JPH05306103A - Radiation heat-transmission type reformer - Google Patents

Radiation heat-transmission type reformer

Info

Publication number
JPH05306103A
JPH05306103A JP2140203A JP14020390A JPH05306103A JP H05306103 A JPH05306103 A JP H05306103A JP 2140203 A JP2140203 A JP 2140203A JP 14020390 A JP14020390 A JP 14020390A JP H05306103 A JPH05306103 A JP H05306103A
Authority
JP
Japan
Prior art keywords
gas
raw material
air
heat
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2140203A
Other languages
Japanese (ja)
Inventor
Yoshizo Shiraiwa
義三 白岩
Nobuhiko Masunaga
信彦 増永
Osao Okamura
長生 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2140203A priority Critical patent/JPH05306103A/en
Publication of JPH05306103A publication Critical patent/JPH05306103A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To effectively utilize a catalyst on the raw gas inlet side and to improve reforming efficiency in the radiation heat-transmission type reformer by injecting a specified amt. of air which is mixed with a raw gas before the raw gas enters a catalytic body. CONSTITUTION:A gas-impermeable partition wall 5 is provided in a closed vessel 10 to divide the vessel into a combustion section 1 and a heat receiving section 3. A porous heat radiator 2 is provided in the combustion section 1 and a catalytic body 4 in the heat receiving section 3. A high-temp. gas is supplied to the radiator 2, and the catalytic body 4 is heated by the heat radiated from the high-temp. gas. A raw gas 8 is supplied to the heat receiving section 3 from a raw gas pipe 11, brought into contact with the catalytic body 4 and reformed. In this case, the air 21 corresponding to <=38% of the raw gas is supplied through an air pipe 20 before the raw gas 8 enters the catalytic body 4 and mixed with the raw gas 8. Consequently, heat is generated by the oxidation of the raw gas and reformed gaseous hydrogen with air to compensate for the temp. decrease in the catalytic body 4 due to the steam reforming reaction.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、燃料電池発電プラントあるいはそ の他の用途に使用される輻射伝熱形改質装置に関 する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a radiant heat transfer reformer used in a fuel cell power plant or other application.

(従来の技術) 燃料電池は、一般に水素と酸素を電気化学的 に反応させ、電力を発生させるものである。燃料 電池のうち、溶融炭酸塩形燃料電池あるいは固体 電解質形燃料電池は水素を使用しなくても一酸化 炭素を直接燃料として使用できる。 (Prior Art) A fuel cell generally produces electric power by electrochemically reacting hydrogen and oxygen. Among the fuel cells, the molten carbonate fuel cell or solid oxide fuel cell can use carbon monoxide directly as a fuel without using hydrogen.

しかし、発電プラントの燃料としては、通常 用いられている天然ガスやナフサ等の炭化水素は 直接燃料電池の燃料として使用できないことから、 次のような改質装置が用いられている。すなわち、 水素ガスを得るためにメタンガスと水蒸気を混合 した原料ガスを、 CH+HO→CO+3H で示される水蒸気改質を行なわしめ、水素と一酸 化炭素等の混合した生成ガスを得るものである。However, as the fuel for power generation plants, the normally used hydrocarbons such as natural gas and naphtha cannot be used directly as fuels for fuel cells, so the following reformers are used. That is, the raw material gas in which methane gas and steam are mixed to obtain hydrogen gas is subjected to steam reforming represented by CH 4 + H 2 O → CO + 3H 2 to obtain a product gas in which hydrogen and carbon monoxide are mixed. It is a thing.

近年、改質装置の一例として多孔性輻射体を 加熱体として使用し、伝熱効果を改善した新しい 方式の輻射伝熱形改質装置が開発され、第2図は、 その中で最も実用性のあるものである(これは特 開昭62−172615号公報)。 In recent years, a new type of radiant heat transfer reformer has been developed, which uses a porous radiant body as a heating body as an example of the reformer to improve the heat transfer effect, and Fig. 2 shows the most practical one among them. (This is disclosed in Japanese Patent Publication No. 62-172615).

第4図中1は、燃焼室、2は多孔性の熱輻射 体、3は受熱室、4は触媒が全体に均一に担持さ れた略均一な孔径を有する多孔性の受熱体、5は 円筒容器10内を燃焼室1と受熱室3とに仕切り 原料ガス(CHとHOを混合したガス)8が 漏洩しないようにした隔壁、6は燃料の燃焼によ り得られた高温燃焼ガス、7は排ガス、9は原料 ガス8の分解により得られたHとCOを混合し た生成ガス、11は原料ガス供給管、12は多数 の噴出口12aを有するバーナ、13は排ガス管、 14は生成ガス取出し管である。In FIG. 4, 1 is a combustion chamber, 2 is a porous heat radiation body, 3 is a heat receiving chamber, 4 is a porous heat receiving body having a substantially uniform pore size in which a catalyst is uniformly supported throughout, and 5 is The inside of the cylindrical container 10 is partitioned into the combustion chamber 1 and the heat receiving chamber 3, and a partition wall for preventing the raw material gas (gas mixture of CH 4 and H 2 O) 8 from leaking, 6 is a high temperature obtained by combustion of fuel Combustion gas, 7 is exhaust gas, 9 is a product gas obtained by mixing H 2 and CO obtained by decomposition of the raw material gas 8, 11 is a raw material gas supply pipe, 12 is a burner having many ejection ports 12a, and 13 is exhaust gas A pipe, 14 is a product gas extraction pipe.

上記反応装置では、バーナ12から噴射して 燃焼される高温燃焼ガス6は熱輻射体2を通過し、 排ガス管13から排ガス7として排出される。燃 焼ガス6の顕熱は、熱輻射体2を通過する際に対 流熱伝達によって熱輻射体2に吸収され、熱輻射 体2が加熱されて装置内に輻射熱が放出され、放 出された輻射熱は、隔壁5が金属材料或いはセラ ミックで出来ている場合は、隔壁5の加熱及び再 輻射として受熱体4に受熱され、又隔壁5が石英 ガラス等のように透明な材質の場合は隔壁5を透 過して受熱体4に受熱され、受熱体4が加熱され る。 In the above reaction apparatus, the high temperature combustion gas 6 injected from the burner 12 and burned passes through the heat radiator 2 and is discharged from the exhaust gas pipe 13 as the exhaust gas 7. The sensible heat of the burning gas 6 is absorbed by the heat radiating body 2 by convective heat transfer when passing through the heat radiating body 2, and the heat radiating body 2 is heated and radiant heat is released into the device and radiated. When the partition wall 5 is made of a metallic material or ceramic, the radiant heat is received by the heat receiving body 4 as heating and re-radiation of the partition wall 5, and when the partition wall 5 is a transparent material such as quartz glass. The heat is received by the heat receiving body 4 through the partition wall 5, and the heat receiving body 4 is heated.

原料ガス8は受熱体4を通過する際に受熱体 4により加熱されて分解し、H とCOの混合し た生成ガス9となり、生成ガス取出し管14を通 して装置外へ送られる。 The raw material gas 8 is heated and decomposed by the heat receiving body 4 when passing through the heat receiving body 4, and becomes a produced gas 9 in which H and CO are mixed, and is sent to the outside of the apparatus through a produced gas extraction pipe 14.

上述のごとく、熱輻射体2に吸収された熱を 輻射により受熱体4に与え、原料ガス8を受熱体 4内に通して加熱し、触媒の存在のものとに分解 させることにより、改質生成ガス9を得るように すると、熱の有効利用が図られると共に原料ガス 8の分解がコンパクトな装置により効果的に行わ れる。 As described above, the heat absorbed by the heat radiating body 2 is applied to the heat receiving body 4 by radiation, and the source gas 8 is passed through the heat receiving body 4 to be heated and decomposed into the presence of a catalyst, thereby reforming. When the generated gas 9 is obtained, the heat is effectively used and the raw material gas 8 is decomposed effectively by the compact device.

(発明が解決しようとする課題) 以上述べた従来装置にあっては、隔壁5の内 部が水素リッチなガスであり、外部は高温の空気 を多量に含む燃焼ガスであるため、従来隔壁5と しては高温に耐える耐熱鋼あるいは耐熱合金等の 金属で作られているものがある。また、これ以外 に従来隔壁5としては無色透明の石英ガラスで作 られているものもある。しかしながら、改質装置 の場合には、後者の石英ガラスが破損したとき大 きな燃焼になるので、高温時の機械的強度が強い 前者の金属が用いられる。 (Problems to be Solved by the Invention) In the conventional apparatus described above, since the inside of the partition wall 5 is a hydrogen-rich gas and the outside is a combustion gas containing a large amount of high-temperature air, the conventional partition wall 5 is used. Some of them are made of metal such as heat-resistant steel or heat-resistant alloy that can withstand high temperatures. In addition to this, there is a conventional partition wall 5 made of colorless and transparent quartz glass. However, in the case of a reformer, the latter metal, which has a high mechanical strength at high temperatures, is used because the latter will burn a large amount when it breaks.

従って、隔壁5の外部の熱輻射体2からの輻 射熱は該隔壁5が受け隔壁5自体を熱伝導で伝わ り隔壁5上部から外部に放熱する分が熱損失とな る。この分だけ隔壁5の温度が低下し、隔壁5の 内面から内部の受熱体4に熱を輻射して伝える分 が少なくなる。受熱体4では上述のごとく水蒸気 改質反応が行なわれているが、この反応は吸熱反 応であるから反応が多いと温度が低下する。その ため、原料ガス8の量は制限される。 Therefore, the radiant heat from the heat radiation body 2 outside the partition wall 5 is transferred to the partition wall 5 by heat conduction through the partition wall 5 itself and radiated from the upper part of the partition wall 5 to the outside, resulting in a heat loss. The temperature of the partition wall 5 is reduced by this amount, and the amount of heat radiated and transmitted from the inner surface of the partition wall 5 to the internal heat receiving body 4 is reduced. The steam reforming reaction is carried out in the heat receiving body 4 as described above, but since this reaction is an endothermic reaction, the temperature decreases when there are many reactions. Therefore, the amount of the source gas 8 is limited.

このことを説明すると、受熱体4の温度分布 は入口側からある区域では比較的低く、受熱体4 の出口側では隔壁5からの熱輻射によって急激に 高くなり、吸熱反応の水蒸気改質反応は低温では 緩慢で、高温になる程加速される。 To explain this, the temperature distribution of the heat receiving body 4 is relatively low in a certain area from the inlet side, and is rapidly increased by the heat radiation from the partition wall 5 at the outlet side of the heat receiving body 4, and the steam reforming reaction of the endothermic reaction is It is slow at low temperatures and accelerates at higher temperatures.

従って、受熱体4の低温側では反応は余り進 行せず反応は主に高温側で起こっている。このこ とにより、受熱体4の吸熱が隔壁5に近い部分で 主に行なわれ、低温側の触媒が有効に利用されて おらず、改質効率が悪い。 Therefore, the reaction does not proceed much on the low temperature side of the heat receiver 4, and the reaction mainly occurs on the high temperature side. As a result, the heat absorption of the heat receiver 4 is mainly performed in the portion close to the partition wall 5, the catalyst on the low temperature side is not effectively used, and the reforming efficiency is poor.

本発明は原料ガス入口側の触媒を有効に利用 でき、改質効率が向上する輻射伝熱形改質装置を 提供することを目的とする。 It is an object of the present invention to provide a radiant heat transfer type reforming apparatus that can effectively utilize a catalyst on the inlet side of a raw material gas and improve reforming efficiency.

[発明の構成] (課題を解決するための手段) 本発明は前記目的を達成するため、密閉容器 内に、ガス非透過性材料からなる隔壁を設けて、 加熱室および被加熱室を形成し、前記加熱室に多 孔性輻射体を設けるとともに、前記被加熱室に触 媒体を設け、前記輻射体に高温ガスを通過させて 前記容器外部に排出させることにより、前記高温 ガスの輻射熱で前記隔壁を介して前記被加熱室内 の触媒体を加熱し、この被加熱室内に導入される 原料ガスを前記触媒体に通過させて改質ガスを得 る改質装置において、 前記原料ガスが前記触媒体に入る手前で、前 記原料ガス量の38%以下の空気量、または原料 ガス量の8.0%以下の酸素量を注入し、前記空 気または酸素と前記原料ガスとを混合させて前記 触媒体の入口側に供給する空気供給手段を設けた ことを特徴とするものである。 [Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a heating chamber and a heated chamber by providing a partition wall made of a gas impermeable material in a closed container. The heating chamber is provided with a porous radiator, the heating chamber is provided with a contact medium, and a high-temperature gas is passed through the radiator to be discharged to the outside of the container. In a reformer for heating a catalyst body in the heated chamber through a partition wall and passing a raw material gas introduced into the heated chamber to the catalyst body to obtain a reformed gas, the raw material gas is the catalyst. Before entering the medium, an air amount of 38% or less of the raw material gas or an oxygen amount of 8.0% or less of the raw material gas is injected to mix the air or oxygen with the raw material gas. Air supply to the inlet side of the catalyst body It is characterized by the provision of a feeding means.

(作 用) 本発明によれば、原料ガスと空気あるいは酸 素の混合ガスが受熱体に入り部分酸化反応が起こ る。この場合、燃焼触媒を入れる場合、または燃 焼触媒を入れない場合の反応式は下記のようにな る。 (Operation) According to the present invention, the mixed gas of the raw material gas and air or oxygen enters the heat receiver to cause a partial oxidation reaction. In this case, the reaction formula when the combustion catalyst is added or when the combustion catalyst is not added is as follows.

CH+20→CO+2HO…(1) CH+HO→CO+3H… (2) CH+CO→2CO+2H …(3) CO+HO→CO+H …(4) 上記(2)および(3)式の反応が大きな吸 熱を伴なう反応であるが、(1)式が発熱反応で あるため(2),(3)式の反応による温度低下 の割合を少なくする事ができる。CH 4 +20 2 → CO 2 + 2H 2 O (1) CH 4 + H 2 O → CO + 3H 2 (2) CH 4 + CO 2 → 2CO + 2H 2 (3) CO + H 2 O → CO 2 + H 2 (4) Above The reactions of equations (2) and (3) are reactions involving a large endotherm, but since equation (1) is an exothermic reaction, the rate of temperature decrease due to the reactions of equations (2) and (3) is small. You can do it.

従って、従来有効に利用されていなかった原 料ガス入口側の触媒を有効に利用でき、改質効率 が向上する。この様なことから、従来装置にくら べ改質ガスの条件を同一にすれば、少量の触媒容 積で改質が可能となる。 Therefore, the catalyst on the raw material gas inlet side, which has not been effectively used in the past, can be effectively used, and the reforming efficiency is improved. Therefore, if the reforming gas conditions are the same as in the conventional device, reforming can be performed with a small amount of catalyst volume.

(実施例) 以下、本発明の実施例について説明する。第 1図はその一実施例を示す縦断面図であり、ここ では前述した第2図の従来装置と同一部分につい ては同一符号を付してその説明を省略する。 (Example) Hereinafter, the Example of this invention is described. FIG. 1 is a vertical sectional view showing an embodiment thereof, and here, the same parts as those of the conventional apparatus shown in FIG.

第2図において、容器10内の受熱室3内に原 料ガス8が原料ガス管11から供給されるように なっている。そして、これとは別に図示しない空 気供給手段からの圧縮空気(原料ガス流量の38 %以下の空気量)21が空気管20を介して受熱 室3内に供給されるように原料ガス管11と同心 円状に配設され、そして、空気管20の下端には、 小孔22が多数個穿設され、また空気管20はこ の外周面には、リブ23が複数個取着されている。 In FIG. 2, the raw material gas 8 is supplied from the raw material gas pipe 11 into the heat receiving chamber 3 in the container 10. Separately from this, the compressed air 21 (38% or less of the flow rate of the raw material gas) 21 from the air supply means (not shown) is supplied to the heat receiving chamber 3 through the air tube 20. And a plurality of small holes 22 are formed at the lower end of the air tube 20, and a plurality of ribs 23 are attached to the outer peripheral surface of the air tube 20. There is.

しかして、受熱体である触媒体4は、原料ガ ス21の流れ方向に沿って複数の触媒体分割層 4a,4b,4c…により複数層に分割されてお り、各触媒体分割層4a,4b,4c…のすべて に改質触媒体を担持してある。 Then, the catalyst body 4 as the heat receiving body is divided into a plurality of layers by the plurality of catalyst body divided layers 4a, 4b, 4c ... In the flow direction of the raw material gas 21, and each catalyst body divided layer 4a. , 4b, 4c ... All carry a reforming catalyst body.

以上のように構成した第1実施例の動作を説 明する。圧縮空気21は空気管20の下端部の周 面に形成した多数の小孔22から、空気管20の 外周であって、原料ガス供給管11の原料ガス8 に噴出され、圧縮空気と原料ガスがよく混合され る。 The operation of the first embodiment configured as above will be described. The compressed air 21 is jetted from a large number of small holes 22 formed in the peripheral surface of the lower end portion of the air pipe 20 to the raw material gas 8 of the raw material gas supply pipe 11 on the outer periphery of the air pipe 20 to compress the compressed air and the raw material gas. Are mixed well.

この部分では温度が400℃程度と低いので、 メタンガス(CH)は燃焼しない。ところが、 受熱体4の入口では第2図の従来装置であっても 約500℃、受熱体4の出口では約800℃にな る。このようなことから、第1の実施例では空気 管20から原料ガス量の38%以下の空気量が供 給されることから、空気とメタンおよび改質した 水素ガスが酸化反応して発熱し、水蒸気改質反応 による受熱体4の温度低下分を補なう事ができる。Since the temperature is as low as about 400 ° C. in this portion, methane gas (CH 4 ) does not burn. However, the temperature at the inlet of the heat receiver 4 is about 500 ° C. even with the conventional device of FIG. 2, and the temperature at the outlet of the heat receiver 4 is about 800 ° C. Therefore, in the first embodiment, since the air pipe 20 supplies an air amount of 38% or less of the amount of the raw material gas, the air and methane and the reformed hydrogen gas are oxidized to generate heat. Therefore, it is possible to compensate for the decrease in the temperature of the heat receiver 4 due to the steam reforming reaction.

そのため、改質反応によってえられた生成ガ ス9の中の残ったメタン量はわずかになり、メタ ン転化率も向上する。 Therefore, the amount of methane remaining in the produced gas 9 obtained by the reforming reaction becomes small, and the methane conversion rate also improves.

以上述べた実施例、すなわち、各触媒体分割 層4a,4b,4cに改質触媒体を入れた例で実 験した結果、原料ガス量の3%程度の空気量を混 入させただけで受熱体4の出口の温度が730℃ から750℃に上昇し、メタン転化率は78%か ら85%に上昇することが明らかになった。 As a result of the experiment conducted in the above-mentioned embodiment, that is, the example in which the reforming catalyst bodies are put in the respective catalyst body dividing layers 4a, 4b, 4c, it is only necessary to mix the air amount of about 3% of the raw material gas amount. It was revealed that the outlet temperature of the heat receiving body 4 increased from 730 ° C to 750 ° C, and the methane conversion rate increased from 78% to 85%.

前述の実施例において、触媒体分割層4a, 4b,4cのうちの受熱体4の入口側の第1層 4aに酸化燃焼触媒層を設けた場合には、各部の 温度差が均一化されるので、前述の実施例より改 質性能としては良い結果が得られた。従って、前 述したようにわずかな空気量を原料ガスに混入す るだけで、改質性能の改善を計ることが可能とな る。 In the above-described embodiment, when the oxidation combustion catalyst layer is provided in the first layer 4a of the catalyst divided layers 4a, 4b, 4c on the inlet side of the heat receiving body 4, the temperature difference between the respective parts is equalized. Therefore, better results were obtained as the modification performance than the above-mentioned examples. Therefore, as mentioned above, it is possible to improve the reforming performance by simply mixing a small amount of air into the raw material gas.

このことのついて、具体的に実験して改質反 応を行い、メタンの総合転化率を調べた結果を第 2図に示している。横軸は注入する空気量で、原 料ガス量に対する比率で示してある。縦軸は空気 を注入することによって変化した分を空気注入量 がゼロのときをベースに示してある。 This is shown in Fig. 2 which shows the results of examining the total conversion rate of methane by conducting a concrete reaction in a reforming reaction. The horizontal axis is the amount of injected air, which is shown as a ratio to the amount of raw material gas. The vertical axis shows the amount changed by injecting air, based on when the air injection amount is zero.

曲線Aは注入した空気によってメタンが燃焼し、 これによって温度が上昇し、温度上昇により改質 反応が進み、メタン転化率が改善された分を示し ている。 Curve A shows the amount of methane burned by the injected air, which raises the temperature and the reforming reaction progresses due to the temperature rise, improving the methane conversion rate.

曲線Bは注入した空気によってメタンが燃焼す るので、このメタンの減少分を示している。そこ で、総合したメタンの転化率を曲線Cで示し、そ れぞれをΦ,Φ,Φとすると、 Φ=(1+Φ)×(1−Φ) で表される。Curve B shows the decrease of methane because methane is burned by the injected air. Here, the total conversion rate of methane is shown by a curve C, and Φ A , Φ B , and Φ C are respectively expressed as Φ C = (1 + Φ A ) × (1-Φ B ).

曲線Aは、原料ガスに空気を注入すると、大幅 に上昇するが、メタン転化率は100%を越える ことはないので、改善分はΦ=25%で飽和し ている。曲線Bは、注入空気量に直線的に比例し て増加している。従って、総合転化率改善分は注 入空気量が約11%程度で最高の改善分が得られ ている。そして、注入空気量を38%以上にする と、総合転化率は改善されず悪化する。このため 注入空気量の限度は38%以下になる。In curve A, when air is injected into the raw material gas, it greatly rises, but since the methane conversion rate does not exceed 100%, the improvement is saturated at Φ A = 25%. The curve B increases linearly with the injected air amount. Therefore, the total improvement in conversion rate was the highest when the amount of injected air was about 11%. When the amount of injected air is set to 38% or more, the total conversion rate is not improved and deteriorates. Therefore, the limit of the amount of injected air is 38% or less.

前述の第1の実施例は原料ガス量の38%以 下の空気量を混入した場合を示したが、この空気 の代りに原料ガス量の8.0%以下の酸素量を空 気管20から入れても同じ効果が得られる。 The first embodiment described above shows the case where an air amount of 38% or less of the raw material gas amount is mixed. Instead of this air, an oxygen amount of 8.0% or less of the raw material gas amount is supplied from the air tube 20. The same effect can be obtained by inserting it.

第3図は第2図と同様に、実験して改質反応を 行い、メタンの総合転化率を調べた結果を示し、 横軸は注入する酸素量で、原料ガス量に対する比 率で示してある。縦軸は酸素を注入することによ って変化した分を酸素注入量がゼロのときをベー スに示してある。この特性図から明らかなように、 総合転化率改善分は注入酸素量が約2.5%程度 で最高の改善分が得られている。そして、注入酸 素量を8%以上にすると、総合転化率は改善され ず悪化する。このため、注入酸素量の限度は8% 以下になる。 Similar to Fig. 2, Fig. 3 shows the results of an experiment in which the reforming reaction was carried out and the total conversion rate of methane was investigated. The horizontal axis shows the amount of injected oxygen, which is shown as the ratio to the amount of raw material gas. is there. The vertical axis shows the amount of change due to oxygen injection when the oxygen injection amount is zero. As is clear from this characteristic diagram, the maximum improvement in the total conversion was obtained when the injected oxygen amount was about 2.5%. When the injected oxygen amount is 8% or more, the total conversion rate is not improved but deteriorates. Therefore, the limit of the amount of injected oxygen is 8% or less.

前述の第1の実施例は、原料ガス8を受熱体 4の内部に入れ内側から外側の隔壁5に向う近寄 り流れについて説明した。この場合の流れの方が 空気注入による効果があるが、これと逆の流れ、 すなわち受熱体4の外側から内側に流れる場合に ついても実施が可能である。この逆の流れの場合 には温度分布は外側が温度が高く、内側が温度が 低いので酸化触媒層を設ける位置は内側が特に効 果がある。 In the above-mentioned first embodiment, the approaching flow from the inner side toward the outer partition wall 5 is described by introducing the raw material gas 8 into the heat receiving body 4. The flow in this case is more effective by injecting air, but the flow opposite to this, that is, the case where the heat flows from the outside to the inside of the heat receiving body 4, can also be implemented. In the case of this reverse flow, the temperature distribution is high on the outside and low on the inside, so the position where the oxidation catalyst layer is provided is particularly effective on the inside.

[発明の効果] 以上述べた本発明によれば、空気又は酸素を 原料ガスに混入させるだけで、非常に良い水蒸気 改質生成ガスを得る事ができる輻射伝熱形改質装 置を提供できる。 [Effects of the Invention] According to the present invention described above, it is possible to provide a radiant heat transfer type reforming apparatus capable of obtaining a very good steam reforming product gas simply by mixing air or oxygen into the raw material gas. ..

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の輻射伝熱形改質装置の第1 の実施例を示す縦断面図、第2図は本発明を実施 した場合の空気注入量による性能の変化を示す特 性図、第3図は本発明を実施した場合の酸素注入 量による性能の変化を示す特性図、第4図は従来 装置の輻射伝熱形改質装置の一例を示す縦断面図 である。 1…燃焼室、2…熱輻射体、3…受熱体、5… 隔壁、10…容器、11…原料ガス供給管、20 …空気管、22…小孔。 FIG. 1 is a vertical sectional view showing a first embodiment of a radiant heat transfer type reforming apparatus of the present invention, and FIG. 2 is a characteristic diagram showing a change in performance depending on an air injection amount when the present invention is carried out, FIG. 3 is a characteristic diagram showing a change in performance depending on the oxygen injection amount when the present invention is carried out, and FIG. 4 is a vertical sectional view showing an example of a radiant heat transfer reformer of a conventional device. DESCRIPTION OF SYMBOLS 1 ... Combustion chamber, 2 ... Thermal radiator, 3 ... Heat receiving body, 5 ... Partition wall, 10 ... Container, 11 ... Raw material gas supply pipe, 20 ... Air pipe, 22 ... Small hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に、ガス非透過性材料からな る隔壁を設けて、加熱室および被加熱室を形成し、 前記加熱室に多孔性輻射体を設けるとともに、前 記被加熱室に触媒体を設け、前記輻射体に高温ガ スを通過させて前記容器外部に排出させることに より、前記高温ガスの輻射熱で前記隔壁を介して 前記被加熱室内の触媒体を加熱し、この被加熱室 内に導入される原料ガスを前記触媒体に通過させ て改質ガスを得る改質装置において、 前記原料ガスが前記触媒体に入る手前で、前記 原料ガス量の38%以下の空気量を注入し、この空気 と前記原料ガスとを混合させて前記触媒体の入口 側に供給する空気供給手段を設けたことを特徴と する輻射伝熱形改質装置。1. A closed chamber is provided with a partition wall made of a gas impermeable material to form a heating chamber and a heated chamber, the heating chamber is provided with a porous radiator, and the heated chamber is also described above. A catalyst body is provided in the chamber, and a high-temperature gas is passed through the radiator to be discharged to the outside of the container, whereby the catalyst body in the heated chamber is heated by the radiant heat of the high-temperature gas through the partition wall. In a reformer for obtaining a reformed gas by passing a raw material gas introduced into a heated chamber to the catalyst body, an air of 38% or less of the raw material gas amount before the raw material gas enters the catalyst body. A radiant heat transfer reformer characterized by comprising an air supply means for injecting an amount of the air, mixing the air with the raw material gas, and supplying the mixed gas to the inlet side of the catalyst body. 【請求項2】 密閉容器内に、ガス非透過性材料からな る隔壁を設けて、加熱室および被加熱室を形成し、 前記加熱室に多孔性輻射体を設けるとともに、前 記被加熱室に触媒体を設け、前記輻射体に高温ガ スを通過させて前記容器外部に排出させることに より、前記高温ガスの輻射熱で前記隔壁を介して 前記被加熱室内の触媒体を加熱し、この被加熱室 内に導入される原料ガスを前記触媒体に通過させ て改質ガスを得る改質装置において、 前記原料ガスが前記触媒体に入る手前で、前記 原料ガス量の8.0%以下の酸素量を注入し、こ の酸素と前記原料ガスとを混合させて前記触媒体 の入口側に供給する酸素供給手段を設けたことを 特徴とする輻射伝熱形改質装置。2. A closed chamber is provided with a partition wall made of a gas impermeable material to form a heating chamber and a heated chamber, the heating chamber is provided with a porous radiator, and the heated chamber is also described above. A catalyst body is provided in the chamber, and a high-temperature gas is passed through the radiator to be discharged to the outside of the container, whereby the catalyst body in the heated chamber is heated by the radiant heat of the high-temperature gas through the partition wall. In a reformer for obtaining a reformed gas by passing a raw material gas introduced into a heated chamber through the catalyst body, the raw material gas is 8.0% or less of the raw material gas before entering the catalyst body. A radiant heat transfer reformer characterized by being provided with an oxygen supply means for injecting the oxygen amount of the above, mixing the oxygen with the raw material gas and supplying the mixed gas to the inlet side of the catalyst body.
JP2140203A 1990-05-30 1990-05-30 Radiation heat-transmission type reformer Pending JPH05306103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140203A JPH05306103A (en) 1990-05-30 1990-05-30 Radiation heat-transmission type reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140203A JPH05306103A (en) 1990-05-30 1990-05-30 Radiation heat-transmission type reformer

Publications (1)

Publication Number Publication Date
JPH05306103A true JPH05306103A (en) 1993-11-19

Family

ID=15263321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140203A Pending JPH05306103A (en) 1990-05-30 1990-05-30 Radiation heat-transmission type reformer

Country Status (1)

Country Link
JP (1) JPH05306103A (en)

Similar Documents

Publication Publication Date Title
US4729931A (en) Reforming of fuel inside fuel cell generator
US6835354B2 (en) Integrated reactor
US4746329A (en) Methanol fuel reformer
US7232553B2 (en) Plate type steam reformer
CA3115358C (en) Method and reactor for producing one or more products
JP2004171989A (en) Hydrogen generator for fuel cell
NO20023081L (en) Process and apparatus for obtaining increased production rate of thermal chemical reactions
JPS59107901A (en) Manufacture of product gas containing hydrogen and carbon oxide and apparatus therefor
JPS61247601A (en) Hydrocarbon fuel treating apparatus
RU2374173C1 (en) Method of producing synthetic gas
KR101243767B1 (en) Hydrogen production system for pemfc
JP2000203802A (en) Reformer
JP2000169102A (en) Fuel reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPH05306103A (en) Radiation heat-transmission type reformer
JP2004171892A (en) Hydrogen generator for fuel cell
JP2004185942A (en) Hydrogen generating device for fuel cell
JP4641115B2 (en) CO remover
JP2003335504A (en) Self-oxidatively and internally heated type reforming process and apparatus
JPH07106881B2 (en) Fuel cell reformer device
JP2004511415A (en) How to get hydrogen from hydrocarbons
CN218058473U (en) Carbon dioxide methane catalytic reforming self-heating device
JPH05301701A (en) Device for reforming fuel
JPS62246802A (en) Methanol reformer
JPH01157402A (en) Methanol reformer