JPH05305643A - Molding method of sheet-like liquid crystal resin composite and device thereof - Google Patents

Molding method of sheet-like liquid crystal resin composite and device thereof

Info

Publication number
JPH05305643A
JPH05305643A JP4111358A JP11135892A JPH05305643A JP H05305643 A JPH05305643 A JP H05305643A JP 4111358 A JP4111358 A JP 4111358A JP 11135892 A JP11135892 A JP 11135892A JP H05305643 A JPH05305643 A JP H05305643A
Authority
JP
Japan
Prior art keywords
liquid crystal
resin
sheet
temperature
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4111358A
Other languages
Japanese (ja)
Inventor
Kazuhisa Fuji
和久 藤
Masayasu Nishihara
雅泰 西原
Kenji Moriwaki
健二 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4111358A priority Critical patent/JPH05305643A/en
Priority to KR1019930000844A priority patent/KR960014548B1/en
Priority to DE4301423A priority patent/DE4301423C2/en
Priority to US08/004,901 priority patent/US5626703A/en
Priority to EP93107012A priority patent/EP0568083A1/en
Priority to KR1019930007529A priority patent/KR940005376A/en
Priority to US08/055,117 priority patent/US5395470A/en
Publication of JPH05305643A publication Critical patent/JPH05305643A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to mold resin composite without removing the effective fiberized state of liquid crystal by a method wherein sheet-like stocks extruded from a plurality of dies are joined together at the temperature, which is higher than the lowest moldable temperature of matrix resin and lower than the liquid crystal transition temperature of liquid crystal resin. CONSTITUTION:Composite resin composition, which is prepared by blending thermoplastic liquid crystal resin, the liquid crystal transition temperature of which is higher than the lowest moldable temperature of the thermoplastic resin, in the region, in which the condition that the fiberization of the liquid crystal resin is possible is contained, is extruded from a plurality of nozzle dies 12 of an extruder 1. The extrusion is performed at the temperature, which is higher than the liquid crystal transition temperature, and at the resin shear rate, by which the aspect ratio of liquid crystal resin of 3 or more results. The extruded sheet-like stocks F are lead to a joining device so as to be pinched under piled up state between a pair of pressure rolls 22 at the junction temperature, which is higher than the lowest moldable temperature and lower than the liquid crystal transition temperature, in order to be welded into an integral body while discharging the air trapped between the respective sheet-like stocks for obtaining the aimed sheet-like liquid crystal resin composite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶樹脂による複合化効
果の高いシート状複合体の成形方法およびその装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for molding a sheet-shaped composite having a high composite effect with a liquid crystal resin.

【0002】[0002]

【従来の技術】熱可塑性樹脂をマトリックス樹脂とし、
その中にマトリックス樹脂の最低成形可能温度より液晶
転移点の高い液晶樹脂を所定量配合してこれらを溶融押
し出しすることによりマトリックス樹脂中で液晶樹脂を
繊維化し、それによりマトリックス樹脂の引っ張り強度
などの物性を向上させる複合樹脂が提案されている(例
えば、特開昭64ー90255号公報参照)。この複合
樹脂は、リサイクル可能な利点を有するため、マトリッ
クス樹脂をガラス繊維等で補強する繊維強化プラスチッ
ク(FRP)の代替品として注目される。ところで、一
般にこの液晶樹脂複合体の物性は液晶樹脂の繊維化程度
によって変化し、繊維化が進むに伴って向上することが
知られているが、液晶樹脂複合体を板材として使用しよ
うとする場合、板材相当の厚みを持たせようとその厚み
で押し出しを行うと、液晶樹脂はマトリックス樹脂中で
十分に繊維化されず、所望の物性を得ることが困難であ
る場合がある。
2. Description of the Related Art A thermoplastic resin is used as a matrix resin,
A predetermined amount of a liquid crystal resin having a liquid crystal transition point higher than the minimum moldable temperature of the matrix resin is mixed therein, and these are melt-extruded to fiberize the liquid crystal resin in the matrix resin, thereby increasing the tensile strength of the matrix resin. A composite resin that improves physical properties has been proposed (see, for example, JP-A-64-90255). Since this composite resin has the advantage of being recyclable, it is attracting attention as a substitute for fiber reinforced plastic (FRP) in which the matrix resin is reinforced with glass fibers or the like. By the way, it is generally known that the physical properties of the liquid crystal resin composite change depending on the degree of fiberization of the liquid crystal resin and improve as the fiberization progresses. However, when the liquid crystal resin composite is used as a plate material, When extruding with a thickness equivalent to that of the plate material, the liquid crystal resin is not sufficiently fiberized in the matrix resin, and it may be difficult to obtain desired physical properties.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明者は鋭
意研究の結果、かかる繊維化を有効に行うためには、マ
トリックス樹脂中で液晶樹脂が3以上のアスペクト比を
有するように一定以上の樹脂剪断速度で溶融押し出しを
行う必要があり、さらにこれを延伸することが肝要であ
ることを見い出した(図1参照)。しかしながら、所定
以上の樹脂剪断速度を確保するためには薄いシート状に
押し出す必要があり、それをさらに延伸してより液晶樹
脂の繊維化による複合樹脂の物性向上を図ると、得られ
る複合樹脂素材は薄いシート形状となり、そのままでは
成形用板材として使用できないという問題がある。そこ
で、本発明は液晶樹脂の複合化効果の高いシート状複合
体を成形する方法およびその装置を提供することを目的
とする。
Therefore, as a result of earnest research, the present inventors have found that in order to effectively carry out such fiber formation, the liquid crystal resin in the matrix resin should have a certain aspect ratio of 3 or more. It has been found that it is necessary to carry out melt extrusion at a resin shear rate, and it is important to stretch this (see FIG. 1). However, in order to secure a resin shearing rate higher than a predetermined value, it is necessary to extrude it into a thin sheet shape, and if it is further stretched to improve the physical properties of the composite resin by fiberizing the liquid crystal resin, the obtained composite resin material Has a thin sheet shape and cannot be used as a molding plate as it is. Therefore, an object of the present invention is to provide a method and an apparatus for forming a sheet-shaped composite body having a high composite effect of liquid crystal resin.

【0004】[0004]

【課題を解決するための手段】本発明は液晶樹脂の繊維
化状態の高い薄いシート状素材を繊維化を消滅させるこ
とのない条件で積層接合することにより所定の板厚を有
する成形に適するシート状複合体が高い複合化効果を有
した状態で製造できることを見い出して完成したもの
で、熱可塑性樹脂からなるマトリックス樹脂と該樹脂の
最低成形可能温度より高い液晶転移温度を有する液晶樹
脂とが該液晶樹脂の繊維化可能含有領域で配合された複
合樹脂組成物を液晶樹脂の液晶転移温度以上で上記液晶
樹脂のアスペクト比が3以上となる樹脂剪断速度でシー
ト状素材を複数のダイから押し出し、マトリックス樹脂
の最低成形可能温度以上液晶樹脂の液晶転移温度より低
温の接合温度にてこれらのシート状素材を一対の押圧ロ
ール間に重ね合わせ状態に挟み込むとともに該ロールに
より各シート状素材間のエアを排出しつつ溶着一体化し
て1枚物のシート状複合体に成形するシート状液晶樹脂
複合体の成形方法にある。
According to the present invention, a thin sheet material having a high fibrosis state of a liquid crystal resin is laminated and joined under a condition that does not extinguish the fibrosis. The present invention was completed by discovering that a matrix-like composite can be produced in a state of having a high compounding effect, and a matrix resin composed of a thermoplastic resin and a liquid crystal resin having a liquid crystal transition temperature higher than the minimum moldable temperature of the resin are Extruding a sheet-shaped material from a plurality of dies at a resin shear rate at which the composite resin composition blended in the fiberizable content region of the liquid crystal resin has a liquid crystal transition temperature of the liquid crystal resin or higher and the aspect ratio of the liquid crystal resin is 3 or higher, These sheet materials are superposed between a pair of pressure rolls at a joining temperature lower than the minimum moldable temperature of the matrix resin and lower than the liquid crystal transition temperature of the liquid crystal resin. In forming method of the sheet-like liquid crystal polymer composite material for molding into a sheet-like composite of integrally welded to one product while discharging air between the sheet material by the roll with sandwiched state.

【0005】本発明で使用される熱可塑性樹脂としては
ABS樹脂、ポリスチレン樹脂、ポリカーボネイト樹
脂、ポリフェニレンオキシド樹脂、ポリオレフィン樹
脂、ポリエステル樹脂、ポリアリレート樹脂、ポリアミ
ド樹脂およびそれらの混合物などが挙げられる。
Examples of the thermoplastic resin used in the present invention include ABS resin, polystyrene resin, polycarbonate resin, polyphenylene oxide resin, polyolefin resin, polyester resin, polyarylate resin, polyamide resin and mixtures thereof.

【0006】他方、液晶樹脂としては上記マトリックス
樹脂より最低成形可能温度が高いもの、好ましくは20
℃以上高いものであれば、特に限定されるものでない
が、熱可塑性液晶ポリエステル、熱可塑性液晶ポリエス
テルアミドが好ましく、具体的には商品名ベクトラ、エ
コノール、ザイダー等の液晶樹脂が市販されている。
On the other hand, the liquid crystal resin has a higher minimum moldable temperature than the above matrix resin, preferably 20
Although not particularly limited as long as it is higher than 0 ° C, thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyester amides are preferable, and liquid crystal resins such as trade names Vectra, Econol, and Zider are commercially available.

【0007】マトリックス樹脂に対する液晶樹脂の配合
は組成物全体としてその相反転量よりも少量側の繊維化
可能領域となるように調整配合する必要があり(図2参
照)、例えばマトリックス樹脂がポリアミド樹脂である
場合は40〜80重量%、ABS(アクリロニトリーブ
タジエンースチレン共重合体)樹脂の場合は30〜75
重量%、ポリカーボネート(PC)/ABS樹脂の場合
は3〜70重量%、PC/PBT樹脂の場合は2〜60
重量%、ポリフェニレンオキシド(PP0)/ナイロン
(PA6)の場合は3〜65重量%、変性PPO樹脂の
場合は3〜60重量%、ポリプロピレンの場合は2〜7
0重量%、ポリカーボネートの場合は3〜70重量%、
PBT樹脂の場合は10〜70重量%の範囲が適当であ
る。
It is necessary to mix the liquid crystal resin with the matrix resin so that the composition as a whole has a fiberizing region on the smaller side of the phase inversion amount (see FIG. 2). For example, the matrix resin is a polyamide resin. 40 to 80% by weight in the case of, and 30 to 75 in the case of ABS (acrylonitry butadiene-styrene copolymer) resin
% By weight, 3 to 70% by weight for polycarbonate (PC) / ABS resin, 2 to 60 for PC / PBT resin
% By weight, 3 to 65% by weight in the case of polyphenylene oxide (PP0) / nylon (PA6), 3 to 60% by weight in the case of modified PPO resin, 2 to 7 in the case of polypropylene.
0% by weight, in the case of polycarbonate 3 to 70% by weight,
In the case of PBT resin, the range of 10 to 70% by weight is suitable.

【0008】[0008]

【作用】本発明によれば、シート状素材を複数のダイか
ら押し出すので、液晶樹脂のアスペクト比が3以上とな
るように剪断速度を高め、有効に繊維化を図ることがで
きる。そのシート状素材をマトリックス樹脂の最低成形
可能温度以上液晶樹脂の液晶転移温度より低温の接合温
度にて接合するので、液晶樹脂の有効な繊維化状態を消
滅させることなく、シート状複合体において所定の厚み
を確保することができる。液晶樹脂のアスペクト比が3
以上の繊維状となる樹脂剪断速度で押し出しを行うに
は、その押し出し時の樹脂剪断速度は3×102〜105
sec-1とするのが好ましい。なお、押し出されたシート
は一旦冷却し、または冷却しないで接合前に連続して延
伸処理に付されてもよい。延伸比(押出品の断面積/延
伸後の断面積)は11以上120以下であるのが好まし
い。
According to the present invention, since the sheet material is extruded from a plurality of dies, the shear rate can be increased so that the aspect ratio of the liquid crystal resin is 3 or more, and the fiber can be effectively formed. Since the sheet-shaped materials are bonded at a bonding temperature lower than the minimum moldable temperature of the matrix resin and lower than the liquid crystal transition temperature of the liquid crystal resin, the sheet-shaped composite can be formed in a predetermined shape without extinguishing the effective fibrous state of the liquid crystal resin. The thickness of can be secured. Aspect ratio of liquid crystal resin is 3
In order to carry out extrusion at the above resin shear rate which becomes fibrous, the resin shear rate at the time of extrusion is 3 × 10 2 to 10 5
It is preferably sec -1 . The extruded sheet may be once cooled, or may be continuously subjected to a stretching treatment before joining without cooling. The stretching ratio (cross-sectional area of extruded product / cross-sectional area after stretching) is preferably 11 or more and 120 or less.

【0009】本発明において、シート状素材の積層接合
は押し出しに連続して行うのが好ましいが、その際にお
ける液晶樹脂の繊維化状態を確実に維持するためには、
ダイから押し出したシート状素材を一旦マトリックス樹
脂の最低成形可能温度以下に冷却し、上記押圧ロールの
少なくとも一方により各シート状素材を上記接合温度に
加熱するのが好ましい。本発明ではシート状素材の接合
を上記押圧ロールにより行うので、その圧縮変形率を大
きく取ることにより上記シート状素材の接合と同時に延
伸を行うこともできる。また、上記シート状素材は押し
出し方向に液晶樹脂の繊維化が図られるので、成形され
るシート状複合体は液晶樹脂の1方向性を有することに
なる。そこで、その方向性を有するシート状複合体の液
晶樹脂配向方向を互いに異ならせて接合することにより
疑似等方向性を有するシート状複合体を得ることができ
る。
In the present invention, it is preferable that the lamination joining of the sheet-shaped materials is carried out continuously after the extrusion, but in order to surely maintain the fibrous state of the liquid crystal resin at that time,
It is preferable that the sheet-shaped material extruded from the die is once cooled to a temperature equal to or lower than the minimum moldable temperature of the matrix resin, and each sheet-shaped material is heated to the bonding temperature by at least one of the pressing rolls. In the present invention, since the sheet-shaped materials are joined by the pressing roll, it is possible to perform the stretching at the same time when the sheet-shaped materials are joined by taking a large compression deformation rate. In addition, since the sheet-shaped material allows the liquid crystal resin to be formed into fibers in the extrusion direction, the sheet-shaped composite body to be formed has the unidirectionality of the liquid crystal resin. Therefore, a sheet-shaped composite having a pseudo isotropic property can be obtained by making the sheet-shaped composite having the directional property different from each other in the liquid crystal resin alignment direction and bonded.

【0010】本発明方法を実施するためには、単一のシ
ート状押し出しダイまたは複数の押し出し方向を同一と
し、積み重ねたシート状押し出しダイを有し、複合樹脂
組成物を液晶樹脂の液晶転移温度以上で上記液晶樹脂の
アスペクト比が3以上となる樹脂剪断速度で押し出しを
行う押出機と、該ダイの下流側に位置し、複数の積層さ
れるシート状素材をそのマトリックス樹脂の最低成形可
能温度以上、かつ液晶樹脂の液晶転移温度より低温の接
合温度にて挟み込むようにその上下に配置され、所定の
押圧接合するロール間隙に調整された少なくとも1対の
押圧ロールと、該ロール下流に位置し、積層溶着したシ
ート状複合体を所定長さに切断するカッティング手段を
備えるシート状液晶樹脂複合体の成形装置を使用するの
が好ましい。
In order to carry out the method of the present invention, a single sheet-shaped extrusion die or a plurality of sheet-shaped extrusion dies having the same extrusion direction and stacked sheet-shaped extrusion dies are used. As described above, an extruder that extrudes at a resin shearing rate such that the aspect ratio of the liquid crystal resin is 3 or more, and a minimum molding temperature of the matrix resin of a plurality of laminated sheet-shaped materials located downstream of the die. Above, and at least one pair of pressing rolls arranged above and below so as to be sandwiched at a bonding temperature lower than the liquid crystal transition temperature of the liquid crystal resin, and adjusted to a predetermined roll gap for pressure bonding, and located at the downstream of the rolls. It is preferable to use a sheet-shaped liquid crystal resin composite molding apparatus equipped with a cutting means for cutting the laminated and welded sheet-shaped composite into a predetermined length.

【0011】更に、上記ダイの下流に位置し、シート状
素材をそのマトリックス樹脂の最低成形可能温度よりも
低温に冷却する冷却手段を備え、該冷却手段の下流側
で、上記押圧ロールの上流側においてシート状素材をそ
のマトリックス樹脂の最低成形可能温度以上、かつ液晶
樹脂の液晶転移温度よりも低温に加熱する加熱手段を備
えることにより上記シート状素材を所定の接合温度域に
設定するのが容易となる。
Further, a cooling means is provided downstream of the die for cooling the sheet-shaped material to a temperature lower than the minimum moldable temperature of the matrix resin, and the cooling means is provided downstream of the cooling means and upstream of the pressing roll. In, it is easy to set the sheet material to a predetermined joining temperature range by providing a heating means for heating the sheet material at a temperature equal to or higher than the minimum moldable temperature of the matrix resin and lower than the liquid crystal transition temperature of the liquid crystal resin. Becomes

【0012】また、上記押圧ロールをシート状素材を接
合と同時に延伸可能なロール間隔に調整可能とすること
によりシート状素材を接合しつつ延伸することができ
る。
Further, the pressing roll can be adjusted to a roll interval capable of stretching at the same time when the sheet-shaped material is joined, so that the sheet-shaped material can be stretched while being joined.

【0013】更に、方向性を有するシート状複合体の液
晶樹脂配向方向を互いに異ならせて接合することにより
等方向性を有するシート状複合体を形成するためには、
上記成形装置の積層接合シート状複合体の送り方向が9
0度以内の角度で交差するように配置し、その交差位置
下流に複数のシート状複合体を積層接着する熱プレス手
段を備えるのがよい。
Further, in order to form a sheet-shaped composite having an isotropic property by bonding the sheet-shaped composite having a directional property by making the liquid crystal resin orientation directions different from each other and bonding.
The feeding direction of the laminate-bonded sheet-shaped composite body of the above molding apparatus is 9
It is preferable to provide a hot pressing unit which is arranged so as to intersect at an angle of 0 degrees or less and is laminated and bonded to a plurality of sheet-like composites downstream of the intersecting position.

【0014】[0014]

【実施例】図1は本発明方法を実施するための好ましい
成形装置の概要を示し、1は押出機で、所定の配合比で
マトリックス樹脂となる熱可塑性樹脂チップと熱可塑性
液晶樹脂チップとが投入される材料投入口11を有する
一方、内部13ではマトリックス樹脂を溶融し、その中
に液晶樹脂が非溶融状態で分散混合されるようになって
いる。その押し出し口には複数の押し出しノズルダイ1
2が一定の間隔をおいて上下に平行に積み重ね状態で前
方に突出形成されており、このノズルダイ12からは上
記複合樹脂が樹脂剪断速度3×102〜105sec-1でシ
ート状に押し出されるようになっている。したがって、
押し出されたシート状素材はマトリックス樹脂中に液晶
樹脂がアスペクト比3以上に繊維化されて押し出し方向
に配向している。上記シート状素材は通常0.1〜0.
2mmの厚みに押し出し成形される。2は上記押し出し直
後のシート状素材Fを延伸後、温度調節して溶融接着を
行う接合装置であって、複数のシート状素材Fの走行通
路の一部周囲を包囲するケース20内に複数の表面温度
を調整可能な小径ローラ21をシート状素材の走行方向
に直交し、走行方向に平行に並列されるとともに、その
ローラ群を上下に複数段配列して温度調節部を形成し、
その後続に一対の上下押圧ロール22、22を所定のロ
ール間隔で対向配置してなる。したがって、押し出され
た複数の各シート状素材Fは上記温度調節部の小径ロー
ラ21群間を通過し、所定の接合温度(マトリックス樹
脂の最低成形可能温度以上で液晶樹脂の液晶転移温度よ
り低温)の温度に調整保持されたのち、重ね合わさるよ
うに集合し上記一対の上下押圧ロール22、22間に挟
み込まれようになる。そのため、押し出し直後のシート
状素材Fは延伸され、上下押圧ロール22、22間でシ
ート状素材間のエアを排出しつつその界面のマトリック
ス樹脂を溶融して溶着することになる。なお、上記延伸
工程において冷却エアをシート状素材押し出し方向に直
交してシート状素材間に冷却空気を送風する冷却手段を
設けるようにしてもよい。また、上記シート状素材Fは
上記温度調節用ローラ21にて所定の接合温度に設定保
持されるが、上記押圧ロール22の表面温度も所定の接
合温度(マトリックス樹脂の最低成形可能温度以上で液
晶樹脂の液晶転移温度より低温)に設定できるようにす
るのが好ましく、その際上記温度調節用ローラ21より
もやや高くするのがよい。3は溶着後のシート状複合体
Sのシート状素材間のたるみを防止するローラ装置であ
って、千鳥状に配置されたローラ31間をシート状複合
体Sが走行することによりたるみを解除される。その後
シート状複合体Sは4のカッティング装置により所定の
長さに切断される。このカッティング装置4はシート状
複合体の走行方向に所定の長さを有し、その全体幅を覆
う面積を有する1対の押え板41、41の近傍にカッタ
42を配置してなり、上記押え板41、41にてシート
状複合体Sを押さえてはカッタ42により所定の長さに
切断するようになっている。図2は上記成形装置の押し
出し方向を直交させ、液晶樹脂配向方向が直交するシー
ト状複合体Sを更に積層接合するように配置した状態を
示し、両者のシート状複合体Sが交差して重なり合う位
置には図1に示す一対の押え板装置に代えて図3に示す
熱プレス装置5が配置される。この装置5はカッタ42
の近傍に位置する台盤51の上方にシート状複合体Sの
マトリックス樹脂の溶融温度以下にて温度調節される昇
降熱プレス台52を備えてなり、直交して重なったシー
ト状複合体S1とS2とをプレス押圧して液晶樹脂の配
向方向が直交するブランク材Bを接合形成するようにな
っている。上記シート状複合体S1とS2との交差角度
は0から90°の範囲で調節することができ、−45
°、0°、45°、90°と液晶樹脂繊維配向方向を変
えて接合することにより疑似等方性材料を製造すること
ができ、等方材料として使用することができる。したが
って、フロアーパネル、外板パネル用材料として有用で
ある。他方、液晶樹脂の1方向材はバンパーレインホー
スメント、リーフスプリングとして有用である。 (実施例1)マトリックス樹脂としてPA6(商品名:
宇部ナイロン1030B、宇部興産(株)社製造)40
重量部に液晶樹脂として芳香族ポリエステル(商品名:
ベクトラ.A950、ポリプラスチック社製造)60重
量部を配合してなる複合組成物を、2軸押出機((株)
プラスチック工学研究所社製)を用いてスクリュー径3
0mm、樹脂温度290℃、スクリュー回転数75rpm、ダ
イス径2mm、剪断速度1700sec-1に設定し、延伸し
ながら押出成形した。得られたシート状素材(厚み0.
1〜0.2mm)を一対の加熱押圧ローラ(表面温度26
0℃、ロール間隙5〜10mm)に複数枚積層して通過さ
せ、厚み5〜10mmのシート状複合体を得る。上記シー
ト状複合体の引張強さを測定し、液晶樹脂の繊維化によ
り複合材として必要な物性を備えていることを確認し
た。 (実施例2)実施例1で製造したシート状素材を積層し
てシート状複合体を製造する際にシート状素材間に液晶
樹脂を含有しないPA樹脂(商品名:宇部ナイロン10
30B、宇部興産(株)社製造)またはマレイン酸変性
ポリプロピレン(商品名:アドマー、三井石油化学
(株)社製造)のシート状素材(厚み0.01〜0.1
mm)を介挿して実施例1と同様にして厚み5〜10mmの
シート状複合体を得る。上記シート状複合体の引張強さ
を測定し、実施例1のシート状複合体との引張強さと比
較した。両者とも液晶樹脂の繊維化により複合材として
必要な物性を備えているが、PA6樹脂は接合時の溶融
粘度が低いことを確認した。 (実施例3)マトリックス樹脂としてPA6(商品名:
宇部ナイロン1030B、宇部興産(株)社製造)30
重量部に液晶樹脂として芳香族ポリエステル(商品名:
ベクトラ.A950、ポリプラスチック社製造)70重
量部を配合してなる複合組成物を、2軸押出機((株)
プラスチック工学研究所社製)を用いてスクリュー径3
0mm、樹脂温度290℃、スクリュー回転数75rpm、ダ
イス径2mm、剪断速度1700sec-1に設定し、延伸し
ながら押出成形した。得られたシート状素材(厚み0.
1〜0.2mm)を液晶樹脂の配向方向を揃えて一対の加
熱押圧ローラ(表面温度260℃、ロール間隙5〜10
mm)に複数枚積層して通過させ、厚み5〜10mmの一方
向性シート状複合体を得る。他方、PA6(商品名:宇
部ナイロン1030B、宇部興産(株)社製造)20重
量部に液晶樹脂として芳香族ポリエステル(商品名:ベ
クトラ.A950、ポリプラスチック社製造)80重量
部を配合してなる複合組成物を2軸押出機を用いて延伸
しながら押出成形した。得られるシート状素材を押し出
し方向に約25mmの長さになるように切断し、これを重
ねてランダム材を得る。上記2枚の一方向性シート状複
合体の間に上記ランダム材を介挿してマトリックス樹脂
の溶融温度以上液晶樹脂の液晶転移温度より低温の適当
な温度でで熱圧着して複合パネルを製造する。 (実施例4)マトリックス樹脂としてPA6(商品名:
宇部ナイロン1030B、宇部興産(株)社製造)30
重量部に液晶樹脂として芳香族ポリエステル(商品名:
ベクトラ.A950、ポリプラスチック社製造)70重
量部を配合してなる複合組成物を、2軸押出機((株)
プラスチック工学研究所社製)を用いてスクリュー径3
0mm、樹脂温度290℃、スクリュー回転数75rpm、ダ
イス径2mm、剪断速度1700sec-1に設定し、延伸し
ながら押出成形した。得られたシート状素材(厚み0.
1〜0.2mm)を−45°、0°、45°、90°と液
晶樹脂繊維配向方向を変えて一対の加熱押圧ローラ(表
面温度260℃、ロール間隙5〜10mm)に複数枚積層
して通過させ、厚み5〜10mmの等方向性シート状複合
体を得る。他方、PA6(商品名:宇部ナイロン103
0B、宇部興産(株)社製造)20重量部に液晶樹脂と
して芳香族ポリエステル(商品名:ベクトラ.A95
0、ポリプラスチック社製造)80重量部を配合してな
る複合組成物を2軸押出機を用いて延伸しながら押出成
形した。得られるシート状素材を押し出し方向に約25
mmの長さになるように切断し、これを重ねてランダム材
を得る。上記2枚の等方向性シート状複合体の間に上記
ランダム材を介挿して実施例3と同様にして熱圧着して
複合パネルを製造する。
EXAMPLE FIG. 1 shows an outline of a preferable molding apparatus for carrying out the method of the present invention. Reference numeral 1 denotes an extruder, which comprises a thermoplastic resin chip and a thermoplastic liquid crystal resin chip which are matrix resins at a predetermined compounding ratio. While having a material inlet 11 to be charged, the matrix resin is melted in the inside 13, and the liquid crystal resin is dispersed and mixed therein in a non-melted state. The extrusion port has a plurality of extrusion nozzle dies 1
2 are formed so as to be vertically stacked in parallel with each other at regular intervals, and the composite resin is extruded from the nozzle die 12 in a sheet shape at a resin shear rate of 3 × 10 2 to 10 5 sec -1. It is supposed to be. Therefore,
The extruded sheet-shaped material has a liquid crystal resin fiberized in a matrix resin with an aspect ratio of 3 or more and oriented in the extruding direction. The above sheet material is usually 0.1 to 0.
Extruded to a thickness of 2 mm. Reference numeral 2 denotes a joining device that melts and bonds the sheet material F immediately after extrusion by adjusting the temperature after stretching, and a plurality of cases 20 are enclosed in a case 20 that surrounds a part of the traveling path of the sheet materials F. Small-diameter rollers 21 whose surface temperature can be adjusted are orthogonal to the traveling direction of the sheet-shaped material and are arranged in parallel in parallel to the traveling direction, and the roller groups are arranged in a plurality of upper and lower parts to form a temperature adjusting section,
Subsequent to that, a pair of vertical pressing rolls 22, 22 are arranged to face each other at a predetermined roll interval. Therefore, each of the extruded sheet materials F passes between the small-diameter rollers 21 of the temperature control unit and has a predetermined joining temperature (above the minimum moldable temperature of the matrix resin and below the liquid crystal transition temperature of the liquid crystal resin). After being adjusted and held at the temperature of 1, the sheets are assembled so as to be overlapped and sandwiched between the pair of vertical pressing rolls 22 and 22. Therefore, the sheet material F immediately after being extruded is stretched, and the matrix resin at the interface is melted and welded while discharging the air between the sheet material between the vertical pressing rolls 22 and 22. In the stretching step, cooling means may be provided so as to blow the cooling air between the sheet-shaped materials at right angles to the sheet-shaped material extrusion direction. Further, the sheet material F is set and held at a predetermined joining temperature by the temperature adjusting roller 21, but the surface temperature of the pressing roll 22 is also set to a predetermined joining temperature (a liquid crystal at a temperature equal to or higher than the minimum moldable temperature of the matrix resin). It is preferable that the temperature can be set to a temperature lower than the liquid crystal transition temperature of the resin), and in this case, it is better to set the temperature slightly higher than that of the temperature adjusting roller 21. Reference numeral 3 denotes a roller device that prevents slack between the sheet-shaped materials of the sheet-shaped composite S after welding, and the slack is released when the sheet-shaped composite S runs between the rollers 31 arranged in a staggered manner. It After that, the sheet-shaped composite S is cut into a predetermined length by the cutting device 4 described above. The cutting device 4 has a predetermined length in the traveling direction of the sheet-shaped composite body, and a cutter 42 arranged near a pair of pressing plates 41, 41 having an area covering the entire width thereof. The sheet-like composite S is pressed by the plates 41 and 41 and cut into a predetermined length by a cutter 42. FIG. 2 shows a state where the extruding directions of the above-mentioned molding apparatus are orthogonal to each other and the sheet-like composite bodies S in which the liquid crystal resin orientation directions are orthogonal to each other are further laminated and joined, and both sheet-like composite bodies S intersect and overlap each other. At the position, the hot press device 5 shown in FIG. 3 is arranged in place of the pair of holding plate devices shown in FIG. This device 5 is a cutter 42
A heating / pressing press table 52 whose temperature is adjusted below the melting temperature of the matrix resin of the sheet-shaped composite S is provided above the base 51 located in the vicinity of The blank material B in which the orientation directions of the liquid crystal resin are orthogonal to each other is bonded and formed by pressing and pressing S2. The crossing angle between the sheet composites S1 and S2 can be adjusted in the range of 0 to 90 °,
A pseudo-isotropic material can be manufactured by changing the orientation direction of the liquid crystal resin fiber to 0, 0, 45, or 90 degrees, and can be used as an isotropic material. Therefore, it is useful as a material for floor panels and outer panel. On the other hand, the unidirectional material of liquid crystal resin is useful as a bumper reinforcement and a leaf spring. (Example 1) PA6 as a matrix resin (trade name:
Ube Nylon 1030B, manufactured by Ube Industries Ltd.) 40
Aromatic polyester (Product name:
Vectra. A950, manufactured by Polyplastics Co., Ltd.) A composite composition prepared by mixing 60 parts by weight of a twin-screw extruder (Co., Ltd.)
Screw diameter 3 using the Plastic Engineering Laboratory Co., Ltd.
0 mm, a resin temperature of 290 ° C., a screw rotation speed of 75 rpm, a die diameter of 2 mm and a shear rate of 1700 sec −1, and extrusion molding was performed while stretching. The obtained sheet material (thickness: 0.
1 to 0.2 mm) with a pair of heating pressure rollers (surface temperature 26
A plurality of sheets are laminated and passed at 0 ° C. and a roll gap of 5 to 10 mm) to obtain a sheet composite having a thickness of 5 to 10 mm. The tensile strength of the above-mentioned sheet-shaped composite was measured, and it was confirmed that the composite had the physical properties required for the composite by forming the liquid crystal resin into fibers. (Example 2) When the sheet-shaped material produced in Example 1 is laminated to produce a sheet-shaped composite, a PA resin containing no liquid crystal resin between the sheet-shaped materials (trade name: Ube Nylon 10
30B, manufactured by Ube Industries, Ltd. or a maleic acid modified polypropylene (trade name: Admer, manufactured by Mitsui Petrochemical Co., Ltd.) sheet material (thickness 0.01 to 0.1).
mm) to obtain a sheet-like composite having a thickness of 5 to 10 mm in the same manner as in Example 1. The tensile strength of the sheet composite was measured and compared with the tensile strength of the sheet composite of Example 1. It was confirmed that both of them have the physical properties required as a composite material by making the liquid crystal resin into fibers, but PA6 resin has a low melt viscosity at the time of bonding. (Example 3) PA6 as a matrix resin (trade name:
Ube Nylon 1030B, manufactured by Ube Industries Ltd. 30
Aromatic polyester (Product name:
Vectra. A950, manufactured by Polyplastics Co., Ltd.) was mixed with 70 parts by weight of a composite composition to prepare a twin-screw extruder (Co., Ltd.).
Screw diameter 3 using the Plastic Engineering Laboratory Co., Ltd.
0 mm, a resin temperature of 290 ° C., a screw rotation speed of 75 rpm, a die diameter of 2 mm and a shear rate of 1700 sec −1, and extrusion molding was performed while stretching. The obtained sheet material (thickness: 0.
1 to 0.2 mm) with the liquid crystal resin oriented in the same direction, and a pair of heating pressure rollers (surface temperature 260 ° C., roll gap 5 to 10).
mm) and a plurality of sheets are passed through to obtain a unidirectional sheet-shaped composite body having a thickness of 5 to 10 mm. On the other hand, 20 parts by weight of PA6 (trade name: Ube Nylon 1030B, manufactured by Ube Industries, Ltd.) is mixed with 80 parts by weight of an aromatic polyester (trade name: Vectra.A950, manufactured by Polyplastics Co., Ltd.) as a liquid crystal resin. The composite composition was extruded while being stretched using a twin-screw extruder. The obtained sheet material is cut into a length of about 25 mm in the extruding direction and stacked to obtain a random material. The random material is inserted between the two unidirectional sheet-like composites and thermocompression-bonded at an appropriate temperature higher than the melting temperature of the matrix resin and lower than the liquid crystal transition temperature of the liquid crystal resin to produce a composite panel. .. (Example 4) PA6 as a matrix resin (trade name:
Ube Nylon 1030B, manufactured by Ube Industries Ltd. 30
Aromatic polyester (Product name:
Vectra. A950, manufactured by Polyplastics Co., Ltd.) was mixed with 70 parts by weight of a composite composition to form a twin-screw extruder (Co., Ltd.).
Screw diameter 3 using the Plastic Engineering Laboratory Co., Ltd.
0 mm, resin temperature 290 ° C., screw rotation speed 75 rpm, die diameter 2 mm, shear rate 1700 sec −1, and extrusion molding was performed while stretching. The obtained sheet material (thickness: 0.
1 to 0.2 mm) is changed to -45 °, 0 °, 45 °, 90 ° and the liquid crystal resin fiber orientation direction is changed, and a plurality of sheets are laminated on a pair of heat pressing rollers (surface temperature 260 ° C., roll gap 5 to 10 mm). To obtain an isotropic sheet-like composite having a thickness of 5 to 10 mm. On the other hand, PA6 (trade name: Ube nylon 103
0B, manufactured by Ube Industries, Ltd.) 20 parts by weight of an aromatic polyester (trade name: Vectra.A95) as a liquid crystal resin.
0, manufactured by Polyplastics Co., Ltd.) A composite composition containing 80 parts by weight was extruded while being stretched using a biaxial extruder. About 25 sheets in the extruding direction
Cut into lengths of mm and stack them to obtain a random material. The random material is inserted between the two isotropic sheet-shaped composite bodies and thermocompression bonded in the same manner as in Example 3 to manufacture a composite panel.

【図面の簡単な説明】[Brief description of drawings]

【図1】 押し出し剪断速度と延伸比の相互作用が引張
強度に及ぼす影響を示すグラフである。
1 is a graph showing the effect of the interaction between extrusion shear rate and draw ratio on tensile strength.

【図2】 マトリックス樹脂に対する液晶樹脂の含有量
が及ぼす複合体の状態変化を示す説明図である。
FIG. 2 is an explanatory diagram showing a change in the state of the composite which is affected by the content of the liquid crystal resin with respect to the matrix resin.

【図3】 本発明に係るシート状複合体の製造装置の概
略図である。
FIG. 3 is a schematic view of a sheet-shaped composite body manufacturing apparatus according to the present invention.

【図4】 本発明に係る製造装置の変形例を示す配置図
である。
FIG. 4 is a layout view showing a modified example of the manufacturing apparatus according to the present invention.

【図5】 図4に示す熱プレス装置の作動説明図であ
る。
5 is an operation explanatory view of the hot press device shown in FIG. 4. FIG.

【符号の説明】[Explanation of symbols]

1 押出機 12 ノズルダイ 2 接合装置 22 押圧ロール 4 カッティング装置 5 熱プレス装置 DESCRIPTION OF SYMBOLS 1 Extruder 12 Nozzle die 2 Joining device 22 Pressing roll 4 Cutting device 5 Heat press device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area B29L 7:00 4F

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂からなるマトリックス樹脂
と該樹脂の最低成形可能温度より高い液晶転移温度を有
する液晶樹脂とが該液晶樹脂の繊維化可能含有領域で配
合された複合樹脂組成物を液晶樹脂の液晶転移温度以上
で上記液晶樹脂のアスペクト比が3以上となる樹脂剪断
速度でシート状素材を複数のダイから押し出し、マトリ
ックス樹脂の最低成形可能温度以上、かつ液晶樹脂の液
晶転移温度より低温の接合温度にてこれらのシート状素
材を一対の押圧ロール間に重ね合わせ状態に挟み込むと
ともに該ロールにより各シート状素材間のエアを排出し
つつ溶着一体化して1枚物のシート状複合体に成形する
ことを特徴とするシート状液晶樹脂複合体の成形方法。
1. A liquid crystal composition comprising a matrix resin made of a thermoplastic resin and a liquid crystal resin having a liquid crystal transition temperature higher than the minimum moldable temperature of the resin in a fibrizable content region of the liquid crystal resin. Sheet-like material is extruded from a plurality of dies at a resin shearing rate such that the aspect ratio of the liquid crystal resin becomes 3 or more at the liquid crystal transition temperature of the resin or higher, and the temperature is higher than the minimum moldable temperature of the matrix resin and lower than the liquid crystal transition temperature of the liquid crystal resin. These sheet materials are sandwiched between a pair of pressing rolls at a joining temperature of 1 and the air between the sheet materials is discharged and integrated by the rolls to form a single sheet composite. A method for molding a sheet-shaped liquid crystal resin composite, which comprises molding.
【請求項2】 複数のダイから押し出したシート状素材
を一旦マトリックス樹脂の最低成形可能温度より低温に
冷却し、次いで、上記押圧ロールの上流側において、加
熱手段により各シート状素材を上記接合温度に加熱する
請求項1記載の成形方法。
2. The sheet-shaped material extruded from a plurality of dies is once cooled to a temperature lower than the minimum moldable temperature of the matrix resin, and then, on the upstream side of the pressure roll, each sheet-shaped material is bonded to the above-mentioned joining temperature by a heating means. The molding method according to claim 1, wherein the heating is carried out.
【請求項3】 上記押圧ロールにより上記シート状素材
の接合と同時に延伸を行う請求項1または2記載の方
法。
3. The method according to claim 1, wherein the sheet material is stretched at the same time as the sheet material is joined by the pressing roll.
【請求項4】 上記シート状素材の液晶樹脂配向方向を
互いに異ならせて接合する請求項1〜3のいずれかに記
載の方法。
4. The method according to any one of claims 1 to 3, wherein the sheet-shaped material is bonded by making the liquid crystal resin orientation directions different from each other.
【請求項5】 単一のシート状押し出しダイまたは複数
の押し出し方向を同一とし、積み重ねたシート状押し出
しダイを有し、複合樹脂組成物を液晶樹脂の液晶転移温
度以上で上記液晶樹脂のアスペクト比が3以上となる樹
脂剪断速度で押し出しを行う押出機と、該ダイの下流側
に位置し、上記複数の積層されるシート状素材をそのマ
トリックス樹脂の最低成形可能温度以上、かつ液晶樹脂
の液晶転移温度より低温の接合温度にて挟み込むように
その上下に配置され、所定の押圧接合するロール間隙に
調整された少なくとも1対の押圧ロールと、該ロール下
流に位置し、積層溶着したシート状複合体を所定長さに
切断するカッティング手段を備えるシート状液晶樹脂複
合体の成形装置。
5. A single sheet-shaped extrusion die or a plurality of sheet-shaped extrusion dies having the same extrusion direction and having stacked sheet-shaped extrusion dies, wherein the composite resin composition has an aspect ratio of the liquid crystal resin above the liquid crystal transition temperature of the liquid crystal resin. An extruder that extrudes at a resin shearing rate of 3 or more, and a plurality of sheet-like materials to be laminated, which are located on the downstream side of the die, at a temperature equal to or higher than the minimum moldable temperature of the matrix resin, and a liquid crystal of a liquid crystal resin. At least one pair of pressure rolls arranged above and below the transition temperature so as to be sandwiched at a bonding temperature lower than the transition temperature, and adjusted to a predetermined roll gap for pressure bonding, and a sheet-like composite that is positioned downstream of the rolls and laminated and welded. An apparatus for molding a sheet-shaped liquid crystal resin composite, comprising cutting means for cutting a body into a predetermined length.
【請求項6】 上記ダイの下流側に位置し、シート状素
材をそのマトリックス樹脂の最低成形可能温度よりも低
温に冷却する冷却手段を備え、該冷却手段の下流側で、
上記押圧ロールの上流側においてシート状素材をそのマ
トリックス樹脂の最低成形可能温度以上、かつ液晶樹脂
の液晶転移温度よりも低温に加熱する加熱手段を備える
請求項5記載の成形装置。
6. A cooling means, which is located on the downstream side of the die and cools the sheet material to a temperature lower than the minimum moldable temperature of the matrix resin, downstream of the cooling means,
The molding apparatus according to claim 5, further comprising heating means for heating the sheet material at a temperature above the minimum moldable temperature of the matrix resin and below the liquid crystal transition temperature of the liquid crystal resin on the upstream side of the pressing roll.
【請求項7】 上記押圧ロールがシート状素材を接合と
同時に延伸可能なロール間隔に調整可能である請求項5
記載の成形装置。
7. The pressure roll can be adjusted to a roll interval that allows stretching at the same time when the sheet materials are joined.
The molding apparatus described.
【請求項8】 請求項5記載の成形装置の積層接合シー
ト状複合体の送り方向が90度以内の角度で交差するよ
うに配置し、その交差位置に複数のシート状複合体を積
層接着する熱プレス手段を備える成形装置。
8. The molding apparatus according to claim 5, wherein the laminate-bonded sheet-shaped composite bodies are arranged so that the feeding directions intersect at an angle of 90 degrees or less, and a plurality of sheet-shaped composite bodies are laminated and bonded at the intersecting positions. A molding apparatus provided with a hot pressing means.
JP4111358A 1992-01-20 1992-04-30 Molding method of sheet-like liquid crystal resin composite and device thereof Pending JPH05305643A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4111358A JPH05305643A (en) 1992-04-30 1992-04-30 Molding method of sheet-like liquid crystal resin composite and device thereof
KR1019930000844A KR960014548B1 (en) 1992-01-20 1993-01-20 Method for molding a liquid crystal resin sheet and molding apparatus thereof
DE4301423A DE4301423C2 (en) 1992-01-20 1993-01-20 Process for forming a liquid crystal resin composite and molding a product therefrom
US08/004,901 US5626703A (en) 1992-01-20 1993-01-21 Method for preparing a liquid crystal resin composite material and molding a product from the same
EP93107012A EP0568083A1 (en) 1992-04-30 1993-04-29 Method for molding a liquid crystal resin sheet and molding apparatus thereof
KR1019930007529A KR940005376A (en) 1992-04-30 1993-04-30 Molding method of liquid crystal resin composite and apparatus therefor
US08/055,117 US5395470A (en) 1992-04-30 1993-04-30 Method for molding a liquid crystal resin sheet and molding apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111358A JPH05305643A (en) 1992-04-30 1992-04-30 Molding method of sheet-like liquid crystal resin composite and device thereof

Publications (1)

Publication Number Publication Date
JPH05305643A true JPH05305643A (en) 1993-11-19

Family

ID=14559176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111358A Pending JPH05305643A (en) 1992-01-20 1992-04-30 Molding method of sheet-like liquid crystal resin composite and device thereof

Country Status (1)

Country Link
JP (1) JPH05305643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103444A (en) * 2000-10-03 2002-04-09 Toyobo Co Ltd Biaxially oriented polyester film and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103444A (en) * 2000-10-03 2002-04-09 Toyobo Co Ltd Biaxially oriented polyester film and its production method
JP4604329B2 (en) * 2000-10-03 2011-01-05 東洋紡績株式会社 Method for producing biaxially oriented polyester film

Similar Documents

Publication Publication Date Title
KR960014548B1 (en) Method for molding a liquid crystal resin sheet and molding apparatus thereof
JP3221749B2 (en) Manufacturing method of composite products
JP2635540B2 (en) Method for producing fleece strips from thermoplastic polymer filaments
KR900000241B1 (en) Seamless laminar article and its manufacturing method
CN1316948A (en) Method for producing biaxially oriented film from foamed orientable thermoplastic polymer
US5032433A (en) Thermoplastic web and process for manufacture same
CA2343028A1 (en) Plastic strapping with modified surface characteristics
EP0568083A1 (en) Method for molding a liquid crystal resin sheet and molding apparatus thereof
JPH05305643A (en) Molding method of sheet-like liquid crystal resin composite and device thereof
JP2012213995A (en) Method for producing transparent recycled sheet, and the transparent recycled sheet
DE19501123C2 (en) Process for producing a nonwoven web from thermoplastic polymer filaments
CN104559083B (en) A kind of oriented transparent nanometer natural fiber mylar and preparation method thereof
JP3475169B2 (en) Method for producing recycled flat yarn
JP3273807B2 (en) Press molding method of liquid crystal resin composite
JP5713604B2 (en) Method for producing transparent resin laminate, molded article, and resin laminate
JP3074777B2 (en) Molding method for plastic hollow structural members
JPS58211415A (en) Manufacture of resin molding material
JPS61268430A (en) Manufacture of drawn crystalline polymer
JP5958360B2 (en) Manufacturing method of FRP sheet
JPH06106639A (en) Molding device of liquid crystal resin composite
AU2000271187B2 (en) Multi-layer films having at least three bias-cut layers
JPH06106635A (en) Molding device of liquid crystal resin composite
JPH09193229A (en) Method and mold for extrusion molding of laminated resin sheet
JPS6228223B2 (en)
JPH05192926A (en) Material, method and apparatus for molding liquid crystal resin composite