JPH0530606B2 - - Google Patents

Info

Publication number
JPH0530606B2
JPH0530606B2 JP13174788A JP13174788A JPH0530606B2 JP H0530606 B2 JPH0530606 B2 JP H0530606B2 JP 13174788 A JP13174788 A JP 13174788A JP 13174788 A JP13174788 A JP 13174788A JP H0530606 B2 JPH0530606 B2 JP H0530606B2
Authority
JP
Japan
Prior art keywords
powder
polyacrylic acid
molding
molded
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13174788A
Other languages
Japanese (ja)
Other versions
JPH01301315A (en
Inventor
Tetsuo Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13174788A priority Critical patent/JPH01301315A/en
Publication of JPH01301315A publication Critical patent/JPH01301315A/en
Publication of JPH0530606B2 publication Critical patent/JPH0530606B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ポリアクリル酸金属塩の成形体の製
造方法に関する。詳しくは、金属塩の粉末を型内
に充填後、100Kg/cm2以上の圧力で加圧成形して
成形体とする方法に関する。 本発明の方法により得られる金属塩ポリマーの
成形体は、高い耐熱性と圧縮弾性率を有し、歯
車,ギヤー,航空機材建築構造材料,電子・電気
材料として有用である。 〔従来の技術〕 ポリアクリル酸金属塩の成形法としては、ポリ
アクリル酸粉末と二価金属酸化物の混合粉末を型
内で加熱溶融させてポリアクリル酸金属塩を生成
させ、これを加圧成形する方法が知られている。
しかしながら、この方法では成形体の離型性が悪
く、又、得られる成形体は割れや亀裂が生じ易
い。 本発明者は、先に、かかる欠点を解消し、ポリ
アクリル酸金属塩の粉末を加圧成形することによ
り、離形性が良好で高強度・高弾性率な成形体を
得る方法を提案した(特開昭62−74905,74906,
259818各号公報)。 〔発明が解決しようとする課題〕 上記の方法により、高い曲げ弾性率を有する任
意の形状の成形体が得られるが、それらの耐熱性
は200℃前後である。 本発明は、上記の高強度・高弾性率なポリアク
リル酸金属塩の成形体の製造方法において、さら
に耐熱性の高い成形体を得る方法を提供しようと
するものである。 〔課題を解決する具体的な手段〕 即ち、本発明は、ポリアクリル酸金属塩の粉末
を型内で100Kg/cm2以上の圧力で加圧成形して成
形体とする方法において、該粉末を加圧成形前に
150〜500℃で熱処理することを特徴とするポリア
クリル酸金属塩の成形体の製造方法を提供するも
のである。 (ポリアクリル酸金属塩) ポリアクリル酸金属塩は、例えばポリアクリル
酸と金属化合物とをアルカリ金属水酸化物水溶液
中でポリマーの酸性基1当量に対して金属イオン
が0.1〜20当量となるように反応させることによ
り得られる。 ポリアクリル酸は、アクリル酸80〜100モル%
と、他のビニルモノマー20〜0%とを共重合もし
くは重合させることにより得られる。このポリマ
ーの重合度は50〜1000000であり、成形体を高強
度にするためには重合度が大きいほうが良いので
100以上が好ましく、金属塩ポリマーの製造時に
使用するポリマー溶液は重合度が小さいほうが粘
度が小さく取り扱いが容易なので50000以下が好
ましい。 金属イオンとしては、Li+,Na+,K+,Rb+
Cs+,Be2+,Mg2+,Ca2+,Sr2+,Ba2+,La3+
Ti4+,Cr3+,Mn2+,Fe2+,Fe3+,Co2+,Ni2+
Cu+,Zn2+,Al3+,Sn4+,Pb2+等が利用できる。
これらは混合して用いても良い。 反応後析出沈澱させた金属塩ポリマーは、ろ過
により溶媒を分離した後、洗浄により未反応物、
副成物を除去し、ついで乾燥させ、必要により粉
砕し、0.01〜500ミクロンの粉末とし、成形材料
とする。緻密な成形体を得るには粒径は小さい方
が良いので200ミクロン以下が好ましく、取り扱
いの面では粒径が大きい方が容易なので0.1ミク
ロン以上が好ましい。 (粉末の熱処理) 得られた粉末は加圧成形前に150〜500℃で熱処
理する。熱処理雰囲気は空気、窒素等何であつて
も良いが、減圧下(0.0001〜100mmHg)で行う
ことが好ましい。 熱処理温度は150〜500℃であるが、熱処理効果
を上げるためには200℃以上が好ましく、試料の
熱劣化を防ぐためには400℃以下が好ましい。
熱処理時間は0.1〜100時間であるが、充分に且つ
効率的に熱処理するためには0.5時間以上、24時
間以内が好ましい。 また、熱処理は粉末を型内に充填した後に行つ
ても良い。 (粉末の加圧成形) 成形は、特開昭62−74906号公報等に記載の方
法により、粉末を圧縮金型のキヤビテイ内に充填
し、加熱、加圧することにより行なわれる。成形
圧力は、100〜100万Kg/cm2であり、緻密な成形体
を得るためには1000Kg/cm2以上、容易に入手でき
繰り返し使える型の耐圧性能の面からは10万Kg/
cm2以下が好ましい。3000〜5万Kg/cm2であればさ
らに好ましい。成形温度は50〜500℃であり、成
形を促進するためには100℃以上、ポリマーの分
解を防ぐためには400℃以下が好ましい。 加圧成形時の雰囲気は、窒素ガス下、ヘリウム
ガス下、空気下等何であつても良いが、減圧下
(0.0001〜100mmHg)で行うのが好ましい。 成形体の形状は、棒状、板状、歯車状等任意で
ある。この成形体は、必要に応じて熱処理を行つ
たり、切削や切断加工、穿孔加工等が可能であ
る。 (発明の効果) 本発明の方法により、高い弾性率(例えば3ギ
ガパスカル以上)、高耐熱性(例えば300℃以上)
を有し、絨密で割れや亀裂がない、フイルム状、
棒状、板状、ブロツク状、カム、歯車等任意の形
状の成形体が得られる。 〔実施例〕 以下、実施例により本発明を更に詳細に説明す
る。 ポリアクリル酸金属粉末の製造例 粉末 水1200c.c.にポリアクリル酸0.5当量とNaOH1.0
当量を溶解させた溶液に、水300c.c.にAlCl3・6
Hz01.0当量を溶解させた溶液を撹拌しつつ滴下さ
せ、生じた沈澱をろ過、洗浄した後に乾燥し粉砕
することにより当量比1対2のポリアクリル酸ア
ルミニウムの粉末を得た。 粉末 − 表1に示すポリマー溶液に金属化合物溶液を撹
拌しつつ滴下させ、生じた沈澱をろ過、洗浄した
後に乾燥し粉砕することにより、表1に示すポリ
アクリル酸金属塩の粉末−を得た。 金属塩の生成は赤外吸収スペクトルにおいて
1700cm-1のCo二重結合の吸収が1550cm-1のCOO
共鳴構造の吸収に移行すること、及びX線回折ス
ペクトルが非晶性パターンを示すことから確認し
た。 実施例 1 粉末を金型のハウジング材と内径35mm〓のシ
リンダーより形成されるキヤビテイに充填した。
ついでキヤビテイ内の空気を真空ポンプを用いて
排気しつつ、300℃で60分間乾燥熱処理後、1000
Kg/cm2の圧力を加えて300℃で60分加圧成形し、
肉厚3mm、径35mmの円板を得た。 この円板は、比重が1.85であり、色は白色であ
つた。 この円板から長さ15mm、幅3mm、厚さ3mmの直
方体を切削し、島津製作所(株)製オートグラフをも
ちい、0.5mm/分のクロスヘツドスピードで20℃
における圧縮弾性率を測定したところ、44.0ギガ
パスカル(GPa)であつた。圧縮強度は0.55GPa
であつた。 またこの円板から長さ33mm、幅5mm、厚さ1mm
の直方体を切削し、東洋ボールドウイン(株)製バイ
ブロンDDV/を用い曲げ弾性率の温度依存
性を測定したところ、第1図に示すように、400
℃まで昇温しても弾性率の低下はほとんど観測さ
れなかつた。弾性率が急激に低下する温度を耐熱
温度とするとこの成形体の耐熱温度は400℃以上
である。 実施例 2〜22 粉末〜を型内に充填し、表2に示す条件で
熱処理・成形を行い、同表に示す物性の成形体を
得た。 比較例 1 粉末をキヤビテイに充填した後、キヤビテイ
内の空気を真空ポンプを用いて排気しつつ、
10000Kg/cm2の圧力を加えて200℃で90分加圧成形
し、肉厚3mm、径35mmの円板を得た。 この円板は、比重が1.83であり、色は白色であ
つた。 実施例1と同様にして20℃における圧縮弾性率
を測定したところ、41.6ギガパスカル(GPa)で
あつた。圧縮強度は0.10GPaであつた。この円板
から長さ33mm、幅5mm、厚さ1mmの直方体を切削
し、曲げ弾性率の温度依存性を測定したところ、
230℃から弾性率が急激に低下しはじめた(第2
図)。 比較例 2〜10 粉末−を型内に充填し、表3に示す条件で
成形を行い、同表に示す物性の成形体を得た。
[Industrial Field of Application] The present invention relates to a method for producing a molded article of a metal salt of polyacrylate. Specifically, the present invention relates to a method of filling metal salt powder into a mold and then press-molding it at a pressure of 100 kg/cm 2 or more to form a molded body. The metal salt polymer molded product obtained by the method of the present invention has high heat resistance and compressive elastic modulus, and is useful as gears, aircraft materials, architectural structural materials, and electronic/electrical materials. [Prior art] The method for molding polyacrylic acid metal salts involves heating and melting a mixed powder of polyacrylic acid powder and divalent metal oxide in a mold to generate polyacrylic acid metal salts, which are then pressurized. A method of molding is known.
However, with this method, the releasability of the molded product is poor, and the molded product obtained is likely to crack or crack. The present inventor has previously proposed a method to eliminate such drawbacks and obtain a molded article with good mold release properties, high strength, and high modulus of elasticity by press-molding powder of metal salt of polyacrylate. (Unexamined Japanese Patent Publication No. 1983-74905, 74906,
259818 publications). [Problems to be Solved by the Invention] By the above method, molded bodies of any shape having a high flexural modulus can be obtained, but their heat resistance is around 200°C. The present invention aims to provide a method for producing a molded product of polyacrylic acid metal salt having high strength and high modulus of elasticity, and which also has higher heat resistance. [Specific Means for Solving the Problems] That is, the present invention provides a method for forming a molded body by pressure-molding a polyacrylic acid metal salt powder in a mold at a pressure of 100 kg/cm 2 or more. Before pressure molding
The present invention provides a method for producing a molded product of metal polyacrylic acid salt, which is characterized by heat treatment at 150 to 500°C. (Polyacrylic acid metal salt) Polyacrylic acid metal salt is produced by, for example, mixing polyacrylic acid and a metal compound in an aqueous alkali metal hydroxide solution such that the amount of metal ions is 0.1 to 20 equivalents per equivalent of the acidic group of the polymer. Obtained by reacting with Polyacrylic acid is 80-100 mol% acrylic acid
and 20 to 0% of other vinyl monomers are copolymerized or polymerized. The degree of polymerization of this polymer is 50 to 1,000,000, and in order to make the molded product high in strength, the higher the degree of polymerization, the better.
It is preferably 100 or more, and 50,000 or less is preferable because the smaller the polymerization degree of the polymer solution used in the production of the metal salt polymer, the lower the viscosity and the easier handling. Metal ions include Li + , Na + , K + , Rb + ,
Cs + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , La 3+ ,
Ti 4+ , Cr 3+ , Mn 2+ , Fe 2+ , Fe 3+ , Co 2+ , Ni 2+ ,
Cu + , Zn 2+ , Al 3+ , Sn 4+ , Pb 2+ etc. can be used.
These may be used in combination. After the reaction, the precipitated metal salt polymer is filtered to separate the solvent, and then washed to remove unreacted materials and
By-products are removed, then dried and, if necessary, ground to form a powder of 0.01 to 500 microns, which is used as a molding material. In order to obtain a dense molded product, the smaller the particle size, the better, so the particle size is preferably 200 microns or less, and in terms of handling, the larger the particle size, the easier it is, so the particle size is preferably 0.1 micron or more. (Heat treatment of powder) The obtained powder is heat treated at 150 to 500°C before pressure molding. The heat treatment atmosphere may be air, nitrogen, or any other atmosphere, but it is preferable to conduct the heat treatment under reduced pressure (0.0001 to 100 mmHg). The heat treatment temperature is 150 to 500°C, preferably 200°C or higher to increase the heat treatment effect, and preferably 400°C or lower to prevent thermal deterioration of the sample.
The heat treatment time is 0.1 to 100 hours, but preferably 0.5 hours or more and 24 hours or less for sufficient and efficient heat treatment. Further, the heat treatment may be performed after filling the powder into the mold. (Pressure molding of powder) Molding is carried out by filling powder into a cavity of a compression mold, heating and pressurizing the powder according to the method described in JP-A-62-74906 and the like. The molding pressure is 1 million to 1 million Kg/cm 2 , 1000 Kg/cm 2 or more to obtain a dense molded product, and 100,000 Kg/cm 2 or more in terms of pressure resistance of a mold that is easily available and can be used repeatedly.
cm 2 or less is preferable. It is more preferable if it is 3000 to 50,000 kg/cm 2 . The molding temperature is 50 to 500°C, preferably 100°C or higher to promote molding and 400°C or lower to prevent polymer decomposition. The atmosphere during pressure molding may be any atmosphere such as nitrogen gas, helium gas, air, etc., but it is preferably carried out under reduced pressure (0.0001 to 100 mmHg). The shape of the molded body is arbitrary, such as a rod shape, a plate shape, and a gear shape. This molded body can be subjected to heat treatment, cutting, cutting, perforation, etc., as necessary. (Effects of the Invention) The method of the present invention provides high elastic modulus (e.g. 3 gigapascals or more) and high heat resistance (e.g. 300°C or more).
film-like, dense and free of cracks and cracks,
Molded bodies of arbitrary shapes such as rods, plates, blocks, cams, gears, etc. can be obtained. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Production example of polyacrylic acid metal powder Powder 0.5 equivalent of polyacrylic acid and 1.0 NaOH in 1200 c.c. of water
A solution containing an equivalent amount of AlCl 3.6 in 300 c.c. of water.
A solution in which 01.0 equivalent of Hz was dissolved was added dropwise with stirring, and the resulting precipitate was filtered, washed, dried, and ground to obtain powder of aluminum polyacrylate with an equivalent ratio of 1:2. Powder - A metal compound solution was added dropwise to the polymer solution shown in Table 1 while stirring, and the resulting precipitate was filtered, washed, dried and crushed to obtain a powder of polyacrylic acid metal salt shown in Table 1. . The formation of metal salts is observed in the infrared absorption spectrum.
Co double bond absorption of 1700 cm -1 is COO of 1550 cm -1
This was confirmed because the absorption shifted to a resonance structure and the X-ray diffraction spectrum showed an amorphous pattern. Example 1 Powder was filled into a cavity formed by a mold housing material and a cylinder with an inner diameter of 35 mm.
Next, while exhausting the air inside the cavity using a vacuum pump, it was subjected to dry heat treatment at 300℃ for 60 minutes, and then heated to 1000℃.
Pressure molded at 300℃ for 60 minutes with a pressure of Kg/ cm2 ,
A disk with a wall thickness of 3 mm and a diameter of 35 mm was obtained. This disk had a specific gravity of 1.85 and was white in color. A rectangular parallelepiped with a length of 15 mm, a width of 3 mm, and a thickness of 3 mm was cut from this disk and cut at 20°C using an autograph manufactured by Shimadzu Corporation at a crosshead speed of 0.5 mm/min.
The compressive modulus of elasticity was measured at 44.0 gigapascals (GPa). Compressive strength is 0.55GPa
It was hot. Also, from this disk, the length is 33 mm, the width is 5 mm, and the thickness is 1 mm.
A rectangular parallelepiped was cut and the temperature dependence of the flexural modulus was measured using a Viblon DDV/manufactured by Toyo Baldwin Co., Ltd. As shown in Figure 1, 400
Even when the temperature was raised to ℃, almost no decrease in the elastic modulus was observed. If the temperature at which the elastic modulus rapidly decreases is defined as the heat-resistant temperature, the heat-resistant temperature of this molded article is 400°C or higher. Examples 2 to 22 The powders were filled into a mold and heat treated and molded under the conditions shown in Table 2 to obtain molded bodies having the physical properties shown in Table 2. Comparative Example 1 After filling the powder into the cavity, while evacuating the air in the cavity using a vacuum pump,
Pressure molding was performed at 200° C. for 90 minutes under a pressure of 10,000 Kg/cm 2 to obtain a disk with a wall thickness of 3 mm and a diameter of 35 mm. This disk had a specific gravity of 1.83 and was white in color. The compressive elastic modulus at 20° C. was measured in the same manner as in Example 1, and was found to be 41.6 gigapascals (GPa). The compressive strength was 0.10 GPa. A rectangular parallelepiped with a length of 33 mm, width of 5 mm, and thickness of 1 mm was cut from this disk, and the temperature dependence of the flexural modulus was measured.
The elastic modulus started to decrease rapidly from 230℃ (second
figure). Comparative Examples 2 to 10 Powder was filled into a mold and molded under the conditions shown in Table 3 to obtain molded bodies having the physical properties shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ実施例1及び比
較例1で成形した成形体の動的曲げ弾性率の温度
依存性を示す図である。 tand……弾性損失率、E′……弾性率、E″……
弾性損失、lGPa=1010dyne/cm2
FIG. 1 and FIG. 2 are diagrams showing the temperature dependence of the dynamic flexural modulus of the molded bodies molded in Example 1 and Comparative Example 1, respectively. tand……elastic loss rate, E′……modulus of elasticity, E″……
Elastic loss, lGPa=10 10 dyne/cm 2 .

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアクリル酸金属塩の粉末を型内で100
Kg/cm2以上の圧力で加圧成形して成形体とする方
法において、該粉末を加圧成形前に150〜500℃で
熱処理することを特徴とするポリアクリル酸金属
塩の成形体の製造方法。
1. 100% polyacrylic acid metal salt powder in a mold.
Production of a molded body of polyacrylic acid metal salt, characterized in that the powder is heat-treated at 150 to 500°C before pressure molding, in a method of forming a molded body by pressure molding at a pressure of Kg/cm 2 or more. Method.
JP13174788A 1988-05-31 1988-05-31 Manufacture of polyacrylic acid metallic salt molding Granted JPH01301315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13174788A JPH01301315A (en) 1988-05-31 1988-05-31 Manufacture of polyacrylic acid metallic salt molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13174788A JPH01301315A (en) 1988-05-31 1988-05-31 Manufacture of polyacrylic acid metallic salt molding

Publications (2)

Publication Number Publication Date
JPH01301315A JPH01301315A (en) 1989-12-05
JPH0530606B2 true JPH0530606B2 (en) 1993-05-10

Family

ID=15065246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13174788A Granted JPH01301315A (en) 1988-05-31 1988-05-31 Manufacture of polyacrylic acid metallic salt molding

Country Status (1)

Country Link
JP (1) JPH01301315A (en)

Also Published As

Publication number Publication date
JPH01301315A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
JP2001510432A (en) Gel Strengthening Additives for Agaroid-Based Injection Molding Compositions
US3825653A (en) Process for preparing sinterable aluminum titanate powder
JPS63282171A (en) Production of material based on calcium phosphate
JPS6221060B2 (en)
CN102060514A (en) Method for preparing high-density magnesia ceramic
JPH0530606B2 (en)
JPS6230668A (en) Manufacture of homogeneous yttria-alumina-doped silicon nitride product
JPH0134770B2 (en)
JPH0478643B2 (en)
RU2731751C1 (en) Method of making porous articles of spherical shape based on zirconium dioxide
JPS6330214A (en) Manufacture of molded material of metallic salt polymer
JPH0369545A (en) Manufacturing white ware ceramic product
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPS61146735A (en) Manufacture of glass ceramic
CN115403363B (en) Preparation process of aluminum oxide ceramic sheet for radiator
JP2001122654A (en) Inorganic fiber-reinforced composite body and its production process
JPS5926966A (en) Manufacture of ceramics green molded body
US4732721A (en) Method for production of shaped bodies of metal salts of polyacrylic acid
JPS5969428A (en) Manufacture of ultrafine powder of zirconium oxide
JPH0735304B2 (en) Method for manufacturing boron nitride sintered body
JP2614874B2 (en) Pressureless sintered boron nitride compact
JPS6355114A (en) Alpha alumina and manufacture
JP3228890B2 (en) Manufacturing method of porous inorganic material
JP2523693B2 (en) Ceramics manufacturing method
JP4447178B2 (en) Manufacturing method of ceramics based on dry pressure molded body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term