JPS6228223B2 - - Google Patents

Info

Publication number
JPS6228223B2
JPS6228223B2 JP53070315A JP7031578A JPS6228223B2 JP S6228223 B2 JPS6228223 B2 JP S6228223B2 JP 53070315 A JP53070315 A JP 53070315A JP 7031578 A JP7031578 A JP 7031578A JP S6228223 B2 JPS6228223 B2 JP S6228223B2
Authority
JP
Japan
Prior art keywords
fiber sheet
polymer
reticulated
polymers
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53070315A
Other languages
Japanese (ja)
Other versions
JPS551306A (en
Inventor
Susumu Norota
Tsutomu Kiryama
Tadashi Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7031578A priority Critical patent/JPS551306A/en
Priority to US06/046,753 priority patent/US4288484A/en
Priority to EP79301104A priority patent/EP0006704B1/en
Priority to DE7979301104T priority patent/DE2967196D1/en
Publication of JPS551306A publication Critical patent/JPS551306A/en
Publication of JPS6228223B2 publication Critical patent/JPS6228223B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はバルキー性及びドレープ性の優れた不
織状繊維集合体を形成するための繊維素材となる
網状複合繊維シートを工業的に製造する方法に関
するものである。 (従来技術) 一般に、不織状繊維集合体(例えばシート状不
織状、フトン綿、トウ状集合体等)にバルキー性
とドレープ性を付与するためには、原料繊維とし
てデニールの出来るだけ小さい繊維に捲縮を与え
たものが有効であることが知られており、従来こ
の目的を達成する手段として、押出機(紡糸機)
のノズルから2種以上の異なるポリマーを断面部
でブロツク状に配置される如く押出して、複合フ
イラメントを形成し、しかるのち(イ)複合フイラメ
ント中の1種のポリマーを溶出する方法、もしく
は、(ロ)機械に異種ポリマーごとに分割せしめる方
法、により細い繊維を製造する方法が知られてい
る。 (発明が解決しようとする問題点) このような従来法は細い繊維をつくるという点
において確かに所期の目的を達してはいるが、不
織状繊維集合体形成という点では必ずしも満足す
べきものではない。すなわち(イ)の方法において
は、繊維から1種のポリマーを溶出するため、質
量低下及びコストアツプとなり、また(ロ)の方法に
おいては、繊維集合体形成が困難である。例えば
機械的に分割しやすい構成によればカード等の前
工程の機械プロセスで分割が発生し、ウエブ化が
困難となるし、逆に前工程で分割しにくくすれば
所望の分割を行うために、後工程において特殊な
手段とエネルギーを要する。 (問題点を解決するための手段) 本発明者らは、これら従来法の問題点を解決す
ると同時に最も効果的にバルキー性とドレープ性
を不織状繊維集合体に与えるための繊維素材の製
造方法について鋭意研究の結果、本発明に到達し
たものである。 すなわち、本発明方法は、発泡性物質を含有す
る2種以上の熱可塑性重合体を別々に溶融し、そ
れぞれの押出機より溶融状態で供給しつつダイ直
前において合流せしめ、各重合体が完全に混合さ
れることなく、しかも層流状の平面的な境界を有
することなく、ブロツク状に混り合つた状態で、
間隙が0.5mm以下のスリツトダイから押出し、急
冷しながらドラフト率50〜250倍で引取ることに
より、長さ方向に略平行に配列されかつ相互に連
結しあつた網状繊維シート状物であつて該シート
状物を構成する個々の繊維断面においてその形状
と大きさがそれぞれ異なりかつ2種以上の熱可塑
性重合体が無作為の形状でブロツク状に混在する
網状複合繊維シートを製造する方法である。 かかる本発明方法によれば、バルキー性及びド
レープ性に優れた不織布状繊維集合体を形成する
ために最も効果的に機能が発揮でき、かつ容易に
集合体の形成が可能な、それ自体新規な網状複合
繊維シートが製造される。すなわち、本発明方法
による網状複合体繊維シートは、、第1図に示す
ように、繊維が長さ方向に略平行に配列されかつ
相互が網状に連結した構造体であるから、これを
用いて不織状繊維集合体を形成する場合は、該シ
ートを巾方向に延展することによつて、第2図に
示すような、繊維が二次元的に配向した網目状繊
維集合構造体(ウエブ)を繊維のデニールとは無
関係に容易に(従つて従来のカード法では困難と
される1デニール以下の繊維でも容易に)形成す
ることが出来るばかりでなく、このような網目状
繊維集合構造体は伸張変形に対して大きな自由度
を有するため、基本的にドレープ性に優れた性質
を有している。 さらに、本発明方法による網状複合繊維シート
の最も大きな特徴は、第3図に示すように、個々
の繊維断面において、その形状と大きさがそれぞ
れ異なり、かつ2種以上の異種重合体が無作為の
形状でブロツク状に混在することである。そし
て、この網状複合繊維シート状物を用いてバルキ
ー性とドレープ性の優れた不織状繊維集合体を形
成する場合は、まず何枚かの網状複合繊維シート
を積層せしめたのち前記の如く巾方向に延展して
網目状のウエブを形成したのち、適当な温度で熱
処理すればよいが、この場合、1本の繊維に注目
すると、異種ポリマーの熱収縮差によつて繊維に
捲縮が発生する。ここで重要なことは、それぞれ
の繊維がその断面が形状と大きさ及び異種ポリマ
ーの配置において全て異なるため、それぞれ全く
異なる捲縮形状を呈することであり、従つて捲縮
位相の一致による重なり等を発生することなく、
むしろ繊維相互が分離開繊の方向に向かうことで
ある。このため、熱処理後の繊維集合体はきわめ
てバルキー性に富み、かつ曲げ変形に対しても大
きな自由度を持ちドレープ性も増大する。 なお、本発明方法では、互いに相異なる2種以
上のポリマーを用いるが、かかる異種ポリマーと
しては、ポリエチレン、ポリプロピレン、ポリア
クリロニトリル、ポリ塩化ビニル、ポリスチレ
ン、弗化ビニル系共重合体、ポリアセタール、ア
イオノマー樹脂、アクリレート樹脂、ビニル系単
量体とジエン化合物との共重合体、ナイロン、ポ
リエステル、ポリカーボネート等、全く化学組成
の異る熱可塑性のポリマー相互だけでなく、2種
以上のポリマーの混合割合の異るブレンドポリマ
ー相互、例えば第3図のように2種の異種ポリマ
ーで構成する場合、一方のポリマー(Aポリマ
ー)として、ナイロン100%、他方のポリマー
(Bポリマー)としてナイロン40%、ポリプロピ
レン60%のブレンドポリマー、あるいはAポリマ
ーとしてナイロン80%、ポリプロピレン20%のブ
レンドポリマー、Bポリマーとしてナイロン30
%、ポリプロピレン70%のブレンドポリマー等の
組合せも含まれる。 また本発明においていう「異種熱可塑性重合体
が無作為の形状でブロツク状に混在する」状態と
は、第3図に模式的に示すように異種ポリマーが
マクロな不均一形状で、かつ不均一な配置を呈す
る状態をいう。 次に、かかる網状複合繊維シートを製造するた
めの本発明方法について詳述する。 従来、網状繊維シートを形成する方法として
は、特公昭49−18508号公報、特公昭52−44315号
公報等に記載のバースト・フアイバー法が知られ
ている。この方法によれば、発泡性物質を含む溶
融重合体をスリツトダイから押出し、その直後に
急冷すると共に高ドラフトで引取ることにより、
長さ方向に略平行に配列されかつ相互に連結しあ
つた網状繊維シート状物であつて、そのシートを
構成する個々の繊維断面においてその形状と大き
さがそれぞれ異る網状繊維シートを形成すること
ができる。しかしこの方法は、本発明の目的とす
るバルキー性とドレープ性に優れた不織状繊維集
合体を得る上で必要とされる捲縮発現性及び細デ
ニール化という点で末だ充分満足し得るものでは
なかつた。 しかしながら、本発明方法では、スリツトダイ
直前で合流された異種ポリマーは、第4図に示す
如く、完全に混合されることなく、しかも完全層
流によつて平面的な境界を有することもなくブロ
ツク状に混り合いながらスリツトダイ出口に押出
される。スリツトダイから押出された重合体は急
冷されながら適度に発泡するが、これをドラフト
率50〜250倍で引取ると発泡部分で亀裂が生じ網
状複合繊維シートが形成される。かくして得られ
た網状複合繊維は、前述の通り異種重合体が無作
為の形成を呈しブロツク状に混在するため、これ
を熱処理することによつて複雑な捲縮が発生し、
さらにダイのスリツト巾を細くすることのほか、
ドラフト時に重合体を出来るだけ細かく割ること
ができるように出来るだけドラフト率をあげるこ
とによつて細デニール化することが可能となる。 すなわち、本発明の方法によれば、まず異種の
ポリマーがブロツク状に分散されているため、ド
ラフト時に異種ポリマーの層間付近で割れやす
く、このため従来法より容易に繊維を細くするこ
とが可能である。さらにまた、ドラフト率のアツ
プに関しては溶融重合体の曳糸性が問題となる。
異種ポリマーの一方を所望の不織状繊維集合体に
必要な主成分重合体とし、他方を曳糸性の高い重
合体を選定することにより従来法では困難な高ド
ラフト率で引取ることも可能である。 本発明方法において、発泡性物質を含む熱可塑
性重合体とは、(イ)溶融重合体に対し実質的に不活
性な気体(例えば窒素、炭酸ガス、ヘリウム
等)、又は(ロ)使用する重合体の溶融時又は押出し
時に気化してその堆積を著しく増大し、かつ該重
合体に対して実質的に不活性な有機液体(例えば
ブタン、プロパン等)、又は(ハ)を使用する重合体
の溶融時又は押出し時に、該ポリマーに対して実
質的に不活性な気体を自ら発生する発泡剤(例え
ばアゾジカルボンアミド、パラトルエンスルホニ
ルセミカルバジド等)などの発泡性物質、を含む
熱可塑性重合体をいう。 熱可塑性重合体としては、溶融押出しの可能な
ものであればいかなるものでもよく、例えばポリ
エチレン、ポリプロピレン、ポリアクリロニトリ
ル、ポリ塩化ビニル、ポリスチレン、弗化ビニル
系共重合体、ポリアセタール、アイオノマー樹
脂、アクリレート樹脂、ビニル系単量体とジエン
化合物との共重合体、ナイロン、ポリエステル、
ポリカーボネート、熱可塑性ポリウレタン、又は
それらの共重合体、混合物等があげられる。ま
た、本発明方法では、これらのうち2種以上の異
種重合体を用いるが、これについてはすでに述べ
た通りである。 また、本発明におけるドラフト率とは、スリツ
トダイ出口の重合体線速度に対する網状複合繊維
シートの引取速度の割合であつて、下記の如く定
義される。 ドラフト率=網状複合繊維シートの引取速度/ダイ出口
の重合体線速度 本発明によれば、発泡性物質を含有する2種以
上の異種熱可塑性重合体(異種ポリマー)をそれ
ぞれ2個以上の相異る押出機から例えば100〜350
℃の温度範囲において溶融状態で各々ポリマーパ
イプに押出しつつダイの直前において合流せし
め、ブロツク状に混り合つた状態でスリツト間隙
0.5mm以下のスリツトダイから例えば150〜330℃
の温度範囲で押出し、空気、水等の冷却媒体を用
いて急冷しながらドラフト率50〜250倍、好まし
くは100〜200倍の高ドラフト下で引取り、前述の
網状複合繊維シートを形成する。 次に図面によつて本発明方法の実施態様の一例
を説明する。第1図は、本発明による網状複合繊
維シートの正面図であり、第2図は該網状複合繊
維シートを巾方向に延展した場合の正面図であ
る。第3図は該網状複合繊維シートの断面拡大図
であり、個々の繊維断面においてその形状と大き
さが異り、異種ポリマーが無作為の形状でブロツ
ク状に混在する。第4図は該網状複合繊維シート
の製造方法の概略図である。A,Bの2組の押出
機系統があり、それぞれ2種の異る熱可塑性重合
体を各々のホツパー1a,1bからベント型押出
機2a,2bに供給し、これらの両押出機のベン
ト部から窒素ガスを導入しつつ溶融状態で混練を
行い、この発泡性物質含有熱可塑性重合体をそれ
ぞれのポリマーパイプ3a,3bで成形機4に送
り合流5にて合流させ、完全に混合されることな
く、完全層流によつて平面的な境界を形成するこ
ともなく、ブロツク状に混り合いながらスリツト
ダイ出口6から押出す。押出された熱可塑性重合
体を冷却風吹出部から供給される冷却風により急
冷するとともに高ドラフトで引取ると溶融重合体
中に分散している窒素ガスは、吐出後発泡し冷却
されて亀裂となり、最終的には網状複合繊維シー
ト8として巻取られる。 (発明の効果) 本発明によれば、一工程で細い繊維からなる特
殊な網状複合繊維シートが製造される。そして、
本発明による網状複合繊維シートは、前述の如き
構造を有するためウエブ状の網状繊維構造体及び
バルキー性不織状繊維集合体を形成する良好な繊
維素材となり、不織状製造用材料、過材料、包
装材料、衣料、断熱材、クツシヨン材、合成紙、
電気絶縁材料、インテリア材料、車輌用材料、農
業用資材等の多くの分野に優れた素材として利用
できる。特に高級衣料、高級フイルター材料等に
最適である。本発明による網状複合繊維シートは
種々の含浸基材、コーテイング基材等の素材とし
ても優れており、その加工用途はこれらに限られ
たものではない。 (実施例) 以下本発明の方法を実施例を掲げて更に詳細に
説明する。 実施例 1 第4図に示す装置を用いて、A系統の押出機の
ホツパ1aにポリスチレンチツプを入れ、B系統
の押出機のホツパー1bにポリプロピレンチツプ
を入れ、各々240〜300℃、270〜310℃の温度条件
でベント式押出機2a,2bより、ポリマーパイ
プ3a,3bに押出した。この際、各押出機のベ
ント部より窒素ガスを600Kg/cm2の圧力で導入し
た。2個のポリマーパイプ3a,3bより合流し
た両ポリマーはブロツク状に混り合いながら、間
隙300μmのスリツトダイ6から280℃の温度条件
で押出し、冷却風によつて急冷しながら、ドラフ
ト率160倍で捲取り、網状複合繊維シート8を得
た。この網状複合繊維シートは第1図の如き外観
を呈し、その繊維断面は第3図に示す如きもので
あつた。 かくして得られた網状複合繊維シートを120〜
140℃の温度範囲で熱処理することによつて、平
均繊維デニール1.2de、平均捲縮数96ケ/cmの捲
縮繊維シートが得られた。 実施例 2〜7 種々の重合体混合物を用いる他は実施例1と同
様に実施して第1表の結果を得た。 比較例 1、2 第4図において、A系統の押出機のみを作動し
B系統の押出機を停止して実施例1と同様に実施
した。結果は第1表に実施例と共に併記した。 なお、下記第1表において略号はそれぞれ下記
のものを表わす。 PS ポリスチレン PP ポリプロピレン PET ポリエチレンテレフタレート PBT ポリブチレンテレフタレート NY−6 ナイロン6 AS アクリロニトリル・スチレン共重合
体 PC ポリカーボネート EEA エチレン・エチルアクリレート共重
合体
(Industrial Application Field) The present invention relates to a method for industrially manufacturing a reticulated composite fiber sheet that is a fiber material for forming a nonwoven fiber aggregate with excellent bulkiness and drapability. (Prior art) In general, in order to impart bulkiness and drapability to a nonwoven fiber aggregate (for example, a sheet-like nonwoven, futon cotton, tow-like aggregate, etc.), the denier of the raw material fiber must be as small as possible. It is known that crimped fibers are effective, and conventionally the extruder (spinning machine) has been used as a means to achieve this purpose.
A method in which two or more different polymers are extruded from a nozzle so as to be arranged in a block in the cross section to form a composite filament, and then (a) one type of polymer in the composite filament is eluted, or ( B) A method is known in which a machine separates different types of polymers, and a method to produce thinner fibers. (Problems to be Solved by the Invention) Although such conventional methods have certainly achieved the desired purpose in terms of producing thin fibers, they are not necessarily satisfactory in terms of forming non-woven fiber aggregates. isn't it. That is, in the method (a), one type of polymer is eluted from the fibers, resulting in a decrease in mass and an increase in cost, and in the method (b), it is difficult to form a fiber aggregate. For example, if the configuration is easy to mechanically split, splitting will occur in the pre-process mechanical process of cards, etc., making it difficult to create a web.On the other hand, if it is made difficult to split in the pre-process, it will be difficult to perform the desired splitting. , requiring special means and energy in post-processing. (Means for Solving the Problems) The present inventors have solved the problems of these conventional methods, and at the same time produced a fiber material that most effectively imparts bulkiness and drapability to a nonwoven fiber aggregate. The present invention was arrived at as a result of intensive research into the method. That is, in the method of the present invention, two or more types of thermoplastic polymers containing foamable substances are separately melted, and while being fed in a molten state from each extruder, they are brought together just before a die, so that each polymer is completely melted. In a state where they are mixed in a block shape without being mixed and without having a laminar planar boundary,
By extruding through a slit die with a gap of 0.5 mm or less and taking it off at a draft rate of 50 to 250 times while rapidly cooling it, it is a reticulated fiber sheet that is arranged approximately parallel to the length direction and interconnected. This is a method for producing a reticulated conjugate fiber sheet in which the cross sections of the individual fibers constituting the sheet-like product are different in shape and size, and two or more types of thermoplastic polymers are mixed in blocks in random shapes. According to the method of the present invention, the method can function most effectively to form a nonwoven fiber aggregate with excellent bulkiness and drapability, and the aggregate can be easily formed, which is novel in itself. A reticulated composite fiber sheet is produced. That is, as shown in FIG. 1, the reticular composite fiber sheet produced by the method of the present invention is a structure in which the fibers are arranged approximately parallel to each other in the length direction and are connected to each other in a reticulated manner. When forming a non-woven fiber aggregate, by stretching the sheet in the width direction, a reticulated fiber aggregate structure (web) in which fibers are two-dimensionally oriented as shown in FIG. Not only can it be easily formed regardless of the denier of the fibers (therefore, even with fibers of 1 denier or less, which is difficult with the conventional carding method), such a reticulated fiber aggregate structure can also be easily formed. Since it has a large degree of freedom with respect to stretching and deformation, it basically has excellent drapability. Furthermore, the most significant feature of the reticulated composite fiber sheet produced by the method of the present invention is that, as shown in Figure 3, the shapes and sizes of the individual fibers are different in cross section, and two or more different types of polymers are randomly distributed. They are mixed together in a block shape. When forming a nonwoven fiber aggregate with excellent bulkiness and drapability using this reticulated composite fiber sheet, first, several reticulated composite fiber sheets are laminated, and then the width is adjusted as described above. After stretching in the direction to form a mesh-like web, it may be heat-treated at an appropriate temperature, but in this case, when focusing on a single fiber, crimp occurs in the fiber due to the difference in thermal contraction of different polymers. do. What is important here is that each fiber has a completely different crimped shape because its cross section is different in shape and size, as well as the arrangement of different polymers. without causing
Rather, the fibers are oriented in the direction of separation and opening. Therefore, the fiber aggregate after heat treatment has extremely bulky properties, has a large degree of freedom against bending deformation, and has increased drapability. In the method of the present invention, two or more different polymers are used, and examples of such different polymers include polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, polystyrene, vinyl fluoride copolymer, polyacetal, and ionomer resin. , acrylate resins, copolymers of vinyl monomers and diene compounds, nylon, polyester, polycarbonate, etc., as well as thermoplastic polymers with completely different chemical compositions, as well as different mixing ratios of two or more polymers. For example, in the case of a blend of two different polymers as shown in Figure 3, one polymer (A polymer) is 100% nylon, and the other polymer (B polymer) is 40% nylon and 60% polypropylene. Blend polymer of 80% nylon and 20% polypropylene as A polymer, or nylon 30 as B polymer
%, 70% polypropylene blend polymers, etc. are also included. Furthermore, in the present invention, the state in which "different types of thermoplastic polymers are mixed in a random block shape" means that different types of polymers have a macroscopic non-uniform shape and are non-uniform, as schematically shown in FIG. This refers to a state in which a certain arrangement is observed. Next, the method of the present invention for manufacturing such a reticulated composite fiber sheet will be described in detail. Conventionally, the burst fiber method described in Japanese Patent Publications No. 49-18508 and Japanese Patent Publication No. 52-44315 has been known as a method for forming a reticulated fiber sheet. According to this method, a molten polymer containing a foamable material is extruded from a slit die, immediately after which it is rapidly cooled and taken off with a high draft.
A reticular fiber sheet that is arranged approximately parallel to the length direction and interconnected, forming a reticular fiber sheet in which the cross section of each fiber constituting the sheet has a different shape and size. be able to. However, this method is still fully satisfactory in terms of crimp development and fine denier, which are necessary to obtain a nonwoven fiber aggregate with excellent bulkiness and drapability, which is the objective of the present invention. It wasn't something. However, in the method of the present invention, the different types of polymers that are combined just before the slit die are not completely mixed and are formed into a block shape without having a planar boundary due to completely laminar flow, as shown in FIG. It is extruded to the exit of the slit die while being mixed with the liquid. The polymer extruded from the slit die foams moderately while being rapidly cooled, but when it is taken off at a draft rate of 50 to 250 times, cracks occur in the foamed parts and a reticulated composite fiber sheet is formed. As mentioned above, the reticulated composite fiber thus obtained has different polymers randomly formed and mixed together in a block shape, so when it is heat-treated, complex crimp occurs.
Furthermore, in addition to narrowing the die slit width,
Fine denier can be achieved by increasing the draft rate as much as possible so that the polymer can be broken as finely as possible during drafting. That is, according to the method of the present invention, since different types of polymers are dispersed in the form of blocks, it is easy to break near the interlayers of different types of polymers during drafting, and therefore it is possible to make the fibers thinner more easily than in the conventional method. be. Furthermore, the spinnability of the molten polymer poses a problem in increasing the draft rate.
By selecting one of the different polymers as the main component polymer required for the desired nonwoven fiber aggregate and the other being a polymer with high spinnability, it is possible to draw at a high draft rate that is difficult with conventional methods. It is. In the method of the present invention, the thermoplastic polymer containing an expandable substance refers to (a) a gas that is substantially inert to the molten polymer (e.g., nitrogen, carbon dioxide, helium, etc.), or (b) the polymer used. Organic liquids (e.g., butane, propane, etc.) that vaporize during melting or extrusion of the polymer and significantly increase its deposition and are substantially inert to the polymer, or (c) Refers to a thermoplastic polymer that contains a foamable substance such as a blowing agent (e.g., azodicarbonamide, paratoluenesulfonyl semicarbazide, etc.) that generates a gas that is substantially inert to the polymer itself when melted or extruded. . Any thermoplastic polymer may be used as long as it can be melt extruded, such as polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, polystyrene, vinyl fluoride copolymers, polyacetals, ionomer resins, and acrylate resins. , copolymers of vinyl monomers and diene compounds, nylon, polyester,
Examples include polycarbonate, thermoplastic polyurethane, copolymers and mixtures thereof, and the like. Furthermore, in the method of the present invention, two or more of these different types of polymers are used, as described above. Further, the draft rate in the present invention is the ratio of the take-up speed of the reticulated composite fiber sheet to the linear velocity of the polymer at the exit of the slit die, and is defined as follows. Draft rate = take-up speed of reticulated composite fiber sheet/polymer linear velocity at die exit According to the present invention, two or more different types of thermoplastic polymers (different types of polymers) containing foamable substances are For example 100-350 from different extruders
They are each extruded into polymer pipes in a molten state in the temperature range of
For example, 150 to 330℃ from a slit die of 0.5 mm or less
The reticulated conjugate fiber sheet is formed by extrusion at a temperature range of , and taking it off under a high draft with a draft ratio of 50 to 250 times, preferably 100 to 200 times while rapidly cooling using a cooling medium such as air or water to form the above-mentioned reticulated composite fiber sheet. Next, an example of an embodiment of the method of the present invention will be explained with reference to the drawings. FIG. 1 is a front view of a reticulated composite fiber sheet according to the present invention, and FIG. 2 is a front view of the reticulated composite fiber sheet stretched in the width direction. FIG. 3 is an enlarged cross-sectional view of the reticulated composite fiber sheet, in which the shapes and sizes of individual fibers are different in cross-section, and different types of polymers are randomly mixed in blocks. FIG. 4 is a schematic diagram of the method for manufacturing the reticulated composite fiber sheet. There are two sets of extruder systems A and B, and two different thermoplastic polymers are supplied from respective hoppers 1a and 1b to vent type extruders 2a and 2b, and the vent parts of both extruders Kneading is carried out in a molten state while introducing nitrogen gas from the polymer pipes 3a and 3b, and the foamable material-containing thermoplastic polymer is sent to the molding machine 4 through the respective polymer pipes 3a and 3b, where they are merged at the confluence 5 to be completely mixed. They are extruded from the slit die outlet 6 while being mixed in a block shape without forming a planar boundary due to a completely laminar flow. When the extruded thermoplastic polymer is rapidly cooled by the cooling air supplied from the cooling air outlet and taken off with a high draft, the nitrogen gas dispersed in the molten polymer foams after being discharged and is cooled, causing cracks. , and finally wound up as a reticulated composite fiber sheet 8. (Effects of the Invention) According to the present invention, a special reticular composite fiber sheet made of thin fibers is manufactured in one step. and,
Since the reticular composite fiber sheet according to the present invention has the above-described structure, it is a good fiber material for forming a web-like reticular fiber structure and a bulky non-woven fiber aggregate, and can be used as a material for non-woven production or as a supermaterial. , packaging materials, clothing, insulation materials, cushion materials, synthetic paper,
It can be used as an excellent material in many fields such as electrical insulation materials, interior materials, vehicle materials, and agricultural materials. It is especially suitable for high-quality clothing, high-grade filter materials, etc. The reticulated composite fiber sheet according to the present invention is also excellent as a material for various impregnated base materials, coating base materials, etc., and its processing uses are not limited to these. (Example) The method of the present invention will be described in more detail below with reference to Examples. Example 1 Using the apparatus shown in FIG. 4, polystyrene lentil chips were put into the hopper 1a of the extruder of system A, and polypropylene lentic chips were put into the hopper 1b of the extruder of system B, and the temperature was 240 to 300°C and 270 to 310°C. It was extruded into polymer pipes 3a, 3b from vent-type extruders 2a, 2b at a temperature of .degree. At this time, nitrogen gas was introduced from the vent part of each extruder at a pressure of 600 Kg/cm 2 . The two polymers merging from the two polymer pipes 3a and 3b are mixed in a block shape and extruded through a slit die 6 with a gap of 300 μm at a temperature of 280°C, and are rapidly cooled by cooling air at a draft rate of 160 times. After winding up, a reticulated composite fiber sheet 8 was obtained. This reticulated composite fiber sheet had an appearance as shown in FIG. 1, and its fiber cross section was as shown in FIG. 3. The thus obtained reticular composite fiber sheet is
A crimped fiber sheet with an average fiber denier of 1.2 de and an average number of crimps of 96 crimps/cm was obtained by heat treatment in a temperature range of 140°C. Examples 2 to 7 The same procedure as in Example 1 was carried out except that various polymer mixtures were used, and the results shown in Table 1 were obtained. Comparative Examples 1 and 2 In FIG. 4, the same procedure as in Example 1 was carried out except that only the extruder of system A was operated and the extruder of system B was stopped. The results are listed in Table 1 together with Examples. In Table 1 below, the abbreviations represent the following, respectively. PS Polystyrene PP Polypropylene PET Polyethylene terephthalate PBT Polybutylene terephthalate NY-6 Nylon 6 AS Acrylonitrile-styrene copolymer PC Polycarbonate EEA Ethylene-ethyl acrylate copolymer

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法による網状複合繊維シート
の一例を示す正面図であり、第2図は該網状複合
繊維シートを巾方向に延展したシート正面図であ
る。第3図は該網状複合繊維シートの拡大断面図
である。第4図は本発明方法の一例を示す網状複
合繊維シートの製造方法の概略図である。
FIG. 1 is a front view showing an example of a reticulated composite fiber sheet produced by the method of the present invention, and FIG. 2 is a front view of the reticulated composite fiber sheet stretched in the width direction. FIG. 3 is an enlarged sectional view of the reticulated composite fiber sheet. FIG. 4 is a schematic diagram of a method for manufacturing a reticulated composite fiber sheet, showing an example of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 発泡性物質を含有する2種以上の熱可塑性重
合体を別々に溶融し、それぞれの押出機より溶融
状態で供給しつつダイ直前において合流せしめ、
各重合体が完全に混合されることなく、しかも層
流状の平面的な境界を有することなく、ブロツク
状に混り合つた状態で、間隙0.5mm以下のスリツ
トダイから押出し、急冷しながらドラフト率50〜
250倍で引取ることにより、繊維が長さ方向に略
平行に配列されかつ相互に連結しあつた網状繊維
シート状物であつて該シート状物を構成する個々
の繊維断面においてその形状と大きさがそれぞれ
異なりかつ2種以上の熱可塑性重合体が無作為の
形状でブロツク状に混在する網状複合繊維シート
を形成せしめることを特徴とする、網状複合繊維
シートの製造方法。
1. Two or more types of thermoplastic polymers containing foamable substances are separately melted, and while being fed in a molten state from each extruder, they are brought together just before a die,
The polymers are extruded through a slit die with a gap of 0.5 mm or less without being completely mixed, without having any laminar planar boundaries, and are rapidly cooled to achieve a draft rate. 50~
By drawing at a magnification of 250 times, the fibers are arranged approximately parallel to each other in the longitudinal direction and are interconnected. 1. A method for producing a reticulated conjugate fiber sheet, which comprises forming a reticulated conjugated fiber sheet in which two or more thermoplastic polymers, each having different properties, are mixed in blocks in random shapes.
JP7031578A 1978-06-13 1978-06-13 Net like composite fiber sheet and method Granted JPS551306A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7031578A JPS551306A (en) 1978-06-13 1978-06-13 Net like composite fiber sheet and method
US06/046,753 US4288484A (en) 1978-06-13 1979-06-08 Novel fibrous assembly and process for production thereof
EP79301104A EP0006704B1 (en) 1978-06-13 1979-06-11 Fibrous structure
DE7979301104T DE2967196D1 (en) 1978-06-13 1979-06-11 Fibrous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7031578A JPS551306A (en) 1978-06-13 1978-06-13 Net like composite fiber sheet and method

Publications (2)

Publication Number Publication Date
JPS551306A JPS551306A (en) 1980-01-08
JPS6228223B2 true JPS6228223B2 (en) 1987-06-18

Family

ID=13427888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7031578A Granted JPS551306A (en) 1978-06-13 1978-06-13 Net like composite fiber sheet and method

Country Status (1)

Country Link
JP (1) JPS551306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484963U (en) * 1990-11-30 1992-07-23
JPH0519607Y2 (en) * 1987-09-07 1993-05-24

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992374A (en) * 1973-01-12 1974-09-03
JPS524672A (en) * 1975-06-30 1977-01-13 Matsushita Electric Works Ltd Discharge lamp lighting apparatus
JPS5244315A (en) * 1975-10-07 1977-04-07 Mitsubishi Motors Corp Variable valve-timing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992374A (en) * 1973-01-12 1974-09-03
JPS524672A (en) * 1975-06-30 1977-01-13 Matsushita Electric Works Ltd Discharge lamp lighting apparatus
JPS5244315A (en) * 1975-10-07 1977-04-07 Mitsubishi Motors Corp Variable valve-timing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519607Y2 (en) * 1987-09-07 1993-05-24
JPH0484963U (en) * 1990-11-30 1992-07-23

Also Published As

Publication number Publication date
JPS551306A (en) 1980-01-08

Similar Documents

Publication Publication Date Title
DE2537278C3 (en) Method and device for producing a fiber fleece
US3634564A (en) Process for the manufacture of fibrillated foamed films
US4258093A (en) Molding nonwoven, needle punched fabrics into three dimensional shapes
US3539666A (en) Method for preparing a nonwoven fabriclike member
US3717541A (en) Non-woven fabric-like member
JPH03174008A (en) Method for production of synthetic yarn and/or fiber in the course of manufacture of spinning fleece from thermoplastic plastic and spinning nozzle unit
GB1105983A (en) A method and apparatus for the preparation of a composite thermoplastic resinous article
JPH0557779A (en) Simultaneous extruding composite foam
JP2009515061A (en) Method for producing three-dimensionally crimped coated staple fibers and coated staple fibers
KR960014548B1 (en) Method for molding a liquid crystal resin sheet and molding apparatus thereof
US3969472A (en) Method of manufacturing a foam fibrillated fibrous web from an isotactic polypropylene, polystyrene and α-methylstrene blend
JPS6228224B2 (en)
JPS6228223B2 (en)
US3615998A (en) Method of biaxially oriented nonwoven tubular material
JP2651094B2 (en) Speaker cone and method of manufacturing the same
US3632711A (en) Process for combing the opposite sides of a sandwich-like tubular polymeric sheet
EP0006704B1 (en) Fibrous structure
JP3082791B2 (en) Thermoplastic nonwoven fabric and method for producing the same
EP0029654A1 (en) Non-woven fabric made from polybutadiene and method of making it
GB1213441A (en) Improvements in fibrous products
US3690982A (en) Filamentary or sheet-like material of polymeric substances and method and apparatus for producing said material
JPS61225310A (en) Production of filament
WO2000020668A1 (en) Heat-bondable fibre
JPS627509A (en) Manufacture of resin composite material mixed with carbon fiber
JPS628546B2 (en)