JPH0393170A - Actuation of solid secondary battery and power supply device - Google Patents

Actuation of solid secondary battery and power supply device

Info

Publication number
JPH0393170A
JPH0393170A JP1228510A JP22851089A JPH0393170A JP H0393170 A JPH0393170 A JP H0393170A JP 1228510 A JP1228510 A JP 1228510A JP 22851089 A JP22851089 A JP 22851089A JP H0393170 A JPH0393170 A JP H0393170A
Authority
JP
Japan
Prior art keywords
potential
secondary battery
solid electrolyte
temperature
little
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1228510A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yasuhiko Mifuji
靖彦 美藤
Yoshio Moriwaki
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1228510A priority Critical patent/JPH0393170A/en
Publication of JPH0393170A publication Critical patent/JPH0393170A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To maintain high capacity at high temperature by performing constant- potential charging at the higher potential at the higher temperature of a temperature condition at a working time in a solid secondary battery for a cycle service wherein a copper chevrel phase compound is used as a material for a positive electrode and a negative electrode while an Rb ion conductive solid electrolyte is used as a solid electrolyte. CONSTITUTION:In a solid secondary battery for a cycle service, wherein a composition of a copper chevrel phase compound Cu2Mo0S3 is used for both electrodes as a material for a positive electrode and a negative electrode, while an Rb ion conductive solid electrolyte is used as a solid electrolyte, the potential of the positive electrode is but a little shifted to the higher side when a surrounding temperature rises. Since accordingly charge is little by little short at low set potential equally to a room temperature, the set potential is raised little by little according to a rise of a temperature. Lack of charge is thereby suppressed at a high temperature to attain a long life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構成材料がすべて固体のサイクルサービス用の
固体二次電池の作動法および電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of operating a solid-state secondary battery for cycle service whose constituent materials are all solid and to a power supply device.

従来の技術 各種の電源として使われる電池のうち構成材料がすべて
固体であるいわゆる固体電池は液漏れがな<、シたがっ
て高信頼性が期待でき小形軽量化も可能などの理由で一
次、二次電池ともに注目されてきた。現在のところ各種
機器のメモリーバックアップ用を中心に考えられている
Conventional technology Among the batteries used as various power sources, so-called solid-state batteries, whose constituent materials are all solid, have no leakage, are expected to be highly reliable, and can be made smaller and lighter, so they are used as primary and secondary batteries. Both batteries have been attracting attention. Currently, it is mainly being considered for memory backup of various devices.

この固体電池では電解質として、LI”イオン導電性固
体電解質、Ag◆イオン導電性固体電解質、H・イオン
導電性固体電解質、それにR b C u a I+.
sCls.s、CuI−Cu20−MoO*などのCu
4イオン導電性固体電解質などが取上げられている。
The electrolytes in this solid battery include LI" ion conductive solid electrolyte, Ag◆ ion conductive solid electrolyte, H ion conductive solid electrolyte, and R b Cu a I+.
sCls. Cu such as s, CuI-Cu20-MoO*
4-ion conductive solid electrolytes are featured.

また正極用材料としてはCuTi系、AgTi爪 それ
にCuvMQ@S#−z,F ewMoaS*−zなど
のシェプレル相化合物が挙げられていモ一太負極にはC
u% A g,  L i +.sWO書それに正極用
と同様のシェブレル相化合物が試みられていもこれらの
うち正極および負極用として鋼シェブレル相化合物を選
沃 とくにCu*Mo●S●の組戒を両極ともに用い固
体電解質としてRb系イオン導電性固体電解質を用いた
固体二次電池で{上 他の系に比べて急速充放電が可能
で寿命も長く、過放電特性も良IIc  t,たがって
サイクルサービス用の二次電池としては他の固体系より
も一応は優れているといえも なお実際の使用時での一般的な充電法としては定電圧充
電を採用することが考えられも この際の充電電位とし
ては電解質や電極の変質を避けるために0.50〜0,
60V/セルを上限とすも発明が解決しようとする課題 正極および負極用材料として可逆性に優れた銅シェプレ
ル相化合物を選沃 とくにCu倉Mo@S●の組戒を両
極ともに用い固体電解質としてRbC11 a l I
.sc ] s.sなどのRb系イオン導電性固体電解
質を用いたサービスサイクル用固体二次電池も他の電池
と同様に優れた温度特性が要望される力交しかし上記従
来の充電電位で(友 とくに60℃以上の高温で使用す
ると定電圧充電でも比較的少ないサイクル数で放電容量
の低下が認められる電池がでてきた 課題を解決するための手段 正極および負極用材料として銅シェブレル相化合物とく
にCu象Mo●S●の組或を選び、固体電解質としてR
 bcuaf.sc Is.sなど77)Rb系イオン
導電性固体電解質を用いたサイクルサービス用固体二次
電池において、高温ほど充電時での電位を高めた定電位
充電を行うことを特徴とするサイクルサービス用固体二
次電池の作動法であもまた このような定電位充電を行
う定電位充電器を備えたことを特徴とするサイクルサー
ビス用固体二次電池の電源装置であも 作   用 正極および負極用材料として銅シェプレル相化合物Cu
駿Mo●S●の組或を両極ともに用い固体電解質として
Rb系イオン導電性固体電解質を用いたサイクルサービ
ス用固体二次電池で{上 電解質や電極の変質を避ける
ために0.5 0〜0.5 6 V/セルが充電の上限
として考えら札 この間では低い方がよいとしてき1,
  しかし 周囲の温度が高くなると正極の電位が若干
ではあるが高い方にシフトすることがわかり、したがっ
て室温と同じように低い設定電位では充電が少しづつ不
足すんそこで温度の上昇に合わせて設定電位を僅かづつ
上昇することにより高温での充電不足を抑えて長寿命が
達戒できも 実施例 正極用材料として銅シェブレル(Cu*Mo●S●)を
用へ これに電解質としてRbCu4I+.sCII1
を2 0 w t K  結着剤として市販のポリエチ
レンが6wt%になるようにして、厚さ300μmの正
極シートを作或す4  −X  負極にも銅シェプレル
(Cu*Mo@S●)を用い正極と同様に同じ電解質R
bCu4I+.sC 1s.sを20wt%と結着剤(
6wt%)で同様の負極シートを作製すも電解質として
R bCu4I+.sC l*.sを用t,%  やは
り結着剤としてポリエチレン13wt%になるように加
え 厚さ100μmの電解質シートを作製すも つぎに正極 電解質、負極の順に各シートを重抵 まず
これを160℃に加熱したプレス機で500kg/cm
’の条件で加圧すも ついで、このようにして得られた
電池素子の両面に市販のバインダーで戒形した導電性炭
素紙を当てて130’tl,.400kg/cm’の条
件で加圧一体化したさらに電池周辺のみにポリエチレン
膜を配したアルミニウムからなる厚さ0.2mmのラミ
ネートシ一トを電池素子の両面にポリエチレンを内側に
して当て140℃に加熱したローラプレス機を電池素子
臥 電池周辺ともに300kg/cm’になるように加
熱下で加圧すも この操作で電池素子部は加圧され 電
池周辺ではポリエチレン間が溶着し封止が完威すも な
おリード板については本実施例ではそれぞれCuの薄板
を外部に取出した電池の大きさは15X30mmとしt
も化威終了後この電池を20℃では0.54V,65℃
では0.56VS 100℃では0.58Vl.:なる
ように制御した定電圧充電器で充電した この電池をA
とすも な耘 放電は0.5mAで0.3Vまでの定電
流放電を充電と同じ温度で行うね比較のためにすべて0
.54V定電圧充電を行った電池を& また すべて0
,5 6 Vをα 同じく0.58vをDとして加え九 以上のA−Dの電池を用いて、20℃と65℃−−.−
./”− と100℃とでサイクルを繰返して寿命を調べ?Q,そ
の結凰 第1表〜第3表のような結果を得九第1表は2
0℃でのサイクルと容量 (mAh) を示 机 この結果から明らかなように室温で《上 設定電圧
を高くすると初期の容量は大きくなるが寿命が若干短L
ち つぎの65℃で(上 第2表に示すようにBのように設
定電圧が低いとサイクル初期から放電容量が少な賎 ま
?Q  Dのように高すぎると室温の場合同様寿命が低
下すも 最後に100℃では 第3表に示したように&Cのよう
に設定電圧が低いと放電容量が少なくサイクルによる低
下も若干あも 発明の効果 正極および負極用材料として銅シエブレル相化合物とく
にCu麿Mo@S●の組或を選沃 固体電解質としてR
 b C u a I +.sC 1 m.sなどのR
b系イオン導電性固体電解質を用いたサイクル特性が要
望される固体二次電池において、使用時の温度条件が高
温であるほど高電位での定電位充電を行うことにより、
とくに高温での高容量の維持が達或できも
In addition, examples of positive electrode materials include CuTi, AgTi nails, and Sheprell phase compounds such as CuvMQ@S#-z and FewMoaS*-z.
u% A g, L i +. Although Chevrel phase compounds similar to those for positive electrodes have been tried in the sWO book, among these, steel Chevrel phase compounds are preferred for positive and negative electrodes.Especially, using the combination of Cu*Mo●S● for both electrodes and using Rb as a solid electrolyte. A solid secondary battery using an ion conductive solid electrolyte {1) Compared to other systems, it is capable of rapid charging and discharging, has a long life, and has good overdischarge characteristics, so it is suitable as a secondary battery for cycle service. Although it is superior to other solid-state systems, constant voltage charging may be considered as a general charging method during actual use. 0.50~0 to avoid deterioration,
Problems to be solved by the invention with the upper limit of 60V/cell Selecting a copper Sheprel phase compound with excellent reversibility as the material for the positive and negative electrodes.In particular, using the combination of Cu Mo@S● for both electrodes as a solid electrolyte. RbC11 a l I
.. sc ] s. Solid secondary batteries for service cycles using Rb-based ion-conductive solid electrolytes such as When used at high temperatures, some batteries show a decrease in discharge capacity after a relatively small number of cycles even when charged at constant voltage.Means for solving the problem Copper Chevrel phase compounds, especially Cu-elevation Mo●S, are used as materials for the positive and negative electrodes. Select the set of ● and use R as the solid electrolyte.
bcuaf. sc Is. s, etc. 77) A solid secondary battery for cycle service using an Rb-based ion-conductive solid electrolyte, characterized in that constant potential charging is performed in which the potential during charging is increased as the temperature increases. Copper Sheprel is used as a material for the positive and negative electrodes in a power supply device for a solid-state secondary battery for cycle service, which is equipped with a constant-potential charger that performs constant-potential charging. Phase compound Cu
A solid secondary battery for cycle service using a combination of Shun Mo●S● for both electrodes and an Rb-based ion-conductive solid electrolyte as the solid electrolyte. .5 6 V/cell is considered as the upper limit for charging. In this case, lower is better1,
However, it turns out that as the ambient temperature rises, the potential of the positive electrode shifts to a higher side, albeit slightly. Therefore, if the set potential is as low as at room temperature, charging will gradually become insufficient. Although it is possible to achieve a long life by suppressing insufficient charging at high temperatures by gradually increasing the temperature, copper Chevrell (Cu*Mo●S●) is used as the material for the positive electrode in this embodiment.In addition, RbCu4I+ is used as the electrolyte. sCII1
20wtK A positive electrode sheet with a thickness of 300 μm was prepared using commercially available polyethylene as a binder at 6wt%.4-X Copper Sheprel (Cu*Mo@S●) was also used for the negative electrode. The same electrolyte R as in the positive electrode
bCu4I+. sC 1s. 20 wt% of s and a binder (
A similar negative electrode sheet was prepared using R bCu4I+.6wt%) as the electrolyte. sCl*. Polyethylene was added to 13 wt% as a binder to prepare an electrolyte sheet with a thickness of 100 μm.Next, each sheet was heated to 160°C in the order of positive electrode electrolyte and negative electrode. 500kg/cm with press machine
Next, conductive carbon paper bonded with a commercially available binder was applied to both sides of the battery element thus obtained for 130'tl. A 0.2 mm thick laminate sheet made of aluminum with a polyethylene film placed only around the battery, which had been integrated under a pressure of 400 kg/cm', was placed on both sides of the battery element with polyethylene on the inside and heated to 140°C. Using a heated roller press, the battery element is placed under heat and pressure is applied to the area around the battery to a pressure of 300 kg/cm. Through this operation, the battery element is pressurized, and the polyethylene is welded around the battery to complete the sealing. Regarding the lead plate, in this example, the size of the battery with the Cu thin plate taken out to the outside is 15 x 30 mm.
After completing the test, this battery is 0.54V at 20℃ and 65℃.
0.56VS at 100℃ 0.58Vl. : This battery was charged with a constant voltage charger controlled so that A
Tosumo Naho Discharging is performed at a constant current of 0.5 mA to 0.3 V at the same temperature as charging.For comparison, all 0.
.. 54V constant voltage charged battery & all 0
, 5 6 V as α, 0.58 V as D, and using 9 or more A-D batteries, 20°C and 65°C --. −
.. /"- and 100℃ to check its lifespan?Q.The results are as shown in Tables 1 to 3.9Table 1 is 2.
The cycle and capacity (mAh) at 0°C are shown.As is clear from these results, increasing the set voltage increases the initial capacity, but the life is slightly shorter.
At the next temperature of 65℃ (as shown in Table 2 above, if the set voltage is low like B, the discharge capacity will be small from the beginning of the cycle). Finally, at 100°C, as shown in Table 3, when the set voltage is low as in &C, the discharge capacity is small and the decrease due to cycles is also slight. Select a combination of Mo@S●R as a solid electrolyte
b Cu a I +. sC 1 m. R such as s
In solid secondary batteries that require cycle characteristics using b-type ion conductive solid electrolytes, the higher the temperature conditions during use, the higher the potential.
It is possible to maintain high capacity, especially at high temperatures.

Claims (3)

【特許請求の範囲】[Claims] (1)正極および負極用材料として銅シェブレル相化合
物を、固体電解質としてRbCu_4I_1_._5C
l_3_._6などのRb系イオン導電性固体電解質を
それぞれ用いた固体二次電池において、使用時の温度条
件が高温であるほど高電位での定電位充電を行うことを
特徴とする固体二次電池の作動法。
(1) A copper Chevrel phase compound is used as the material for the positive electrode and the negative electrode, and RbCu_4I_1_. _5C
l_3_. Operation of a solid secondary battery using an Rb-based ion conductive solid electrolyte such as __6, characterized in that the higher the temperature condition during use, the higher the constant potential charging is performed. Law.
(2)正極および負極用材料として銅シェブレル相化合
物を、固体電解質としてRbCu_4I_1_._5C
l_3_._5などのRb系イオン導電性固体電解質を
それぞれ用いた固体二次電池に、使用時の温度条件が高
温であるほど高電位での定電位充電を行う定電位充電器
を備えたことを特徴とする固体二次電池の電源装置。
(2) A copper Chevrel phase compound is used as the material for the positive electrode and the negative electrode, and RbCu_4I_1_. _5C
l_3_. A solid secondary battery using an Rb-based ion-conductive solid electrolyte such as _5 is equipped with a constant-potential charger that performs constant-potential charging at a higher potential as the temperature condition during use becomes higher. A solid-state secondary battery power supply device.
(3)室温付近での設定電位が0.52〜0.56V程
度であり、100℃程度では0.56〜0.6V程度で
ある請求項1記載の固体二次電池の作動法。
(3) The method of operating a solid secondary battery according to claim 1, wherein the set potential is about 0.52 to 0.56 V near room temperature and about 0.56 to 0.6 V at about 100°C.
JP1228510A 1989-09-04 1989-09-04 Actuation of solid secondary battery and power supply device Pending JPH0393170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228510A JPH0393170A (en) 1989-09-04 1989-09-04 Actuation of solid secondary battery and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228510A JPH0393170A (en) 1989-09-04 1989-09-04 Actuation of solid secondary battery and power supply device

Publications (1)

Publication Number Publication Date
JPH0393170A true JPH0393170A (en) 1991-04-18

Family

ID=16877564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228510A Pending JPH0393170A (en) 1989-09-04 1989-09-04 Actuation of solid secondary battery and power supply device

Country Status (1)

Country Link
JP (1) JPH0393170A (en)

Similar Documents

Publication Publication Date Title
WO2019103470A3 (en) All-solid-state secondary battery and method of charging the same
MY126942A (en) Lithium secondary cell and method of fabricating the same
GB2026762A (en) Rechargeable chalcogenide cell
WO2004025757A3 (en) High-capacity nanostructured silicon and lithium alloys thereof
TW200603458A (en) Lithium secondary batteries with charge-cutoff voltages over 4.35
KR20170100341A (en) Device for Charge and Discharge of Secondary Battery
JP2016018704A (en) All-solid battery
US20210202981A1 (en) Pressure Regulation System For Silicon Dominant Anode Lithium-Ion Cell
JP3367382B2 (en) Lithium ion secondary battery
EP3726638A1 (en) Secondary battery capacity recovery method and secondary battery capacity recovery apparatus
EP3598556A1 (en) Electrode and electrode assembly
US11322799B2 (en) Electrode including single-sided electrode with inorganic coating layer attached to slurry on collector and electrode assembly including the same
US3615828A (en) Secondary power-producing cell
JP6977599B2 (en) All-solid-state battery system
US20170125814A1 (en) Electrode having an actuating binder
EP2946433B1 (en) Electrochemical cell or battery with reduced impedance and method for producing same
JPH0393170A (en) Actuation of solid secondary battery and power supply device
JP3390309B2 (en) Sealed alkaline storage battery
JPH053050A (en) Operation method for solid secondary battery and power supply
JP2009151977A (en) Coin type secondary battery
KR100664575B1 (en) Battery
JP2020107389A (en) Method for manufacturing all-solid battery
JPH01120765A (en) Nonaqueous electrolyte secondary battery
JP3949334B2 (en) Lithium ion secondary battery and its charge / discharge circuit
KR20170033618A (en) Battery System