JPH053050A - Operation method for solid secondary battery and power supply - Google Patents

Operation method for solid secondary battery and power supply

Info

Publication number
JPH053050A
JPH053050A JP3150006A JP15000691A JPH053050A JP H053050 A JPH053050 A JP H053050A JP 3150006 A JP3150006 A JP 3150006A JP 15000691 A JP15000691 A JP 15000691A JP H053050 A JPH053050 A JP H053050A
Authority
JP
Japan
Prior art keywords
secondary battery
solid
solid electrolyte
battery
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3150006A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
正 外邨
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3150006A priority Critical patent/JPH053050A/en
Publication of JPH053050A publication Critical patent/JPH053050A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To allow voltage to become lower as temperature rises for longer service life in a solid secondary battery wherein a copper cheverl phase compound is used as positive and a negative electrodes and a Rb series ionic conductive solid electrode is used as a solid electrolyte. CONSTITUTION:A solid secondary battery is formed by using a copper chevrel phase compound as positive and negative electrode materials and a Rb series ionic conductive solid electrolyte as a solid electrolyte. As for this battery, overcharge occurs if it is constantly charged with a set potential of 0.5 to 0.6V. And the higher the ambient temperture, the higher leakage current and the less capacity. Therefore, at the room temperature, charging is carried out with 0.6V while at high temperatures such as 100 deg.C, with a lower set voltage such as 0.52V. This constitution allows controlling the increase of leakage current at high temperatures and also allows the battery to live longer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池の作動法および
電源装置に関し、特に構成材料がすべて固体のいわゆる
固体二次電池の作動法および電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a secondary battery and a power supply device, and more particularly to an operation method and a power supply device of a so-called solid secondary battery whose constituent materials are all solid.

【0002】[0002]

【従来の技術】各種の電源として使われる電池のうち構
成材料がすべて固体であるいわゆる固体電池は液漏れが
ない。したがって高信頼性が期待でき小形軽量化も可能
などの理由で一次,二次電池ともに注目されてきた。現
在のところ各種機器のメモリーバックアップ用を中心に
考えられている。
2. Description of the Related Art Among batteries used as various power sources, so-called solid-state batteries whose constituent materials are all solid have no liquid leakage. Therefore, both primary and secondary batteries have been attracting attention for any reason that they can be expected to have high reliability and can be made smaller and lighter. Currently, it is mainly used for memory backup of various devices.

【0003】固体電池では電解質としてLi+イオン導
電性固体電解質、Ag+イオン導電性固体電解質、H+
オン導電性固体電解質それにRbCu41.5Cl3.5
CuI−Cu2O−MoO3などのCu+イオン導電性固
体電解質などが取り上げられている。
In solid-state batteries, Li + ion conductive solid electrolyte, Ag + ion conductive solid electrolyte, H + ion conductive solid electrolyte and RbCu 4 I 1.5 Cl 3.5 ,
Cu + ion conductive solid electrolytes such as CuI-Cu 2 O-MoO 3 have been taken up.

【0004】また正極用材料としてはCuTi系、Ag
Ti系、それにCuyMo68-z,FeyMo68-z(た
だしいづれもy=0〜4,z=0〜0.4)などのシェ
ブレル相化合物があげられている。一方、負極用材料に
はCu,Ag,Li1.5WO3それに正極用と同様のシェ
ブレル相化合物が試みられている。
Further, as a material for the positive electrode, CuTi system, Ag
Ti-based compounds and Chevrel phase compounds such as Cu y Mo 6 S 8-z and Fe y Mo 6 S 8-z (however, y = 0 to 4, z = 0 to 0.4) are mentioned. On the other hand, Cu, Ag, Li 1.5 WO 3 and the same Chevrel phase compound as for the positive electrode have been tried as the negative electrode material.

【0005】これらのうち正極および負極用として銅シ
ェブレル相化合物を選び、とくにCu2Mo68の組成
を両極ともに用い、固体電解質としてRb系イオン導電
性固体電解質を用いた固体二次電池では、他の系に比べ
て急速充放電が可能で寿命も長く、過放電特性も良い。
しかしエネルギー密度が他の汎用電池に比べて小さいの
でおもにメモリーバックアップ用を対象にしている。
Of these, a copper Chevrel phase compound is selected for the positive electrode and the negative electrode, and in particular, a solid secondary battery using the composition of Cu 2 Mo 6 S 8 for both electrodes and an Rb-based ion conductive solid electrolyte as the solid electrolyte is used. As compared with other systems, it can be charged and discharged quickly, has a long life, and has good over-discharge characteristics.
However, its energy density is lower than that of other general-purpose batteries, so it is mainly used for memory backup.

【0006】したがって実際の使用時での一般的な充電
法としては定電圧充電を連続的に行ない必要に応じて放
電を行うことになる。この際の充電電位としては電解質
や電極の変質を避けるために0.50〜0.60V/セ
ルを上限とする。
Therefore, as a general charging method in actual use, constant voltage charging is continuously performed and discharging is performed as necessary. At this time, the charge potential is set to 0.50 to 0.60 V / cell as an upper limit in order to avoid deterioration of the electrolyte and electrodes.

【0007】[0007]

【発明が解決しようとする課題】正極および負極用材料
として高放電と可逆性に優れた銅シェブレル相化合物を
選び、とくにCu2Mo68の組成を両極ともに用い、
固体電解質としてRbCu41.5Cl3.5などのRb系
イオン導電性固体電解質を用いたとくにメモリーバック
アップ用の固体二次電池も他の電池と同様に優れた温度
特性が要望される。ところが、とくに60℃以上の高温
で連続的に定電圧充電を行うと放電容量の低下が認めら
れる電池がでてきた。本発明はこのような課題を解決す
るもので、高温で長寿命の固体二次電池の作動法および
電源装置を提供することを目的とする。
As a material for the positive electrode and the negative electrode, a copper Chebrel phase compound excellent in high discharge and reversibility is selected, and particularly, a composition of Cu 2 Mo 6 S 8 is used for both electrodes.
Similar to other batteries, a solid secondary battery using an Rb-based ionic conductive solid electrolyte such as RbCu 4 I 1.5 Cl 3.5 as a solid electrolyte is required to have excellent temperature characteristics like other batteries. However, there has been a battery in which a decrease in discharge capacity is observed when constant voltage charging is continuously performed at a high temperature of 60 ° C. or higher. The present invention solves such a problem, and an object of the present invention is to provide an operating method and a power supply device of a solid secondary battery having a high temperature and a long life.

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
本発明の固体二次電池の作動法および電源装置は、正極
および負極用材料として銅シェブレル相化合物とくにC
2Mo68の組成を選び、固体電解質としてRbCu4
1.5Cl3.5などのRb系イオン導電性固体電解質を用
いた常時定電位充電を行って使用する固体二次電池にお
いて、高温ほど充電時での電位を低くする。また、この
ように制御した充電器を備えた電源装置で常時定電位充
電を行なう。
In order to solve this problem, a method for operating a solid secondary battery and a power supply device of the present invention include a copper chevrel phase compound, especially C, as a material for a positive electrode and a negative electrode.
Select the composition of u 2 Mo 6 S 8 and use RbCu 4 as the solid electrolyte.
In a solid-state secondary battery that is used by always performing constant-potential charging using an Rb-based ionic conductive solid electrolyte such as I 1.5 Cl 3.5 , the higher the temperature, the lower the potential during charging. Moreover, constant-potential charging is always performed by the power supply device including the charger controlled in this way.

【0009】[0009]

【作用】この方法または構成により、本発明の固体二次
電池の作動法および電源装置は、正極および負極用材料
として銅シェブレル相化合物Cu2Mo68の組成を両
極ともに用い、固体電解質としてRb系イオン導電性固
体電解質を用いた固体二次電池では、0.50〜0.6
0V/セルを充電の設定電位としてきた。しかし、とく
にメモリーバックアップ用のように常時定電位で充電し
ていると過充電になり周囲の温度が高くなると漏れ電流
が増加し間欠的に放電した際に容量が減少する。したが
って室温では0.6V/セルで充電してもよいが、高温
たとえば100℃では0.52V/セルのように低い設
定電位にすることで高温での漏れ電流の増加を制御し長
寿命が可能になる。
According to this method or configuration, the solid secondary battery operating method and power supply device of the present invention use the composition of the copper Chevrel phase compound Cu 2 Mo 6 S 8 as both the positive electrode and the negative electrode material, and use it as the solid electrolyte. In a solid secondary battery using an Rb-based ion conductive solid electrolyte, 0.50 to 0.6
0V / cell has been used as the set potential for charging. However, especially when constantly charged with a constant potential for memory backup, the battery is overcharged and the leakage current increases when the ambient temperature rises, and the capacity decreases when the battery is intermittently discharged. Therefore, it may be charged at 0.6V / cell at room temperature, but at a high temperature, for example, 100 ° C, by setting a low set potential such as 0.52V / cell, the increase in leakage current at high temperature can be controlled and a long life can be achieved. become.

【0010】さらに上記のような条件で構成された定電
位充電器を用いることにより、高温での長寿命化を達成
できることとなる。
Further, by using the constant potential charger constructed under the above conditions, it is possible to achieve a long life at high temperature.

【0011】[0011]

【実施例】以下、本発明の一実施例の固体二次電池の作
動法および電源装置について説明する。
EXAMPLE An operation method and a power supply device for a solid secondary battery according to an example of the present invention will be described below.

【0012】正極および負極用材料として銅シェブレル
(Cu2Mo68)を用い、これに電解質としてRbC
41.5Cl3.5を20Wt%、結着剤として市販のポ
リエチレンが6Wt%になるようにして厚さ300μm
のシートを作成する。
Copper chevrel (Cu 2 Mo 6 S 8 ) was used as the material for the positive electrode and the negative electrode, and RbC was used as the electrolyte for this.
u 4 I 1.5 Cl 3.5 is 20 Wt% and commercially available polyethylene is 6 Wt% as a binder, and the thickness is 300 μm.
Create a sheet of.

【0013】電解質としてRbCu41.5Cl3.5を用
い、やはり接着剤としてポリエチレンが13Wt%にな
るように加え、厚さ120μmのシートを作製する。つ
ぎに正極、電解質、負極の各シートの順に重ね、まずこ
れを160℃に加熱したプレス機で500Kg/cm2の条
件で加圧する。ついで、このようにして得られた電池素
子の両面に市販のバインダーで成形した導電性炭素紙を
当てて130℃、400Kg/cm2の条件で加圧一体化し
て電池素子とした。
RbCu 4 I 1.5 Cl 3.5 is used as an electrolyte, and polyethylene is also added as an adhesive in an amount of 13 wt% to prepare a sheet having a thickness of 120 μm. Next, the positive electrode, the electrolyte, and the negative electrode are stacked in this order, and this is first pressed with a press machine heated to 160 ° C. under the condition of 500 kg / cm 2 . Then, conductive carbon paper molded with a commercially available binder was applied to both sides of the battery element thus obtained, and pressure integrated under conditions of 130 ° C. and 400 kg / cm 2 to obtain a battery element.

【0014】さらにポリエチレン膜を配したアルミニウ
ムからなる厚さ0.2mmのラミネートシートを電池素子
の両面にポリエチレンを内側にして当て140℃に加熱
したローラプレス機を電池素子部、電池周辺ともに30
0Kg/cm2になるように加熱下で加圧する。この操作で
電池素子は加圧され、電池周辺ではポリエチレン間が溶
着し封止が完成する。なおリード板については本実施例
ではそれぞれCuの薄板を外部に取り出した。電池の大
きさは15×30mmとした。
Further, a 0.2 mm-thick laminated sheet made of aluminum with a polyethylene film is applied to both sides of the battery element with polyethylene on the inside, and a roller press machine heated to 140 ° C. is used at both the battery element portion and the battery periphery for 30 minutes.
Pressurize under heating to 0 kg / cm 2 . By this operation, the battery element is pressurized, and polyethylene is welded around the battery to complete the sealing. Regarding the lead plates, in this embodiment, thin Cu plates were taken out to the outside. The size of the battery was 15 × 30 mm.

【0015】化成終了後この電池を20℃では0.58
V、60℃では0.56V、100℃では0.52Vに
なるように制御した定電圧充電器で常時充電した。この
電池をAとする。なお、放電は500時間充電ごとに
0.5mAで0.3Vまでの定電流放電を充電と同じ温
度で行った。
After completion of the chemical conversion, this battery was heated to 0.58 at 20 ° C.
The battery was constantly charged with a constant voltage charger controlled to be 0.56 V at V and 60 ° C. and 0.52 V at 100 ° C. This battery is designated as A. The discharge was carried out by performing constant current discharge at 0.5 mA up to 0.3 V every 500 hours of charge at the same temperature as the charge.

【0016】比較のためにすべての温度とも0.58V
定電圧充電を行った電池をBとし、同じく0.56V定
電圧充電を行った電池をC、同じく0.52V定電圧充
電を行った電池をDとして加えた。
For comparison, all temperatures are 0.58 V
A battery subjected to constant voltage charging was added as B, a battery subjected to constant voltage charging at 0.56 V was added as C, and a battery similarly subjected to constant voltage charging at 0.52 V was added as D.

【0017】以上のA〜Dの電池で周囲温度20℃,6
5℃,100℃で充放電サイクルを繰り返して寿命を調
べた。20℃での充放電サイクルと容量(mAh)の結
果を(表1)、同じく65℃での結果を(表2)、同じ
く100℃での結果を(表3)に示す。
With the above batteries A to D, the ambient temperature was 20 ° C. and 6
The charging / discharging cycle was repeated at 5 ° C. and 100 ° C. to examine the life. The results of charge / discharge cycle and capacity (mAh) at 20 ° C. are shown in (Table 1), the results at 65 ° C. are shown in (Table 2), and the results at 100 ° C. are shown in (Table 3).

【0018】[0018]

【表1】 [Table 1]

【0019】この表1の結果から明らかなように20℃
付近の室温では、設定電圧を高くすると初期の容量は大
きい。
As is clear from the results shown in Table 1, the temperature is 20 ° C.
At room temperature in the vicinity, when the set voltage is increased, the initial capacity is large.

【0020】つぎの65℃では表2に示すようにDのよ
うに設定電圧が低いと充放電サイクル初期から放電容量
が少ない。また、Bのように設定電圧が高すぎると寿命
が低下する。
At the next 65 ° C., as shown in Table 2, when the set voltage is low as shown by D, the discharge capacity is small from the beginning of the charge / discharge cycle. Further, if the set voltage is too high as in B, the life is shortened.

【0021】[0021]

【表2】 [Table 2]

【0022】最後に100℃では表3に示すようにB,
Cのように設定電圧が高いと放電容量は多いが、充放電
サイクルによる低下が大きい。
Finally, at 100 ° C., as shown in Table 3, B,
When the set voltage is high like C, the discharge capacity is large, but the decrease due to the charge / discharge cycle is large.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上の実施例の説明により明らかなよう
に、本発明の固体二次電池の作動法および電源装置によ
れは、正極および負極用材料として銅シェブレル相化合
物とくにCu2Mo68の組成を選び、固体電解質とし
てRbCu41.5Cl3.5などのRb系イオン導電性固
体電解質を用いた常時定電圧で充電して用いる固体二次
電池において、高温ほど充電時での電位を低めた低電位
充電を行う。またそのように制御された充電器で充電す
ることにより、とくに高温での長寿命化が達成できる。
As is apparent from the above description of the embodiments, according to the method for operating a solid secondary battery and the power supply device of the present invention, a copper chevrel phase compound, particularly Cu 2 Mo 6 S, is used as a material for the positive electrode and the negative electrode. Select a composition of 8 and use a Rb-based ionic conductive solid electrolyte such as RbCu 4 I 1.5 Cl 3.5 as a solid electrolyte to charge the battery at a constant voltage all the time. Low potential charging. In addition, by charging with a charger controlled in this way, a long life can be achieved especially at high temperatures.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極および負極用材料として銅シェブレ
ル相化合物、固体電解質としてRbCu41.5Cl3.5
などのRb系イオン導電性固体電解質を用い、常時定電
位充電を行って使用する固体二次電池において、高温ほ
ど充電時での電位を低くした固体二次電池の作動法。
1. A copper chevrel phase compound as a material for a positive electrode and a negative electrode, and RbCu 4 I 1.5 Cl 3.5 as a solid electrolyte.
A method for operating a solid-state secondary battery, in which the potential at the time of charging is lowered as the temperature rises in a solid-state secondary battery that is always charged with a constant potential using an Rb-based ion conductive solid electrolyte such as.
【請求項2】 正極および負極用材料として銅シェブレ
ル相化合物、固体電解質としてRbCu41.5Cl3.5
などのRb系イオン導電性固体電解質を用い、常時定電
位充電を行って使用する固体二次電池において、高温ほ
ど充電時での電位を低くなるように制御された定電位充
電器を備えた固体二次電池電源装置。
2. A copper Chevrel phase compound as a material for a positive electrode and a negative electrode, and RbCu 4 I 1.5 Cl 3.5 as a solid electrolyte.
In a solid state secondary battery which is always charged with a constant potential using an Rb-based ion conductive solid electrolyte such as a solid state equipped with a constant potential charger controlled to lower the potential during charging as the temperature rises. Secondary battery power supply.
【請求項3】 室温付近での設定電位が0.58〜0.
60Vであり100℃では0.50〜0.53Vである
請求項1または2記載の固体二次電池の作動法および電
源装置。
3. The set potential near room temperature is 0.58 to 0.
The operating method and power supply device for a solid secondary battery according to claim 1 or 2, wherein the voltage is 60 V and 0.50 to 0.53 V at 100 ° C.
JP3150006A 1991-06-21 1991-06-21 Operation method for solid secondary battery and power supply Pending JPH053050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150006A JPH053050A (en) 1991-06-21 1991-06-21 Operation method for solid secondary battery and power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150006A JPH053050A (en) 1991-06-21 1991-06-21 Operation method for solid secondary battery and power supply

Publications (1)

Publication Number Publication Date
JPH053050A true JPH053050A (en) 1993-01-08

Family

ID=15487414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150006A Pending JPH053050A (en) 1991-06-21 1991-06-21 Operation method for solid secondary battery and power supply

Country Status (1)

Country Link
JP (1) JPH053050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641214B2 (en) 2006-05-11 2010-01-05 Toyota Motor Engineering & Manufacturing North America, Inc. Energy-absorbing trailer hitch receiver
US9138033B2 (en) 2013-03-14 2015-09-22 Ykk Corporation Top stop for slider
US9314069B2 (en) 2011-07-20 2016-04-19 Ykk Corporation Top stop for slider

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641214B2 (en) 2006-05-11 2010-01-05 Toyota Motor Engineering & Manufacturing North America, Inc. Energy-absorbing trailer hitch receiver
US9314069B2 (en) 2011-07-20 2016-04-19 Ykk Corporation Top stop for slider
US9138033B2 (en) 2013-03-14 2015-09-22 Ykk Corporation Top stop for slider

Similar Documents

Publication Publication Date Title
JP3206604B2 (en) Rechargeable lithium battery with increased reversible capacity
JP3332133B2 (en) All-solid lithium secondary battery
GB2026762A (en) Rechargeable chalcogenide cell
EP0832505A1 (en) Process for improving lithium ion cell
KR960032791A (en) METHOD FOR MANUFACTURING ALKALIARY SECONDARY BATTERY, BOTH ELECTRODE OF ALKALIARY SECONDARY BATTERY, ALKALIARY SECONDARY BATTERY,
EP2946433B1 (en) Electrochemical cell or battery with reduced impedance and method for producing same
JPH053050A (en) Operation method for solid secondary battery and power supply
US3822148A (en) Lithium-metal molybdate organic electrolyte cell
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH10162809A (en) Secondary battery
JP3163197B2 (en) Collective battery
JP2020107389A (en) Method for manufacturing all-solid battery
JPH01120765A (en) Nonaqueous electrolyte secondary battery
JP2841378B2 (en) Non-aqueous electrolyte secondary battery charging method
JPH10112305A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH0529018A (en) Formation/operation of solid secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
JPH0393170A (en) Actuation of solid secondary battery and power supply device
JPS60198066A (en) Alkaline storage battery
JPH053048A (en) Operation method for solid secondary battery
JP2020136251A (en) Method of refreshing all solid-state battery
JP2022544855A (en) Methods and Systems for Improved Performance of Cells Containing Silicon Anodes Via Formation
JP2021082519A (en) Secondary battery and manufacturing method thereof
JPS6012678A (en) Solid electrolyte secondary battery