0 (1) of the zero-phase current I0 is 360 ° divided into eight regions I, II, ..., VIII (see FIG. 7). ) Is entered, and the corresponding code is transmitted in step (7).
For example, if 0 <θ ≦ π / 4, the region I is entered, so the code is “1”.
000 ”is sent. If π / 4 <θ ≦ π / 2, area II
Since it enters, the code "1001" is transmitted. In addition, the ground fault judgment in steps (3) and (4) means the judgment of one-line ground fault, and in the case of two-wire ground fault and three-wire ground fault, it can be judged by the short-circuit judgment of step (1). Therefore, 2-wire ground fault and 3-wire ground fault are not determined in steps (3) and (4).

【0025】地絡がないと判定されればステップ(8) に
おいて故障なしの符号“0000”を送出する。送信部
72は判定回路750 から受け取った符号を、親局9に、
無線、光、赤外線等の媒体を通して送信する(ステップ
(9) )。親局9は、図8に示すように受信部91と、故
障区間決定部92とからなるものである。
If it is determined that there is no ground fault, the code "0000" indicating no failure is transmitted in step (8). The transmitter 72 sends the code received from the determination circuit 750 to the master station 9,
Send via wireless, light, infrared or other medium (step
(9)). As shown in FIG. 8, the master station 9 includes a receiving section 91 and a failure section determining section 92.

【0026】親局9の故障区間決定部92は各端末の送
信部72から無線、光、赤外線等の媒体を通して受け取
った符号に基づき、どの区間において地絡があったのか
を判定する。その判定の手法は、次のとおりである。図
9に示すように配電線に沿って端末局7a1,・・・・,7a6
が配列されている場合を想定する。
The failure section determination unit 92 of the master station 9 determines in which section the ground fault has occurred based on the code received from the transmission unit 72 of each terminal through a medium such as radio, light, or infrared. The determination method is as follows. Terminal stations 7a1, ..., 7a6 along the distribution line as shown in FIG.
Suppose that is arranged.

【0027】端末局7a3と端末局7a4との間で1線地絡
故障が発生した場合(図9参照)、地絡点より送電側の
端末局7a1,7a2,7a3から送られてくる線間電圧Vab
と零相電流I0 の基本波成分I0 (1) との位相差θを示
す領域は同じ領域であるか又は互いに隣接する2つの領
域である(例えば図7の領域I及びVIIIとする)。とこ
ろが、地絡点より負荷側の端末局7a4,7a5,7a6から
送られてくる線間電圧Vabと零相電流I0 の基本波成分
I0 (1) との位相差θを示す領域は、領域Iと比較して
約180°ずれた領域(図7の領域VとIV)である。し
たがって親局9は、位相差の領域が大きくずれた場合の
前後の端末局7a3と端末局7a4との間で地絡故障が発生
していることが分かる。このように、全方位を8つの領
域に分割したので、端末局と親局との送信回線は、位相
角がこれら8つの領域のいずれの領域に入るのかを示す
データを送ればよい。したがって、位相角のデータをそ
のまま送る必要がなく、送信回線の容量の増大を防ぐこ
とができる。また送信回線の容量が決まっているなら
ば、他のデータの割り当てる容量を増やすことができ
る。
When a one-line ground fault occurs between the terminal station 7a3 and the terminal station 7a4 (see FIG. 9), the line spacing sent from the terminal stations 7a1, 7a2, 7a3 on the power transmission side from the ground fault point. Voltage Vab
And the region showing the phase difference θ between the fundamental wave component I0 (1) of the zero-phase current I0 is the same region or two regions adjacent to each other (for example, regions I and VIII in FIG. 7). However, the region showing the phase difference θ between the line voltage Vab sent from the terminal stations 7a4, 7a5, 7a6 on the load side from the ground fault and the fundamental wave component I0 (1) of the zero-phase current I0 is the region I. This is a region (regions V and IV in FIG. 7) that is shifted by about 180 ° compared with. Therefore, the master station 9 knows that a ground fault has occurred between the terminal station 7a3 and the terminal station 7a4 before and after the phase difference region is largely deviated. Since all directions are divided into eight areas in this way, the transmission line between the terminal station and the master station may send data indicating which of these eight areas the phase angle falls into. Therefore, it is not necessary to send the phase angle data as it is, and it is possible to prevent the capacity of the transmission line from increasing. If the capacity of the transmission line is fixed, the capacity allocated to other data can be increased.

【0028】以上、実施例に基づき本発明を説明してき
たが、本発明は前記の実施例に限定されるものではな
い。前記の実施例では、ab相間の線間電圧Vabを使用
していたが、いずれかの相の電圧、正相電圧、逆相電圧
若しくは零相電圧の位相と比較してもよい。この場合、
電圧センサは既設のものを流用できないので、専用のも
のを1つないし3つ設ける必要がある。
Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments. Although the line voltage Vab between the ab phases is used in the above-mentioned embodiment, it may be compared with the voltage of any phase, the positive phase voltage, the negative phase voltage or the zero phase voltage. in this case,
Since the existing voltage sensor cannot be used, it is necessary to provide one to three dedicated ones.

【0029】また、図7によれば、全方位を8つの領域
に分割しているが、隣接領域へのオーバーラップを考慮
すれば、少なくとも5つの領域に分割されていれば実用
可能である。さらに、前記の実施例では、零相電流から
高調波成分を算出したが、特定の高調波次数nに対し
て、次の式 Ia (n) =(1/T)∫Ia exp( -jnωt)dt 〔0<t<T〕 Ib (n) =(1/T)∫Ib exp( -jnωt)dt 〔0<t<T〕 Ic (n) =(1/T)∫Ic exp( -jnωt)dt 〔0<t<T〕 を用いて各相電流の高調波成分を求め、式 I0 (n) =Ia (n) +Ib(n) +Ic(n) を用いて零相高調波成分I0 (n) を求めてもよい。
Further, according to FIG. 7, all directions are divided into eight areas, but in consideration of the overlap with the adjacent areas, it is practical if the area is divided into at least five areas. Further, in the above embodiment, the harmonic component is calculated from the zero-phase current, but for a specific harmonic order n, the following formula Ia (n) = (1 / T) ∫Ia exp (-jnωt) dt [0 <t <T] Ib (n) = (1 / T) ∫Ib exp (-jnωt) dt [0 <t <T] Ic (n) = (1 / T) ∫Ic exp (-jnωt) The harmonic component of each phase current is calculated using dt [0 <t <T], and the zero-phase harmonic component I0 (n ) is calculated using the formula I0 (n) = Ia (n) + Ib (n) + Ic (n). ) May be asked.

【0030】また、前記の各実施例では、端末局7a1,
7a2,・・・・,7b1,7b2,・・・・に算出回路740 、判定回
路750 が設けられていたが、親局9に設けてもよい。こ
の場合は端末局の送信部72は、測定した電流のデータ
を親局9に送信することになり、親局で各端末局のデー
タを集めて判定することとなる。このほかに、本発明の
要旨を変更しない範囲で種々の変更を施すことが可能で
ある。
In each of the above embodiments, the terminal station 7a1,
Although the calculation circuit 740 and the determination circuit 750 are provided in 7a2, ..., 7b1, 7b2, ..., They may be provided in the master station 9. In this case, the transmission unit 72 of the terminal station transmits the measured current data to the master station 9, and the master station collects and determines the data of each terminal station. In addition to this, various modifications can be made without departing from the spirit of the present invention.

【0031】[0031]

【発明の効果】以上のように請求項1及び2記載の配電
線の地絡故障区間検出方法の発明によれば、地絡情報を
判定する場合、零相高調波成分により判定することとし
たので、誤判定の可能性が減少し、かつ、地絡が判定さ
れた場合には、簡単に地絡故障区間を知ることができ
る。
As described above, according to the invention of the method of detecting a ground fault in a distribution line according to claims 1 and 2, when the ground fault information is determined, it is determined by the zero-phase harmonic component. Therefore, the possibility of erroneous determination is reduced, and when a ground fault is determined, the ground fault fault section can be easily known.

【0032】請求項3及び4記載の配電線の地絡故障区
間検出装置の発明によれば、配電線の各区間の端の測定
点において各相電流を検出し、零相高調波成分に基づい
て高感度に地絡の判定を行うことができ、地絡判定した
時は、所定相の電圧の位相を基準として、零相電流の基
本波成分との位相差を求め、その位相差の各測定点にわ
たる分布から地絡故障点を容易に検出することができ
る。
According to the invention of the ground fault section detecting device for a distribution line of claims 3 and 4, each phase current is detected at the measurement point at the end of each section of the distribution line and based on the zero phase harmonic component. The ground fault can be determined with high sensitivity.When the ground fault is determined, the phase difference with the fundamental wave component of the zero-phase current is calculated based on the phase of the voltage of the predetermined phase, and each of the phase differences is determined. The ground fault point can be easily detected from the distribution over the measurement points.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための、地絡故障が発
生した配電線の、高調波成分に着目した対称3相等価回
路図である。
FIG. 1 is a symmetrical three-phase equivalent circuit diagram focusing on harmonic components of a distribution line in which a ground fault has occurred, for explaining the principle of the present invention.

【図2】地絡故障が発生した配電線の回路図である。FIG. 2 is a circuit diagram of a distribution line in which a ground fault has occurred.

【図3】地絡故障が発生した配電線の対称3相等価回路
図である。
FIG. 3 is a symmetrical three-phase equivalent circuit diagram of a distribution line in which a ground fault has occurred.

【図4】端末局が配置された配電系統図である。FIG. 4 is a distribution system diagram in which terminal stations are arranged.

【図5】端末局に設けられた演算処理部の内部構成を示
すブロック図である。
FIG. 5 is a block diagram showing an internal configuration of an arithmetic processing unit provided in a terminal station.

【図6】判定回路750 の行う地絡、短絡、断線判定の手
順を表わすフローチャートである。
FIG. 6 is a flowchart showing a procedure for determining a ground fault, a short circuit, and a disconnection performed by a determination circuit 750.

【図7】位相角を分類するため、全方位を8つの領域に
分割した図である。
FIG. 7 is a diagram in which all directions are divided into eight regions to classify phase angles.

【図8】親局の要部構成を示すブロック図である。FIG. 8 is a block diagram showing a main configuration of a master station.

【図9】配電線の地絡故障区間の決定手法を説明するた
めの配電線図である。
FIG. 9 is a distribution line diagram for explaining a method of determining a ground fault section of the distribution line.

【符号の説明】[Explanation of symbols]

4a,4b 配電線 7a1,7a2,7b1,7b1 端末局 72 送信部 740 算出回路 9 親局 92 地絡故障区間決定部 I〜VIII 領域 CT1,CT2,CT3 電流センサ 4a, 4b distribution line 7a1, 7a2, 7b1, 7b1 terminal stations 72 Transmitter 740 Calculation circuit 9 parent station 92 Ground fault section determination unit Regions I to VIII CT1, CT2, CT3 Current sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配電線を複数区間に区分し、各区間の測定
点において配電線の各相電流を検出し、これらの検出電
流に基づいて零相電流を求め、その零相電流の高調波成
分を算出し、零相高調波成分をしきい値と比較し、しき
い値を超えた場合に、零相電流の基本波成分と、当該測
定点で得られる配電線のa,b,cいずれかの相の電
圧、正相電圧、逆相電圧若しくは零相電圧又は所定の2
相間の線間電圧との位相差を算出し、配電線に沿って各
測定点において算出された前記位相差の分布を求め、位
相差がほぼ180°転換する測定点同士の間に存在する
区間を地絡故障区間として決定することを特徴とする配
電線の地絡故障区間検出方法。
1. A distribution line is divided into a plurality of sections, each phase current of the distribution line is detected at a measurement point in each section, a zero-phase current is obtained based on these detected currents, and harmonics of the zero-phase current are obtained. The component is calculated, the zero-phase harmonic component is compared with the threshold value, and when the threshold value is exceeded, the fundamental wave component of the zero-phase current and a, b, c of the distribution line obtained at the measurement point Voltage of any phase, positive phase voltage, negative phase voltage or zero phase voltage or predetermined 2
A phase difference between the phase and the line voltage is calculated, the distribution of the phase difference calculated at each measurement point along the distribution line is obtained, and a section existing between the measurement points at which the phase difference changes by approximately 180 ° Is determined as a ground fault section, and a ground fault section detection method for a distribution line.
【請求項2】配電線を複数区間に区分し、各区間の測定
点において配電線の各相電流を検出し、配電線の各相電
流の高調波成分を算出し、それらの高調波成分を合算し
て零相高調波成分を求め、その零相高調波成分をしきい
値と比較し、しきい値を超えた場合に、零相電流の基本
波成分と、当該測定点で得られる配電線のa,b,cい
ずれかの相の電圧、正相電圧、逆相電圧若しくは零相電
圧又は所定の2相間の線間電圧との位相差を算出し、配
電線に沿って各測定点において算出された前記位相差の
分布を求め、位相差がほぼ180°転換する測定点同士
の間に存在する区間を地絡故障区間として決定すること
を特徴とする配電線の地絡故障区間検出方法。
2. A distribution line is divided into a plurality of sections, each phase current of the distribution line is detected at a measurement point in each section, a harmonic component of each phase current of the distribution line is calculated, and the harmonic components are calculated. Calculate the zero-phase harmonic component by summing, compare the zero-phase harmonic component with the threshold value, and if the value exceeds the threshold value, the fundamental wave component of the zero-phase current and the distribution obtained at the measurement point. Calculate the phase difference between the voltage of any one of the a, b, and c phases of the wire, the positive phase voltage, the negative phase voltage, or the zero phase voltage, or the line voltage between the specified two phases, and measure each point along the distribution line. The distribution of the phase difference calculated in 1. is determined, and the section existing between the measurement points at which the phase difference changes by approximately 180 ° is determined as the ground fault section. Method.
【請求項3】配電線を流れる零相電流により地絡故障の
発生を検出し、地絡故障の発生を検出した場合に地絡故
障区間を検出する配電線の地絡故障区間検出装置であっ
て、 複数区間に区分された配電線の各区間に端末局を配置
し、各端末局には当該端末局で得られたデータを送信す
る送信手段を設け、 さらに、前記端末局からデータを受信するための親局を
配置し、 端末局には次の手段(a) 〜(g) のうち手段(a) を、親局
には手段(g) を設け、他の手段(b) 〜(f) は端末局又は
親局のいずれかに設けたことを特徴とする配電線の地絡
故障区間検出装置。 (a) 各区間の測定点において配電線の各相電流を検出す
る電流センサ、 (b) 電流センサの検出電流に基づいて零相電流を求める
零相電流検出手段、 (c) その零相電流の高調波成分を算出する手段、 (d) その零相電流の基本波成分を算出する手段、 (e) 前記(c) の手段により算出された零相高調波成分を
しきい値と比較し、しきい値を超えている場合に、地絡
故障のあることを判定する地絡判定手段、 (f) 地絡判定手段により地絡と判定された場合に、前記
(d) の手段で求められた零相電流の基本波成分と、当該
測定点で得られる配電線のa,b,cいずれかの相の電
圧、正相電圧、逆相電圧若しくは零相電圧又は所定の2
相間の線間電圧との位相差を算出する位相差算出手段、 (g) 各端末局の算出手段により検出された前記位相差の
データに含まれる前記位相差の分布に基づいて、位相差
がほぼ180°異なる端末局群を区別し、これら区別さ
れた端末局群のうち互いに隣接する端末局の間に存在す
る区間を配電線の地絡故障区間として決定する地絡故障
区間決定手段。
3. A ground fault section detecting device for a distribution line, which detects a ground fault by a zero-phase current flowing through the distribution line, and detects a ground fault section when the ground fault is detected. Then, a terminal station is arranged in each section of the distribution line divided into a plurality of sections, each terminal station is provided with a transmitting means for transmitting the data obtained by the terminal station, and the data is received from the terminal station. A master station is installed to do this, the terminal station is provided with means (a) of the following means (a) to (g), the master station is provided with means (g), and other means (b) to (g). f) is a ground fault section detecting device for the distribution line, which is provided in either the terminal station or the master station. (a) Current sensor that detects each phase current of the distribution line at the measurement point in each section, (b) Zero-phase current detection means that calculates the zero-phase current based on the current detected by the current sensor, (c) The zero-phase current Means for calculating the harmonic component of, (d) means for calculating the fundamental wave component of the zero-phase current, (e) comparing the zero-phase harmonic component calculated by the means of (c) above with a threshold value. If the threshold value is exceeded, a ground fault determining means for determining that there is a ground fault fault, (f) If a ground fault is determined by the ground fault determining means,
The fundamental wave component of the zero-phase current obtained by means of (d) and the voltage of any of a, b, or c phases of the distribution line obtained at the measurement point, positive-phase voltage, negative-phase voltage, or zero-phase voltage Or predetermined 2
Phase difference calculating means for calculating the phase difference with the line voltage between the phases, (g) based on the distribution of the phase difference contained in the data of the phase difference detected by the calculating means of each terminal station, the phase difference is A ground fault section determining unit that distinguishes terminal station groups that differ by approximately 180 °, and determines a section that exists between adjacent terminal stations of these distinguished terminal station groups as a ground fault failure section of the distribution line.
【請求項4】前記(c) の手段に代えて、配電線の各相電
流の高調波成分を算出する手段と、算出された各相高調
波成分を合算する演算手段とを有し、前記(e) の地絡判
定手段は、演算手段により合算された零相高調波成分の
値をしきい値と比較し、しきい値を超えている場合に、
地絡故障のあることを判定するものである請求項3記載
の配電線の地絡故障区間検出装置。
4. A means for calculating a harmonic component of each phase current of a distribution line, and a calculating means for summing the calculated phase harmonic components, in place of the means of (c), The ground fault judging means of (e) compares the value of the zero-phase harmonic component added by the calculating means with the threshold value, and when the value exceeds the threshold value,
The ground fault section detecting device for a distribution line according to claim 3, which determines whether there is a ground fault.
JP18090691A 1991-07-22 1991-07-22 Method and apparatus for detecting ground fault section of distribution line Pending JPH0530646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18090691A JPH0530646A (en) 1991-07-22 1991-07-22 Method and apparatus for detecting ground fault section of distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18090691A JPH0530646A (en) 1991-07-22 1991-07-22 Method and apparatus for detecting ground fault section of distribution line

Publications (1)

Publication Number Publication Date
JPH0530646A true JPH0530646A (en) 1993-02-05

Family

ID=16091373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18090691A Pending JPH0530646A (en) 1991-07-22 1991-07-22 Method and apparatus for detecting ground fault section of distribution line

Country Status (1)

Country Link
JP (1) JPH0530646A (en)

Similar Documents

Publication Publication Date Title
CN1786726B (en) System and method of locating ground fault in electrical power distribution system
RU2633433C2 (en) Directional detection of fault in network, in particular, in system with grounded compensated or insulated neutral
EP2335082B1 (en) Method and apparatus for dynamic signal switching of a merging unit in an electrical power system
US6453248B1 (en) High impedance fault detection
RU2583452C2 (en) Directed detection of resistive ground fault and rupture of conductor of medium voltage
SE536143C2 (en) Method for detecting earth faults in three-phase electric power distribution network
KR100350722B1 (en) Apparatus and method for locating fault distance in a power double circuit transmision line
US20190094287A1 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
EP1092256A1 (en) Detection of faults on transmission lines in a bipolar high-voltage direct current system
US20020080535A1 (en) Multiple ground fault trip function system and method for same
US11114892B2 (en) Electric power system transducer failure monitor and measurement recovery
JPH0530646A (en) Method and apparatus for detecting ground fault section of distribution line
EP2092623A1 (en) A method and an apparatus for protecting a bus in a three-phase electrical power system
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
JPH0522852A (en) Method and apparatus for determining grounding section of distribution line
JPH04347532A (en) Method and device for detecting disconnected section of distribution line
JP3189294B2 (en) Distribution line fault section determination system
JP5283369B2 (en) Disconnection protection relay
Menezes et al. Dual-Layer Based Microgrid Protection Using Voltage Synchrophasors
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
JP3931146B2 (en) Distribution line disconnection section detection apparatus and disconnection section detection method
US11959975B2 (en) Method and monitoring device for determining a partial insulation resistance and a partial system leakage capacitance in a branched ungrounded power supply system
JPH10132890A (en) Method and device for locating failure point
JPH04344122A (en) Method and apparatus for deciding ground-fault zone in power distribution line
JPH04331418A (en) Method and device for detecting grounded section of distribution line