JPH05305673A - Optical shaping apparatus - Google Patents
Optical shaping apparatusInfo
- Publication number
- JPH05305673A JPH05305673A JP4134475A JP13447592A JPH05305673A JP H05305673 A JPH05305673 A JP H05305673A JP 4134475 A JP4134475 A JP 4134475A JP 13447592 A JP13447592 A JP 13447592A JP H05305673 A JPH05305673 A JP H05305673A
- Authority
- JP
- Japan
- Prior art keywords
- photo
- resin liquid
- photocurable
- layer
- photocurable resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/02—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C41/12—Spreading-out the material on a substrate, e.g. on the surface of a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
- B29K2995/0073—Roughness, e.g. anti-slip smooth
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光硬化性樹脂液への光
の照射により三次元の樹脂モデルを形成する光学的造形
装置に関し、とくに光照射時における光硬化性樹脂液の
液面を平滑化することが可能な装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modeling apparatus for forming a three-dimensional resin model by irradiating a photocurable resin liquid with light, and more particularly, to a liquid surface of the photocurable resin liquid during light irradiation. The present invention relates to a device capable of smoothing.
【0002】[0002]
【従来の技術】複雑な三次元形状を成形型や特別な加工
工具を用いることなく容易に製作できる手段として、光
学的造形法が知られている。これに関連する先行技術と
して、特開昭64−8021号公報、特開平1−228
827号公報、特開平2−103128号公報が知られ
ている。2. Description of the Related Art An optical molding method is known as a means for easily manufacturing a complicated three-dimensional shape without using a molding die or a special processing tool. As prior arts related to this, Japanese Patent Laid-Open No. 64-8021 and Japanese Patent Laid-Open No. 1-228-128.
Japanese Unexamined Patent Publication No. 827 and Japanese Unexamined Patent Publication No. 2-103128 are known.
【0003】図7は光学的造形法による三次元モデルの
製作工程を示している。図7において、1は光硬化性樹
脂液2が収容される貯溜槽を示している。貯溜槽1内に
は、昇降可能な成形台3が配置されている。成形台3の
上方には、レーザ光Lを照射する光照射部5が配置され
ている。光照射部5は、三次元形状の断面形状に基づい
てレーザ光Lを走査するようになっている。FIG. 7 shows a manufacturing process of a three-dimensional model by an optical modeling method. In FIG. 7, reference numeral 1 denotes a storage tank in which the photocurable resin liquid 2 is stored. Inside the storage tank 1, a molding table 3 that can move up and down is arranged. A light irradiation unit 5 that irradiates the laser light L is arranged above the molding table 3. The light irradiation unit 5 scans the laser light L based on the three-dimensional cross-sectional shape.
【0004】図7の光学的造形装置においては、図7の
(A)に示すように、成形台3の上方に位置する光硬化
性樹脂液2にレーザ光Lが照射される。レーザ光Lが照
射されると、図7の(B)に示すように、光硬化層2a
が形成される。光硬化層2aが形成されると、成形台3
が下降し成形台に接合された光硬化層2aが光硬化性樹
脂液2の液面から距離△Hだけ埋没される。この状態で
は、図7の(C)に示すように、光硬化層2aを覆う光
硬化性樹脂液2にレーザ光Lが照射される。In the optical modeling apparatus of FIG. 7, as shown in FIG. 7A, the photocurable resin liquid 2 located above the molding table 3 is irradiated with the laser beam L. When the laser light L is irradiated, as shown in FIG.
Is formed. When the photocurable layer 2a is formed, the molding table 3 is formed.
Is lowered and the photocurable layer 2a joined to the molding table is buried by a distance ΔH from the liquid surface of the photocurable resin liquid 2. In this state, as shown in FIG. 7C, the photocurable resin liquid 2 covering the photocurable layer 2a is irradiated with the laser light L.
【0005】図7の(D)および(E)では、光硬化性
樹脂液2へのレーザ光Lの照射および光硬化層2aの光
硬化性樹脂液1への埋没が繰返えされ、光硬化層2aの
積み重ねが行なわれる。これにより、図7の(F)に示
す三次元モデルである立体樹脂モデル9が形成される。In FIGS. 7D and 7E, the irradiation of the photocurable resin liquid 2 with the laser light L and the burying of the photocurable layer 2a in the photocurable resin liquid 1 are repeated, and The hardened layers 2a are stacked. As a result, the three-dimensional resin model 9 that is the three-dimensional model shown in FIG. 7F is formed.
【0006】しかしながら、図7に示す従来の光学的造
形法においては、つぎのような現象が存在するため、実
際には図8の(A)に示すような方法が採用されてい
る。以下これについて説明する。図7の場合は、光硬化
性樹脂液2へのレーザ光Lの照射によって光硬化層2a
が形成されると、成形台3を距離△H(たとえば0.1
〜0.2mm)だけ下降させ、光硬化層2aの表面を光
硬化樹脂液2で覆うようにしているが、実際は距離△H
が極小のため、光硬化性樹脂液2の表面張力によって光
硬化層2aを光硬化性樹脂液2に埋没させることができ
ない。However, in the conventional optical modeling method shown in FIG. 7, since the following phenomenon exists, the method shown in FIG. 8A is actually used. This will be described below. In the case of FIG. 7, the photocurable layer 2a is formed by irradiating the photocurable resin liquid 2 with the laser beam L.
Is formed, a distance ΔH (for example, 0.1
(About .about.0.2 mm) to cover the surface of the photo-curing layer 2a with the photo-curing resin liquid 2, but in reality, the distance ΔH
However, the photo-curable resin liquid 2 cannot be embedded in the photo-curable resin liquid 2 due to the surface tension of the photo-curable resin liquid 2.
【0007】これに対処するため、図8の(A)に示す
ように、成形台3を一旦大きく下降させ、光硬化層2a
を完全に光硬化樹脂液2に浸漬させてから成形台3を上
昇させ、光硬化樹脂液2の液面と光硬化層2aの表面と
の間の距離を△Hに保つようにしている。In order to deal with this, as shown in FIG. 8A, the molding table 3 is once lowered largely and the photocurable layer 2a is formed.
Is completely immersed in the photocurable resin liquid 2 and then the molding table 3 is raised to keep the distance between the liquid surface of the photocurable resin liquid 2 and the surface of the photocurable layer 2a at ΔH.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、図8の
(A)のように、光硬化層2aを完全に光硬化樹脂液2
に浸漬させてから成形台3を上昇させる場合は、図8の
(B)に示すように、表面張力によって光硬化樹脂液2
の液面Sが凸状に盛上がってしまい、光硬化樹脂液2の
液面と光硬化層2aの表面との間の距離△Hを正確に保
つことができなくなる。この光硬化樹脂液2の盛上がり
が大きいと、図12の(A)に示すように、光硬化層2
aを覆う光硬化樹脂液2の部分をレーザ光Lを照射によ
って十分に硬化させることが難しくなり、既に成形され
た光硬化層2aとの十分な接合ができなくなる。したが
って、図12の(B)に示すように、盛上がった部分に
対応する光硬化層2aが既に形成された光硬化層2aか
ら離脱するおそれがあり、三次元モデルの精度が悪化す
る。However, as shown in FIG. 8A, the photo-curable layer 2a is completely covered with the photo-curable resin liquid 2.
When the molding table 3 is raised after being dipped in the photocurable resin liquid 2 due to surface tension, as shown in FIG.
The liquid surface S of the above-mentioned rises in a convex shape, and it becomes impossible to accurately maintain the distance ΔH between the liquid surface of the photocurable resin liquid 2 and the surface of the photocurable layer 2a. If the rise of the photocurable resin liquid 2 is large, as shown in FIG.
It becomes difficult to sufficiently cure the portion of the photocurable resin liquid 2 covering a by irradiation with the laser light L, and sufficient bonding with the already-cured photocurable layer 2a cannot be achieved. Therefore, as shown in FIG. 12B, the photo-curable layer 2a corresponding to the raised portion may be separated from the photo-curable layer 2a already formed, and the accuracy of the three-dimensional model deteriorates.
【0009】本発明は、上記の問題に着目し、光硬化層
を覆う光硬化樹脂液の液面を平滑化することが可能な光
学的造形装置を提供することを目的とする。In view of the above problems, it is an object of the present invention to provide an optical modeling apparatus capable of smoothing the surface of the photocurable resin liquid covering the photocurable layer.
【0010】[0010]
【課題を解決するための手段】この目的に沿う本発明に
係る光学的造形装置は、光硬化性樹脂液の液面に光を照
射して光硬化層を形成し、該光硬化層が載せられる成形
台を一定量下降させることにより光硬化層を前記光硬化
性樹脂液に埋没させ、前記光硬化層を覆う光硬化性樹脂
液への光の照射と光硬化層の光硬化性樹脂液への埋没と
を繰返すことにより光硬化層を積み重ね、三次元の樹脂
モデルを製作する光学的造形装置において、前記成形台
の上方に、前記光硬化性樹脂液の液面に沿って移動し光
硬化層を覆う光硬化性樹脂液の液面の不必要な盛上がり
をかき落す平滑手段を設けたものから成る。An optical modeling apparatus according to the present invention which meets the above-mentioned object, irradiates the liquid surface of a photocurable resin liquid with light to form a photocurable layer, and the photocurable layer is mounted thereon. The photocurable layer is embedded in the photocurable resin liquid by lowering the molding table by a certain amount, and the photocurable resin liquid covering the photocurable layer is irradiated with light and the photocurable resin liquid of the photocurable layer is applied. In the optical modeling apparatus that stacks the photo-curing layers by repeating the step of burying the photo-curing layer in the optical modeling apparatus to manufacture a three-dimensional resin model, the photo-curing resin liquid is moved along the liquid surface above the molding table. It is provided with a smoothing means for scraping off unnecessary bulges on the surface of the photocurable resin liquid covering the cured layer.
【0011】[0011]
【作用】このように構成された光学的造形装置において
は、光硬化性樹脂液の液面に沿って移動する平滑手段に
より、光硬化性樹脂液の液面の不必要な盛上がりがかき
落される。そのため、光硬化性樹脂液の液面は平坦とな
り、光硬化層の表面と光硬化性樹脂液の液面との間の距
離は一定に保たれる。したがって、光硬化層を覆う光硬
化性樹脂液は全体にわたり硬化され、既存の光硬化層と
新たな光硬化層との接合は確実に行なわれる。In the optical modeling apparatus configured as described above, the unnecessary rising of the liquid surface of the photocurable resin liquid is scraped off by the smoothing means which moves along the liquid surface of the photocurable resin liquid. It Therefore, the liquid surface of the photocurable resin liquid becomes flat, and the distance between the surface of the photocurable layer and the liquid surface of the photocurable resin liquid is kept constant. Therefore, the photocurable resin liquid covering the photocurable layer is cured over the entire area, and the existing photocurable layer and the new photocurable layer are reliably bonded.
【0012】[0012]
【実施例】以下に、本発明に係る光学的造形装置の望ま
しい実施例を、図面を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of an optical modeling apparatus according to the present invention will be described below with reference to the drawings.
【0013】第1実施例 図1ないし図4は、本発明の第1実施例を示している。
図1および図2に示すように、光学的造形装置11は、
樹脂液貯溜手段21、昇降手段31、レーザ光照射手段
41、制御手段51、平滑手段61とから構成されてい
る。First Embodiment FIGS. 1 to 4 show a first embodiment of the present invention.
As shown in FIGS. 1 and 2, the optical modeling apparatus 11 includes
It is composed of a resin liquid storage means 21, an elevating means 31, a laser light irradiation means 41, a control means 51, and a smoothing means 61.
【0014】樹脂液貯溜手段21は、貯溜タンク22、
オーバフロータンク23、循環ポンプ24を有してい
る。貯溜タンク22には、レーザ光の照射によって硬化
する光硬化性樹脂液15が貯溜されている。貯溜タンク
22の外側には、オーバフロータンク23が配置されて
いる。貯溜タンク22内とオーバフロータンク23内
は、循環ポンプ24が配置される通路25を介して連通
可能となっている。The resin liquid storage means 21 comprises a storage tank 22,
It has an overflow tank 23 and a circulation pump 24. The storage tank 22 stores a photocurable resin liquid 15 which is cured by irradiation with laser light. An overflow tank 23 is arranged outside the storage tank 22. The storage tank 22 and the overflow tank 23 can communicate with each other via a passage 25 in which a circulation pump 24 is arranged.
【0015】循環ポンプ24は、貯溜タンク22からオ
ーバフロータンク23側にあふれ出た光硬化性樹脂液1
5を貯溜タンク22に戻す機能を有している。循環ポン
プ24の作動中は、貯溜タンク22から常に光硬化性樹
脂液15があふれるようになっており、これにより光硬
化性樹脂液15の液面Sの位置が一定に保たれている。
循環ポンプ24は、後述する制御手段51によって運転
制御されている。The circulation pump 24 has the photocurable resin liquid 1 overflowing from the storage tank 22 to the overflow tank 23 side.
5 has a function of returning to the storage tank 22. The photocurable resin liquid 15 always overflows from the storage tank 22 during the operation of the circulation pump 24, whereby the position of the liquid surface S of the photocurable resin liquid 15 is kept constant.
The operation of the circulation pump 24 is controlled by the control means 51 described later.
【0016】貯溜タンク22内には、昇降手段31の成
形台32が配置されている。昇降手段31は、成形台3
2、送りねじ部33、モータ34から構成されている。
成形台32は、板状部材からなり上下方向に貫通する複
数の孔32aを有している。成形台32の一方には、送
りねじ部33が取付けられている。送りねじ部33の一
端は、モータ34に連結されている。モータ34は、制
御手段51からの信号に基づいて回転駆動され、このモ
ータ34の回転駆動により送りねじ部33が回転し、成
形台32が上下方向に移動するようになっている。Inside the storage tank 22, a molding table 32 of the elevating means 31 is arranged. The elevating means 31 is the molding table 3
2, the feed screw portion 33, and the motor 34.
The molding table 32 is made of a plate-shaped member and has a plurality of holes 32a penetrating in the vertical direction. A feed screw portion 33 is attached to one side of the molding table 32. One end of the feed screw portion 33 is connected to the motor 34. The motor 34 is rotationally driven based on a signal from the control means 51, and the rotational driving of the motor 34 causes the feed screw portion 33 to rotate and the molding table 32 to move in the vertical direction.
【0017】成形台32の上方には、レーザ光照射手段
41が設けられている。レーザ光照射手段41は、走査
制御部42、レーザ光照射部43を有している。レーザ
光照射部43は、走査制御部42からの信号に基づいて
レーザ光Lを所定の範囲で走査するように構成されてい
る。走査制御部42は、制御手段51からの指令によっ
て制御されるようになっている。A laser light irradiation means 41 is provided above the molding table 32. The laser light irradiation means 41 has a scanning control unit 42 and a laser light irradiation unit 43. The laser light irradiation unit 43 is configured to scan the laser light L within a predetermined range based on a signal from the scan control unit 42. The scanning control unit 42 is controlled by a command from the control means 51.
【0018】成形台32の上方には、平滑手段61が配
置されている。平滑手段61は、平滑板62、ガイド機
構部63、送りねじ部64、モータ65を有している。
平滑板62は、光硬化性樹脂液15の液面Sに沿って延
びる板状部材から構成されている。平滑板62の両端
は、光硬化性樹脂液15の液面Sに対して平行に延びる
ガイド機構部63に摺動可能に保持されている。平滑板
62には、送りねじ部64が連結されている。送りねじ
部64の一端は、モータ65に連結されている。モータ
65は、制御手段51からの信号に基づいて回転駆動さ
れ、送りねじ部64が回転するようになっている。送り
ねじ部64が回転すると、平滑板62が光硬化樹脂液1
5の液面Sに沿って移動し、光硬化樹脂液15の液面S
が平滑化されるようになっている。Above the molding table 32, smoothing means 61 is arranged. The smoothing means 61 has a smoothing plate 62, a guide mechanism portion 63, a feed screw portion 64, and a motor 65.
The smooth plate 62 is composed of a plate-shaped member extending along the liquid surface S of the photocurable resin liquid 15. Both ends of the smooth plate 62 are slidably held by guide mechanism portions 63 extending parallel to the liquid surface S of the photocurable resin liquid 15. A feed screw portion 64 is connected to the smooth plate 62. One end of the feed screw portion 64 is connected to the motor 65. The motor 65 is rotationally driven based on the signal from the control means 51, and the feed screw portion 64 is rotated. When the feed screw portion 64 rotates, the smooth plate 62 moves to the photocurable resin liquid 1
5 along the liquid surface S of the photocurable resin liquid 15
Is smoothed.
【0019】本実施例では、平滑板62の駆動を送りね
じ部64の回転によって行なう構成としているが、空気
圧を利用したアクチュエータによる送り機構を用いた構
成としてもよい。また、平滑手段61の平滑板62は1
枚の板状部材から構成することも可能であるが、本実施
例では、平滑板62は複数に分割されている。このよう
に、平滑板62を分割したのは、以下の理由による。In this embodiment, the smoothing plate 62 is driven by the rotation of the feed screw portion 64, but a feed mechanism using an actuator utilizing air pressure may be used. Further, the smoothing plate 62 of the smoothing means 61 is 1
Although it may be composed of a single plate member, the smooth plate 62 is divided into a plurality of parts in this embodiment. The reason why the smooth plate 62 is divided in this way is as follows.
【0020】図9に示すように、光硬化性樹脂液を硬化
させることが可能な領域のうち、三次モデルの種類によ
って光硬化層が形成される部分K1 と、光硬化層が形成
されない部分K2 とが生じる。したがって、光硬化層が
形成される部分とされない部分とでは、光硬化性樹脂液
15の液面Sの表面張力が異なり、図10に示すよう
に、これに起因して光硬化性樹脂液15の液面の盛上が
りの程度H1 、H2 、H 3 が異なるという現象が生じ
る。そのため、平滑板62を一体型とすると、レーザ光
を照射する時点においては、ある領域では光硬化性樹脂
液15が除去されすぎ、ある領域では樹脂液の除去が不
十分となる現象が生じる。As shown in FIG. 9, the photocurable resin liquid is cured.
Of the possible regions, depending on the type of cubic model
Part K where the photo-cured layer is formed1And a photo-cured layer is formed
Part not to be K2And occur. Therefore, the photocurable layer
The part that is formed and the part that is not formed are
The surface tension of the liquid surface S of 15 is different, and as shown in FIG.
Due to this, the rise of the liquid level of the photocurable resin liquid 15
Degree H1, H2, H 3The phenomenon that
It Therefore, if the smooth plate 62 is an integrated type, the laser light
At the time of irradiating
The liquid 15 is removed too much, and the resin liquid cannot be removed in some areas.
The phenomenon that becomes sufficient occurs.
【0021】そこで、本実施例では、レーザ光Lを照射
する時点で、光硬化層15aを覆う光硬化性樹脂液15
の液面Sのレベルが一定となるように、平滑板62を分
割し、分割された各平滑板62aの昇降制御を行なうよ
うにしている。図4は、各平滑板62aの水平方向の移
動および垂直方向の移動を行うための制御系統を示して
いる。Therefore, in this embodiment, the photocurable resin liquid 15 that covers the photocurable layer 15a at the time of irradiating the laser light L is used.
The smooth plate 62 is divided so that the level of the liquid surface S is constant, and the vertical movement control of each of the divided smooth plates 62a is performed. FIG. 4 shows a control system for moving the smooth plates 62a in the horizontal direction and the vertical direction.
【0022】図4において、成形台32の上方には、光
硬化性樹脂液15の液面Sに沿って複数の平滑板62a
が配置されている。各平滑板62aには、送りねじ部6
7が連結されている。送りねじ部67の上端部は、モー
タ68に連結されている。各モータ68は、制御手段5
1からの指令によって制御されるようになっている。各
モータ61が回転すると、送りねじ部67の回転によっ
て各平滑板62aは昇降するようになっている。制御手
段51は、光硬化層15aの表面形状に応じて各平滑板
62aの昇降量を制御するようになっている。In FIG. 4, above the molding table 32, a plurality of smooth plates 62a are provided along the liquid surface S of the photocurable resin liquid 15.
Are arranged. Each smooth plate 62a has a feed screw portion 6
7 are connected. The upper end of the feed screw portion 67 is connected to the motor 68. Each motor 68 has a control means 5
It is controlled by the command from 1. When each motor 61 rotates, each smooth plate 62a moves up and down by the rotation of the feed screw portion 67. The control means 51 controls the amount of elevation of each smooth plate 62a according to the surface shape of the photocurable layer 15a.
【0023】各平滑板62aは、ガイド機構部69によ
って摺動自在に保持されている。各平滑板62aを保持
するガイド機構部69は、第1実施例と同様に送りねじ
部64を介してモータ65と連結されている。モータ6
5が制御手段51によって回転駆動されると、送りねじ
部64が回転し、各平滑板62aが同時に水平方向に移
動するようになっている。Each smooth plate 62a is slidably held by a guide mechanism 69. The guide mechanism portion 69 that holds each smooth plate 62a is connected to the motor 65 via the feed screw portion 64 as in the first embodiment. Motor 6
When 5 is rotationally driven by the control means 51, the feed screw portion 64 rotates and each smoothing plate 62a simultaneously moves in the horizontal direction.
【0024】制御手段51は、コンピュータからなり入
力部52を介して三次元モデルの製作情報が入力可能と
なっている。制御手段51は、図3に示すように、三次
元モデル情報Mを画像データD1 に変更し、画像データ
D1 から三次元モデルMのカットデータD2 を作成する
機能を有している。このカットデータD2 は、一定距離
毎の三次元モデルの断面形状データであり、このカット
データに基づきレーザ光の走査範囲が制御されるように
なっている。制御手段51は、カットデータ等の処理情
報を出力部53を介して表示するようになっている。The control means 51 is composed of a computer and is capable of inputting production information of the three-dimensional model via the input section 52. As shown in FIG. 3, the control means 51 has a function of changing the three-dimensional model information M into image data D 1 and creating cut data D 2 of the three-dimensional model M from the image data D 1 . The cut data D 2 is the cross-sectional shape data of the three-dimensional model for each constant distance, and the scanning range of the laser light is controlled based on the cut data. The control means 51 is adapted to display processing information such as cut data via the output section 53.
【0025】制御手段51は、レーザ光Lの走査制御の
他に、上述した循環ポンプ24、昇降手段31のモータ
34、平滑手段61のモータ65を制御する機能を有し
ている。これによって、光硬化性樹脂液15へのレーザ
光Lの照射と、レーザ光Lの照射による光硬化層15a
の成形と、光硬化層15aが載せられる成形台32の昇
降動作とが順序よく繰返し行なわれ、光硬化層15aの
積み重ねが行なわれる。制御手段51による各部の制御
が完了した状態では、図3に示す三次元の樹脂モデル1
6が形成される。The control means 51 has the function of controlling the circulation pump 24, the motor 34 of the elevating means 31, and the motor 65 of the smoothing means 61, in addition to the scanning control of the laser light L. As a result, the photocurable resin liquid 15 is irradiated with the laser light L, and the photocurable layer 15a is irradiated with the laser light L.
And the raising and lowering operation of the molding table 32 on which the photo-curable layer 15a is placed are sequentially and repeatedly performed to stack the photo-curable layers 15a. When the control of each part by the control means 51 is completed, the three-dimensional resin model 1 shown in FIG.
6 is formed.
【0026】つぎに、第1実施例における作用について
説明する。三次元モデル16の製作工程における最初の
工程では、昇降手段31のモータ34の回転によって成
形台32が下降し、成形台32は光硬化性樹脂液15中
に埋没される。成形台32が光硬化性樹脂液15に深く
埋没されると、モータ34の逆回転によって成形台32
が上昇し、成形台32は所定の位置に停止される。Next, the operation of the first embodiment will be described. In the first step of the manufacturing process of the three-dimensional model 16, the molding table 32 is lowered by the rotation of the motor 34 of the elevating means 31, and the molding table 32 is embedded in the photocurable resin liquid 15. When the molding table 32 is deeply embedded in the photo-curable resin liquid 15, the motor 34 rotates in the reverse direction so that the molding table 32 is
Rises and the molding table 32 is stopped at a predetermined position.
【0027】成形台32の位置決めが完了すると、平滑
手段61のモータ65の回転によって平滑板62が移動
され、表面張力による光硬化性樹脂液15の不必要な盛
上がり部分がかき落される。すなわち、平滑板62の移
動によって凸状の光硬化性樹脂液15の液面Sが平坦と
される。これにより、成形台32の上面と光硬化性樹脂
液15の液面との間の距離△Hが全範囲にわたって一定
とされる。When the positioning of the molding table 32 is completed, the smoothing plate 62 is moved by the rotation of the motor 65 of the smoothing means 61, and the unnecessary rising portion of the photocurable resin liquid 15 due to the surface tension is scraped off. That is, the movement of the smooth plate 62 makes the liquid surface S of the convex photocurable resin liquid 15 flat. As a result, the distance ΔH between the upper surface of the molding table 32 and the liquid surface of the photocurable resin liquid 15 is constant over the entire range.
【0028】平滑板3の移動によって光硬化性樹脂液1
5の液面Sが平坦化されると、レーザ光照射部43から
レーザ光Lが光硬化性樹脂液15に向けて照射される。
レーザ光Lは、カットデータに基づき走査されるので光
硬化性樹脂液15の一定範囲が硬化され、その結果、光
硬化層15aが形成される。By the movement of the smooth plate 3, the photocurable resin liquid 1
When the liquid surface S of 5 is flattened, the laser light L is irradiated from the laser light irradiation unit 43 toward the photocurable resin liquid 15.
Since the laser light L is scanned based on the cut data, a certain range of the photocurable resin liquid 15 is cured, and as a result, the photocurable layer 15a is formed.
【0029】光硬化層15aが形成されると、光硬化層
15aを載せた成形台32が再び下降し、光硬化層15
aは光硬化性樹脂液15中に深く埋没される。成形台3
2が光硬化性樹脂液15に深く埋没されると、モータ3
4の逆回転によって成形台32が上昇し、成形台32は
所定の位置に停止される。When the photo-curable layer 15a is formed, the molding table 32 on which the photo-curable layer 15a is placed descends again, and the photo-curable layer 15a is formed.
a is deeply buried in the photocurable resin liquid 15. Forming table 3
When 2 is deeply buried in the photocurable resin liquid 15, the motor 3
The molding table 32 is raised by the reverse rotation of 4, and the molding table 32 is stopped at a predetermined position.
【0030】成形台32の位置決めが完了すると、平滑
手段61のモータ65の回転によって平滑板62が移動
され、表面張力による光硬化性樹脂液15の液面Sの盛
上がりがかき落される。これにより、光硬化層15aの
表面と光硬化性樹脂液15の液面Sとの間の距離は確実
に△Hに保たれる。したがって、光硬化層15aを覆う
部分の光硬化性樹脂液15の全体がレーザ光Lの照射に
よって確実に硬化され、既に形成された光硬化層15a
との接合は確実なものとなる。When the positioning of the molding table 32 is completed, the smoothing plate 62 is moved by the rotation of the motor 65 of the smoothing means 61, and the rising of the liquid surface S of the photocurable resin liquid 15 due to the surface tension is scraped off. This ensures that the distance between the surface of the photocurable layer 15a and the liquid surface S of the photocurable resin liquid 15 is maintained at ΔH. Therefore, the entire portion of the photocurable resin liquid 15 that covers the photocurable layer 15a is reliably cured by the irradiation of the laser light L, and the photocurable layer 15a that has already been formed is formed.
Joining with is secure.
【0031】また、本実施例においては、平滑板62を
複数に分割しているので、レーザ光Lを照射する前の段
階で形成された光硬化層15aの表面形状に応じて各平
滑板62aの昇降量を制御を、樹脂液の種々の盛上りに
応じたかき落しが可能となる。これにより、レーザ光L
を照射する時点では、光硬化層15aとこれを覆う光硬
化性樹脂液15の液面Sとの間の距離△Hを一定とする
ことが可能となる。したがって、光硬化層15aを覆う
部分の光硬化性樹脂液15の全体を確実に硬化させるこ
とができ、光硬化層15aのはがれ現象が防止される。Further, in this embodiment, since the smooth plate 62 is divided into a plurality of parts, each smooth plate 62a is formed in accordance with the surface shape of the photo-cured layer 15a formed before the laser beam L is irradiated. It is possible to control the amount of ascent and descent by scraping off according to various rises of the resin liquid. As a result, the laser light L
At the time of irradiating with, the distance ΔH between the photocurable layer 15a and the liquid surface S of the photocurable resin liquid 15 covering the photocurable layer 15a can be made constant. Therefore, the entire portion of the photocurable resin liquid 15 covering the photocurable layer 15a can be surely cured, and the peeling phenomenon of the photocurable layer 15a is prevented.
【0032】第2実施例 図5は、本発明の第2実施例を示している。本実施例と
第1実施例との異なる部分は、光硬化性樹脂液の循環ポ
ンプの制御のみであり、その他の部分は第1実施例に準
じるので、準じる部分に第1実施例と同一の符号を付す
ことにより準じる部分の説明を省略し、異なる部分につ
いてのみ説明する。後述する他の実施例も同様とする。Second Embodiment FIG. 5 shows a second embodiment of the present invention. The only difference between this embodiment and the first embodiment is the control of the circulation pump for the photocurable resin liquid, and the other portions are the same as those of the first embodiment. The description of the corresponding parts is omitted by assigning the reference numerals, and only different parts will be described. The same applies to other embodiments described later.
【0033】第1実施例の場合は、貯溜タンク22から
オーバフローした光硬化性樹脂液15を循環ポンプ24
によって常に貯溜タンク22に戻すようにしているが、
この場合にはつぎのような現象が生じる。図11の
(A)ないし(C)に示すように、表面張力によって光
硬化性樹脂液15の盛上った液面が平滑板62の移動に
よって平坦にされた後でも、循環ポンプ24によって貯
溜タンク22に戻されるので、表面張力による液面Sの
盛上がりが再び生じる。In the case of the first embodiment, the photocurable resin liquid 15 overflowing from the storage tank 22 is circulated by the circulation pump 24.
I always return it to the storage tank 22 by
In this case, the following phenomenon occurs. As shown in (A) to (C) of FIG. 11, even after the rising liquid level of the photocurable resin liquid 15 is flattened by the movement of the smooth plate 62 due to the surface tension, the circulation pump 24 stores the liquid. Since it is returned to the tank 22, the liquid level S rises again due to the surface tension.
【0034】そこで、本実施例では、図5に示すよう
に、平滑板62による液面Sの平滑化が終了してからレ
ーザ光Lの走査が完了するまで、制御手段51からの指
令によって循環ポンプ24の作動を停止するようになっ
ている。したがって、この間は貯溜タンク22への光硬
化性樹脂液15の供給は阻止され、光硬化性樹脂液15
の液面Sは平坦に維持される。Therefore, in the present embodiment, as shown in FIG. 5, the circulation is performed by a command from the control means 51 from the completion of the smoothing of the liquid surface S by the smooth plate 62 to the completion of the scanning of the laser light L. The operation of the pump 24 is stopped. Therefore, during this period, the supply of the photocurable resin liquid 15 to the storage tank 22 is blocked, and the photocurable resin liquid 15 is blocked.
The liquid surface S of is maintained flat.
【0035】第3実施例 図6は、本発明の第3実施例を示している。図5では、
平滑板62による液面Sの平滑化が終了してからレーザ
光Lの走査が完了するまで、循環ポンプ24の作動を停
止する構成としたが、本実施例では、貯溜タンク22側
に供給される樹脂液15を循環ポンプ24の上流側に戻
すようになっている。Third Embodiment FIG. 6 shows a third embodiment of the present invention. In FIG.
Although the operation of the circulation pump 24 is stopped until the scanning of the laser beam L is completed after the smoothing of the liquid surface S by the smoothing plate 62 is completed, in the present embodiment, it is supplied to the storage tank 22 side. The resin liquid 15 is returned to the upstream side of the circulation pump 24.
【0036】図6に示すように、循環ポンプ24の上流
側と下流側は、バイパス通路26を介して連通可能とな
っている。バイパス通路26には、制御手段51からの
指令によって切替制御される電磁弁27が配置されてい
る。このように構成された第3実施例においては、平滑
板62による液面Sの平滑化が終了してからレーザ光L
の走査が完了するまで、制御手段51からの指令によっ
て電磁弁27が切替えられ、循環ポンプ24から吐出さ
れる光硬化性樹脂液15が循環ポンプ24の上流側に戻
され、貯溜タンク22への樹脂液の流入が阻止される。As shown in FIG. 6, the upstream side and the downstream side of the circulation pump 24 can communicate with each other via a bypass passage 26. The bypass passage 26 is provided with an electromagnetic valve 27 that is switched and controlled by a command from the control means 51. In the third embodiment having such a configuration, the laser beam L is supplied after the smoothing of the liquid surface S by the smoothing plate 62 is completed.
Until the scanning of is completed, the electromagnetic valve 27 is switched by the command from the control means 51, the photocurable resin liquid 15 discharged from the circulation pump 24 is returned to the upstream side of the circulation pump 24, and is transferred to the storage tank 22. Inflow of resin liquid is blocked.
【0037】[0037]
【発明の効果】本発明によれば、光硬化層が形成される
成形台の上方に、光硬化性樹脂液の液面に沿って移動
し、光硬化層を覆う光硬化性樹脂液の液面の不必要な盛
上がりをかき落す平滑手段を設けるようにしたので、光
硬化層の表面と光硬化性樹脂液の液面との間の距離を一
定にすることができる。According to the present invention, the liquid of the photocurable resin liquid that moves along the liquid surface of the photocurable resin liquid and covers the photocurable layer above the molding table on which the photocurable layer is formed. Since the smoothing means for scraping off unnecessary swelling of the surface is provided, the distance between the surface of the photocurable layer and the liquid surface of the photocurable resin liquid can be made constant.
【0038】これにより、光硬化層を覆う部分の光硬化
性樹脂液を光の照射によって確実に硬化させることがで
き、既に形成された光硬化層と新たな光硬化層との接合
性を向上させることができる。したがって、新たな光硬
化層のはがれを確実に防止することができ、精度の高い
三次元モデルを得ることができる。As a result, the photocurable resin liquid in the portion covering the photocurable layer can be reliably cured by irradiation of light, and the bondability between the photocurable layer already formed and the new photocurable layer is improved. Can be made Therefore, peeling of a new photocurable layer can be reliably prevented, and a highly accurate three-dimensional model can be obtained.
【図1】本発明の第1実施例に係る光学的造形装置の斜
視図である。FIG. 1 is a perspective view of an optical modeling apparatus according to a first embodiment of the present invention.
【図2】図1の装置の断面図である。2 is a cross-sectional view of the device of FIG.
【図3】図1の装置の制御手段におけるカットデータ作
成の手順を示す工程図である。FIG. 3 is a process diagram showing a procedure for creating cut data in the control means of the apparatus of FIG.
【図4】図1の装置の制御系統図である。FIG. 4 is a control system diagram of the apparatus of FIG.
【図5】本発明の第2実施例に係る光学的造形装置の工
程断面図である。FIG. 5 is a process sectional view of an optical modeling apparatus according to a second embodiment of the present invention.
【図6】本発明の第3実施例に係る光学的造形装置の断
面図である。FIG. 6 is a sectional view of an optical modeling apparatus according to a third embodiment of the present invention.
【図7】従来の光学的造形法による三次モデルの製作工
程図である。FIG. 7 is a manufacturing process diagram of a tertiary model by a conventional optical modeling method.
【図8】従来の光学的造形法による三次元モデルの製作
における光硬化性樹脂液の盛上がり状態を示す工程図で
ある。FIG. 8 is a process diagram showing a rising state of a photocurable resin liquid in the production of a three-dimensional model by a conventional optical modeling method.
【図9】光学的造形法における光硬化層の断面形状中に
未成形領域が生じる場合の斜視図である。FIG. 9 is a perspective view of a case where an unmolded region is formed in the cross-sectional shape of the photo-curable layer in the optical modeling method.
【図10】図9の断面図である。10 is a cross-sectional view of FIG.
【図11】貯溜槽からオーバーフローした光硬化性樹脂
液を常に循環ポンプで貯溜タンクに戻す場合の貯溜タン
クの液面状態を示す断面図である。FIG. 11 is a cross-sectional view showing a liquid level state of the storage tank when the photocurable resin liquid overflowing from the storage tank is constantly returned to the storage tank by a circulation pump.
【図12】表面張力によって盛上った光硬化性樹脂液の
液面をレーザ光で照射した場合の不具合発生を示す工程
図である。FIG. 12 is a process diagram showing the occurrence of a defect when the liquid surface of the photo-curable resin liquid rising due to surface tension is irradiated with laser light.
11 光学的造形装置 15 光硬化性樹脂液 15a 光硬化層 21 貯溜手段 24 循環ポンプ 31 昇降手段 32 成形台 41 レーザ光照射手段 51 制御手段 61 平滑手段 L レーザ光 11 Optical Modeling Device 15 Photocurable Resin Liquid 15a Photocurable Layer 21 Reservoir Means 24 Circulation Pump 31 Elevating Means 32 Molding Platform 41 Laser Light Irradiating Means 51 Control Means 61 Smoothing Means L Laser Light
Claims (1)
硬化層を形成し、該光硬化層が載せられる成形台を一定
量下降させることにより光硬化層を前記光硬化性樹脂液
に埋没させ、前記光硬化層を覆う光硬化性樹脂液への光
の照射と光硬化層の光硬化性樹脂液への埋没とを繰返す
ことにより光硬化層を積み重ね、三次元の樹脂モデルを
製作する光学的造形装置において、前記成形台の上方
に、前記光硬化性樹脂液の液面に沿って移動し光硬化層
を覆う光硬化性樹脂液の液面の不必要な盛上がりをかき
落す平滑手段を設けたことを特徴とする光学的造形装
置。1. A light-curable resin liquid is irradiated with light to form a photo-curable layer, and a molding table on which the photo-curable layer is placed is lowered by a predetermined amount to form the photo-curable layer. The photocurable layer is embedded in a resin liquid, the photocurable resin liquid covering the photocurable layer is repeatedly irradiated with light, and the photocurable layer is immersed in the photocurable resin liquid to stack the photocurable layers, thereby forming a three-dimensional resin. In an optical modeling apparatus for producing a model, an unnecessary rise of the liquid level of the photocurable resin liquid that moves along the liquid level of the photocurable resin liquid and covers the photocurable layer above the molding table. An optical modeling apparatus comprising a smoothing means for scraping off.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4134475A JPH05305673A (en) | 1992-04-28 | 1992-04-28 | Optical shaping apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4134475A JPH05305673A (en) | 1992-04-28 | 1992-04-28 | Optical shaping apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05305673A true JPH05305673A (en) | 1993-11-19 |
Family
ID=15129195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4134475A Pending JPH05305673A (en) | 1992-04-28 | 1992-04-28 | Optical shaping apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05305673A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105150539A (en) * | 2015-09-25 | 2015-12-16 | 吴江中瑞机电科技有限公司 | Improved 3D printing machine |
-
1992
- 1992-04-28 JP JP4134475A patent/JPH05305673A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105150539A (en) * | 2015-09-25 | 2015-12-16 | 吴江中瑞机电科技有限公司 | Improved 3D printing machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1103368B1 (en) | Apparatus for forming three-dimensional laminated product from photocurable liquid | |
JPH06246838A (en) | Optically shaping device | |
JPH05229016A (en) | Optically shaping device and optically shaping method | |
US20210260819A1 (en) | Systems, apparatuses, and methods for manufacturing three dimensional objects via continuously curing photopolymers, utilising a vessel containing an interface fluid | |
JP4040177B2 (en) | 3D modeling apparatus, 3D modeling method, and medium on which 3D modeling control program is recorded | |
JPH05318607A (en) | Optically shaping device | |
JPH0224122A (en) | Treatment for making optical shaped body transparent | |
JPH0834063A (en) | Optical shaping method and apparatus and resin molded object | |
JPH05305673A (en) | Optical shaping apparatus | |
JP3392177B2 (en) | Photocurable resin supply device | |
JPH0523588B2 (en) | ||
JPH10249943A (en) | Apparatus for stereo lithography | |
JPH08207144A (en) | Supporting stage for optical molding | |
JP2000202915A (en) | Sqeegee device for stereo lithographing apparatus, and method therefor | |
JPH0596631A (en) | Method and apparatus for optical shaping | |
JPH0790603B2 (en) | Stereolithography device | |
JP2005047096A (en) | Optical shaping apparatus | |
JPH06246837A (en) | Optically shaping method and device | |
JP3352165B2 (en) | Liquid leveling method in stereolithography | |
JP3451108B2 (en) | Photocurable resin supply device | |
JPH0790604B2 (en) | Stereolithography | |
JPH08238678A (en) | Optically molding machine | |
JPH0596632A (en) | Method and apparatus for optical shaping | |
JP3721477B2 (en) | Stereolithography | |
JP3533730B2 (en) | 3D object stereolithography |