JPH0530491B2 - - Google Patents

Info

Publication number
JPH0530491B2
JPH0530491B2 JP21384587A JP21384587A JPH0530491B2 JP H0530491 B2 JPH0530491 B2 JP H0530491B2 JP 21384587 A JP21384587 A JP 21384587A JP 21384587 A JP21384587 A JP 21384587A JP H0530491 B2 JPH0530491 B2 JP H0530491B2
Authority
JP
Japan
Prior art keywords
aromatic
semipermeable membrane
aromatic polyimide
polyimide
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21384587A
Other languages
Japanese (ja)
Other versions
JPS6456102A (en
Inventor
Kanji Nakagawa
Kazunari Harima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP21384587A priority Critical patent/JPS6456102A/en
Publication of JPS6456102A publication Critical patent/JPS6456102A/en
Publication of JPH0530491B2 publication Critical patent/JPH0530491B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の分野 本発明は、新芏な芳銙族ポリむミド補の半透膜
およびその補造方法に関するものである。 発明の背景 埓来、限倖濟過あるいは逆浞透法に甚いる半透
膜ずしお、ポリスルホンたたはポリ゚ヌテルスル
ホンからなる膜が知られおいる。近幎、限倖濟過
膜が、食品工業における濃瞮、粟補、あるいは医
薬品工業におけるパむロゞ゚ンフリヌ氎補造など
の甚途に倚く甚いられるようになり、120〜130℃
の枩床で熱殺菌するこずのできる膜が望たれおい
る。ずころが、䞊蚘の半透膜は、透氎性および分
画性においお優れた性胜を瀺す半画、耐熱氎性、
耐PH性、耐有機溶媒性などに぀いお充分ずいえな
い。 䞀方、耐熱性および耐有機溶媒性に優れた半透
膜ずしお芳銙族ポリむミドからなる半透膜が埓来
より知られおいる。芳銙族ポリむミドからなる半
透膜は、䞊蚘のように優れた特性を有するが、䞀
方では、品質の安定した半透膜の補造が難しいず
の問題、および氎の透過速床が実甚䞊充分ずはい
えないずの問題があ぀た。その察策ずしお、特公
昭61−53089号公報には、ビプニルテトラカル
ボン酞ずゞアミノゞプニル゚ヌテルずからなる
芳銙族ポリむミドを含むドヌプ液に、金属塩ある
いは金属錯化合物を添加しお、このように調補し
たドヌプ液から芳銙族ポリむミド半透膜を補造す
る方法が開瀺されおいる。 発明の目的 本発明は、芳銙族ポリむミド補の半透膜および
その補造法を提䟛するこずを目的ずする。 本発明は特に、熱殺菌を行なうために充分な耐
熱氎性を有し、透氎性および分画性に優れた、芳
銙族ポリむミド半透膜およびその補造方法を提䟛
するこずを目的ずする。 発明の芁旚 本発明は、少なくずも50モルのビプニルテ
トラカルボン酞成分を含んでなる芳銙族テトラカ
ルボン酞成分ず、 䞀般匏 ただし、はもしくはである で衚わされるビスアミノプノキシ化合物を
少なくずも50モル含む芳銙族ゞアミン成分ずか
ら圢成された芳銙族ポリむミドからなり、 玔氎の透過速床が0.1m3m2・日・Kgcm2以䞊
であるこずを特城ずする芳銙族ポリむミド半透膜
からなる。 䞊蚘の芳銙族ポリむミド半透膜は、 (a) 少なくずも50モルのビプニルテトラカル
ボン酞成分を含んでなる芳銙族テトラカルボン
酞成分ず、䞀般匏 ただし、はもしくはである で衚わされるビスアミノプノキシ化合物
を少なくずも50モル含む芳銙族ゞアミン成分
ずから圢成された芳銙族ポリむミド (b) プノヌル系溶媒そしお (c) 䞊蚘芳銙族ポリむミドの量に察しお〜100
重量のグリコヌルたたはその誘導䜓からなる
膚最剀からなるポリむミド組成物の溶液の液状
薄膜を圢成し、次いで、該液状薄膜を凝固液䞭
に浞挬しお凝固するこずを特城ずする芳銙族ポ
リむミド半透膜の補造法により有利に補造する
こずができる。 発明の詳现な蚘述 本発明の半透膜は、ビプニルテトラカルボン
酞成分を䞻成分ずしお含む芳銙族テトラカルボン
酞成分ず、䞀般匏 ただし、はもしくはである で衚わされるビスアミノプノキシ化合物を
少なくずも50モル含む芳銙族ゞアミン成分ずか
ら圢成された芳銙族ポリむミドを䞻成分ずする新
芏な半透膜である。 本発明に䜿甚するビプニルテトラカルボン酞
成分ずしおは、3′4′−ビプニルテト
ラカルボン酞および3′4′−ビプニル
テトラカルボン酞、たたはそれらの䜎玚アルコヌ
ル゚ステル化物、ハロゲン塩および、酞二無氎物
を挙げるこずができるが、3′4′−ビフ
゚ニルテトラカルボン酞二無氎物たたは
3′4′−ビプニルテトラカルボン酞二無氎物が
特に奜適である。 本発名に䜿甚する芳銙族テトラカルボン酞成分
は、䞊蚘のビプニルテトラカルボン酞成分ずず
もに、他の芳銙族テトラカルボン酞成分を含んで
いおもよい。このずき、芳銙族テトラカルボン酞
成分は、ビプニルテトラカルボン酞成分を少な
くずも50モル以䞊、特に80〜100モル含んで
なるこずが奜たしい。ビプニルテトラカルボン
酞成分が50モル未満の堎合には、圢成されたポ
リむミドの耐熱性などの諞特性が䜎䞋するため、
奜たしくない。 本発明においお、ビプニルテトラカルボン酞
成分ずずもに䜿甚できる他の芳銙族テトラカルボ
ン酞成分ずしおは、ベンゟプノンテトラカルボ
ン酞、ピロメリツト酞、ゞプニル゚ヌテルテト
ラカルボン酞および、−ビス−ゞカ
ルボキシプノキシプニルプロパンたたは
それらの䜎玚アルコヌル゚ステル化物、ハロゲン
塩および、酞二無氎物を挙げるこずができる。 本発明に䜿甚する芳銙族ゞアミン成分は、前蚘
䞀般匏で衚わされるビスアミノプノキ
シ化合物を少なくずも50モル含むものであ
る。䞀般匏で衚わされるビスアミノプ
ノキシ化合物の代衚䟋ずしおは、−ビス
−アミノプノキシベンれン、および
4′−ビス−アミノプノキシゞプニル゚
ヌテルを挙げるこずができる。 䞀般匏で衚わされる芳銙族ゞアミン、す
なわちビスアミノプノキシ化合物は、他の
芳銙族ゞアミンず䜵甚するこずができる。そのよ
うな芳銙族ゞアミンの䟋ずしおは、4′−ゞア
ミノゞプニル゚ヌテル、4′−ゞアミノゞフ
゚ニルメタン、4′−ゞアミノベンゟプノ
ン、−ビス−アミノプニルプロパ
ン、−ビス−−アミノプノキシ
プニルプロパン、−、−、−プニレ
ンゞアミン、−ゞアミノ安息銙酞、
−ゞアミノピリゞン、−トリゞン、−ビ
ス−アミノプノキシベンれン、ビス
−−アミノプノキシプニルスルホン、
および−ゞアミノ−−ゞメチル−ゞ
プニレンスルホンなどを挙げるこずができる。
このような䜵甚される芳銙族ゞアミンずしおは、
4′−ゞアミノゞプニル゚ヌテルが特に奜た
しい。 本発明の半透膜は、䞊述の芳銙族テトラカルボ
ン酞成分および芳銙族ゞアミン成分を重合、むミ
ド化しお圢成された芳銙族ポリむミドから埗るこ
ずができる。すなわち、䞊述の芳銙族テトラカル
ボン酞成分および芳銙族ゞアミン成分からなる芳
銙族ポリむミドず、特定の膚最剀ずを、プノヌ
ル系溶媒に均䞀に溶解した芳銙族ポリむミド組成
物の溶液を補膜甚ドヌプ液ずしお䜿甚するこずに
より、本発明の芳銙族ポリむミド半透膜は容易に
補造するこずができる。 䞊蚘のプノヌル系溶媒は、プノヌル系化合
物を䞻成分ずする溶媒であ぀お、100プノヌ
ル系化合物である溶媒が奜適であるが、プノヌ
ル系溶媒の他にプノヌル系化合物ず盞溶性のあ
る他の溶媒、䟋えば二硫化炭玠、ゞクロルメタ
ン、トリクロルメタン、ニトロベンれン、−ゞ
クロルベンれンなどを50重量以䞋、特に30重量
以䞋含有した混合溶媒であ぀おもよい。 本発明の補造法に䜿甚するプノヌル系化合物
ずしおは、融点が100℃以䞋、奜たしくは80℃以
䞋であり、その沞点が垞圧で300℃以䞋、奜たし
くは280℃以䞋であるプノヌル系化合物が奜適
であり、䟋えば、プノヌル、−、−、−
クレゟヌル、−キシレノヌル、あるいはそ
の䞀䟡プノヌルのベンれン栞の氎玠をハロゲン
で眮換したハロゲン化プノヌルを奜適に挙げる
こずができる。 䞊蚘のハロゲン化プノヌルずしお、䟋えば、
−クロロプノヌル、−クロロプノヌル
−クロロプノヌル、PCPず略蚘するこずも
ある、−ブロモプノヌル、−ブロモプ
ノヌル、−クロロ−−ヒドロキシトル゚ン、
−クロロ−−ヒドロキシトル゚ン、−クロ
ロ−−ヒドロキシトル゚ン、−クロロ−−
ヒドロキシトル゚ン、−ブロモ−−ヒドロキ
シトル゚ン、−ブロモ−−ヒドロキシトル゚
ン、−ブロモ−−ヒドロキシトル゚ン、−
ブロモ−−ヒドロキシトル゚ンなどを挙げるこ
ずができる。 補膜甚ドヌプ液は、䞊述の芳銙族テトラカルボ
ン酞成分および芳銙族ゞアミン成分を䞊蚘溶媒䞭
で重合およびむミド化しお調補しおもよく、ある
いは䞊述の成分からなる芳銙族ポリむミドの粉末
を適圓な方法で䞊蚘溶媒に溶解しお調補するこず
もできる。 補膜甚ドヌプ液においお、芳銙族ポリむミドの
濃床は、〜30重量、さらに〜20重量であ
るこずが奜たしい。 膚最剀は、グリコヌルたたはその誘導䜓であ぀
お、重合およびむミド化の前埌の任意の時期に添
加するこずができる。 䞊蚘の膚最剀ずしお、゚チレングリコヌル、プ
ロピレングリコヌル、−プロパンゞオヌ
ル、−ブタンゞオヌル、−ブタンゞ
オヌル、−ブタンゞオヌル、グリセリンな
どのグリコヌルたたは、そのポリマヌ、オリゎマ
ヌおよび誘導䜓などのグリコヌル系化合物を挙げ
るこずができるが、ポリ゚チレングリコヌルが奜
たしい。䞊蚘ポリ゚チレングリコヌルは、平均分
子量が、200〜20000、さらに600〜1000であるこ
ずが特に奜たしい。 本発明の補造方法においお、膚最剀の䜿甚量
は、䞊蚘のドヌプ液に含たれる芳銙族ポリむミド
の〜100重量、さらに20〜60重量であるこ
ずが奜たしい。 本発明の半透膜は、䞊述のドヌプ液を甚い、公
知の補膜法に埓い、補造するこずができる。本発
明の半透膜の補造法ずしお、䟋えば次のような方
法を挙げるこずができる。 䞊述の芳銙族テトラカルボン酞成分および芳銙
族ゞアミン成分を略等モル、−クロルプノヌ
ル䞭、140℃以䞊の枩床で段階で重合およびむ
ミド化しお芳銙族ポリむミド組成物の溶液ずし、
これに䞊述の膚最剀を添加しお補膜甚ドヌプ液ず
する。 そしお、䞊蚘ドヌプ液、衚面が平滑な平板基材
の衚面に流延し、ドクタヌブレヌドによ぀お均䞀
な厚さの薄膜ずする方法倖呚面が平滑なロヌル
の衚面に䞊蚘ドヌプ液を䟛絊し、ロヌル衚面に近
接しお蚭けられたドクタヌナむフで均䞀な厚さに
流延しお薄膜を圢成する方法あるいは、䞊蚘ド
ヌプ液をダむから薄膜状に抌し出しおロヌル衚
面に巻き掛けお薄膜を圢成する方法䞭空糞玡糞
甚ノズルから䞭空糞状䜓を圢成する方法、などの
方法により、ドヌプ液から平膜状、䞭空糞状など
各皮圢状の液状薄膜を圢成し、次いでその薄膜を
凝固济に浞挬し、凝固する。 䞊蚘の凝固济は、䞊述のプノヌル系溶媒ず盞
溶性を有し、ポリむミドが䞍溶である溶媒であれ
ばよく、氎、メタノヌル、゚タノヌル、プロパノ
ヌル、ブタノヌル、アセトン、メチル゚チルケト
ン、テトラヒドロフラン、ゞオキサンなど、ある
いは氎ずこれら有機溶媒ずの混合溶媒を挙げるこ
ずができるが、玔゚タノヌルたたぱタノヌルの
30容量以䞊の氎溶液を奜適に甚いるこずができ
る。 䞊述の方法により補造された薄膜は、緻密局ず
倚孔質局ずからなり、既に半透膜ずしおの性質を
充分に有しおいるが、さらにアルコヌル類たたは
氎、あるいははの混合物に浞挬しお残䜙の溶媒を
掗浄陀去するこずが望たしい。さらに必芁なら
ば、熱氎䞭で凊理しお分子構造を安定させおから
䜿甚しおもよい。 発明の効果 本発明の芳銙族ポリむミド半透膜は、品質安定
な半透過膜ずしおその補造が容易であり、たた耐
熱氎性のみならず、特に氎の透過性胜が優れおい
るため、食品工業、医薬品工業など、半透膜を定
期的に熱殺菌する必芁のある分野においお奜適に
䜿甚するこずができる。 さらに、本発明の補造方法では、膚最剀ずしお
芳銙族ポリむミドを溶解しないグリコヌル系化合
物を䜿甚するので、埓来公知のポリむミド補半透
膜に比范しお、分画性においお栌段に向䞊した半
透膜を埗るこずができる。 次に本発明の実斜䟋および比范䟋を瀺す。 実斜䟋  窒玠導入管、撹拌機および氎抜管を付蚭した
300mlの䞉ツ口セパラブルフラスコに3′
4′−ビプニルテトラカルボン酞二無氎物以
䞋、−BPDAず略蚘するを30ミリモル
8.8266、−ビス−アミノプノキ
シベンれン以䞋、BAPBず略蚘するを30
ミリモル8.7690、−クロロプノヌル
以䞋、PCPず略蚘するを148.6、および平均
分子量600のポリ゚チレングリコヌルを9.9ポ
リむミドの60重量仕蟌み、180℃の油济䞊で
時間、撹拌、重合し、赀耐色透明で粘皠なポリ
むミド溶液を埗た。このポリむミド溶液を、加圧
濟過した埌、100〜120℃で時間静眮、脱泡し、
ドヌプ液ずした。 䞊蚘ドヌプ液を、枅浄なガラス板䞊に流延し、
ドクタヌブレヌドを甚いお、0.2mm厚の液状薄膜
を圢成した。該液状薄膜を、60℃の無塵オヌブン
䞭で分間也燥した埌、宀枩の凝固济゚タノヌ
ルに浞挬し䞀倜攟眮した。完党に凝固した䞊蚘
薄膜を、゚タノヌルで数回掗浄し、さらに氎掗し
た埌、沞隰氎䞭で時間熱凊理しお、半透膜を埗
た。 䞊蚘半透膜を、オヌトクレヌブ䞭で150℃の熱
氎に浞挬する凊理を行ない、該熱凊理の前埌にお
ける透氎性の倉化を調べ、耐熱氎性を評䟡した。
䞊蚘耐熱氎性の枬定は、半透膜を䞊蚘の熱氎䞭に
時間保持した堎合、時間保持した堎合、およ
び15時間保持した堎合の䞉通りに぀いお調べた。 透氎性の枬定は、䞊蚘半透膜をバツチ匏のセル
に取付け、Kgcm2の圧力䞋に、玔氎および平均
分子量20000のポリ゚チレングリコヌル0.2重量
氎溶液を甚いお行な぀た。その結果を第衚に瀺
す。さらに、䞊蚘半透膜を200℃の熱氎䞭で時
間凊理しお、その半透膜を匕匵匷床ず砎断点䌞び
率ずを枬定し、その保持率を第衚に瀺した。 実斜䟋  −BPDAを30ミリモル、BAPAを24ミリモ
ル7.0161、4′−ゞアミノゞプニル゚
ヌテル以䞋、DADEず略蚘するをミリモ
ル1.2014、PCPを143.7、平均分子量600
のポリ゚チレングリコヌルを6.39ポリむミド
の40重量甚い、60容量の゚タノヌル氎溶液
に浞挬しお凝固された倖は、実斜䟋ず同様にし
お、半透膜を埗た。 䞊蚘半透膜に぀いお、実斜䟋ず同様にしお耐
熱氎性を評䟡した。その結果を第衚に瀺す。 比范䟋  ポリスルホンUCC補、Udel P180020重量
郚、ゞ゚チレングリコヌル40重量郚、−メチル
−−ピロリドン80重量郚からなるドヌプ液を、
枅浄なガラス板䞊に流延し、ドクタヌブレヌドを
甚いお、0.2mm厚の液状薄膜を圢成した。該液状
薄膜を、宀枩の無塵オヌブン䞭で30秒也燥した
埌、凝固济氷氎に浞挬し、24時間攟眮しお半
透膜を埗た。 䞊蚘半透膜に぀いお、実斜䟋ず同様にしお耐
熱氎性を評䟡した。その結果を第衚に瀺す。 比范䟋  ポリスルホンの代りに、ポリ゚ヌテルスルホン
ICI補、Victrex 200Pを甚いた倖は、比范䟋
ず同様にしお液状薄膜を圢成し、該液状薄膜を
宀枩の無塵オヌブン䞭で分間、次いで60℃に昇
枩しお分間也燥した埌、凝固济氷氎に浞挬
し、24時間攟眮しお半透膜を埗た。 䞊蚘半透膜に぀いお、実斜䟋ず同様にしお耐
熱氎性を評䟡した。ただし、時間および15時間
凊理した半透膜は、劣化したため枬定できなか぀
た。その結果を第衚に瀺す。
[Field of the Invention] The present invention relates to a novel aromatic polyimide semipermeable membrane and a method for manufacturing the same. [Background of the Invention] Conventionally, membranes made of polysulfone or polyethersulfone have been known as semipermeable membranes used in ultrafiltration or reverse osmosis. In recent years, ultrafiltration membranes have been widely used for applications such as concentration and purification in the food industry, and pyrogen-free water production in the pharmaceutical industry, and
A membrane that can be heat sterilized at a temperature of . However, the above-mentioned semipermeable membranes have excellent performance in water permeability and fractionation, hot water resistance,
PH resistance, organic solvent resistance, etc. are not sufficient. On the other hand, semipermeable membranes made of aromatic polyimide have been known as semipermeable membranes with excellent heat resistance and organic solvent resistance. Semipermeable membranes made of aromatic polyimide have excellent properties as mentioned above, but on the other hand, there are problems in that it is difficult to manufacture semipermeable membranes with stable quality, and the water permeation rate is not sufficient for practical use. There was a problem that I couldn't. As a countermeasure to this problem, Japanese Patent Publication No. 61-53089 discloses that a metal salt or a metal complex compound is added to a dope solution containing an aromatic polyimide consisting of biphenyltetracarboxylic acid and diaminodiphenyl ether. A method for manufacturing an aromatic polyimide semipermeable membrane from a prepared dope is disclosed. [Object of the Invention] An object of the present invention is to provide a semipermeable membrane made of aromatic polyimide and a method for producing the same. A particular object of the present invention is to provide an aromatic polyimide semipermeable membrane that has sufficient hot water resistance for heat sterilization and excellent water permeability and fractionability, and a method for producing the same. [Summary of the Invention] The present invention provides an aromatic tetracarboxylic acid component comprising at least 50 mol % of a biphenyltetracarboxylic acid component; (However, n is 1 or 2) It is made of an aromatic polyimide formed from an aromatic diamine component containing at least 50 mol% of a bis(aminophenoxy) compound represented by It consists of an aromatic polyimide semi-permeable membrane characterized by a m2 -day-Kg/ cm2 or more. The aromatic polyimide semipermeable membrane described above comprises (a) an aromatic tetracarboxylic acid component comprising at least 50 mol% of a biphenyltetracarboxylic acid component, and a general formula []: (However, n is 1 or 2) An aromatic polyimide formed from an aromatic diamine component containing at least 50 mol% of a bis(aminophenoxy) compound represented by; (b) a phenolic solvent; and (c) the above 5-100 for the amount of aromatic polyimide
A semipermeable aromatic polyimide characterized by forming a liquid thin film of a solution of a polyimide composition comprising a swelling agent consisting of glycol or its derivative in an amount of % by weight, and then solidifying the liquid thin film by immersing it in a coagulating liquid. It can be advantageously manufactured using a membrane manufacturing method. [Detailed Description of the Invention] The semipermeable membrane of the present invention comprises an aromatic tetracarboxylic acid component containing a biphenyltetracarboxylic acid component as a main component, and a general formula []: (However, n is 1 or 2.) This is a novel semipermeable membrane mainly composed of an aromatic polyimide formed from an aromatic diamine component containing at least 50 mol% of a bis(aminophenoxy) compound represented by: The biphenyltetracarboxylic acid component used in the present invention includes 3,3',4,4'-biphenyltetracarboxylic acid and 2,3,3',4'-biphenyltetracarboxylic acid, or lower versions thereof. Examples include alcohol esters, halogen salts, and acid dianhydrides, including 3,3',4,4'-biphenyltetracarboxylic dianhydride or 2,3,
Particularly preferred is 3',4'-biphenyltetracarboxylic dianhydride. The aromatic tetracarboxylic acid component used in this invention may contain other aromatic tetracarboxylic acid components in addition to the above biphenyltetracarboxylic acid component. At this time, the aromatic tetracarboxylic acid component preferably contains at least 50 mol% or more, particularly 80 to 100 mol%, of a biphenyltetracarboxylic acid component. If the biphenyltetracarboxylic acid component is less than 50 mol%, various properties such as heat resistance of the formed polyimide will decrease.
Undesirable. In the present invention, other aromatic tetracarboxylic acid components that can be used together with the biphenyltetracarboxylic acid component include benzophenonetetracarboxylic acid, pyromellitic acid, diphenyl ethertetracarboxylic acid, and 2,2-bis[4- Examples include (dicarboxyphenoxy)phenyl]propane, lower alcohol esters thereof, halogen salts, and acid dianhydrides. The aromatic diamine component used in the present invention contains at least 50 mol% of the bis(aminophenoxy) compound represented by the general formula []. Representative examples of bis(aminophenoxy) compounds represented by the general formula [ ] include 1,4-bis(4-aminophenoxy)benzene and 4,
Mention may be made of 4'-bis(4-aminophenoxy)diphenyl ether. The aromatic diamine represented by the general formula [], that is, the bis(aminophenoxy) compound, can be used in combination with other aromatic diamines. Examples of such aromatic diamines include 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, 2,2-bis(4-aminophenyl). ) propane, 2,2-bis[4-(4-aminophenoxy)
phenyl]propane, o-, m-, p-phenylenediamine, 3,5-diaminobenzoic acid, 2,6
-diaminopyridine, o-tolidine, 1,4-bis(4-aminophenoxy)benzene, bis[4
-(4-aminophenoxy)phenyl]sulfone,
and 3,7-diamino-2,8-dimethyl-diphenylene sulfone.
Such aromatic diamines used in combination include:
4,4'-diaminodiphenyl ether is particularly preferred. The semipermeable membrane of the present invention can be obtained from an aromatic polyimide formed by polymerizing and imidizing the above-mentioned aromatic tetracarboxylic acid component and aromatic diamine component. That is, a solution of an aromatic polyimide composition in which an aromatic polyimide consisting of the above-mentioned aromatic tetracarboxylic acid component and an aromatic diamine component and a specific swelling agent are uniformly dissolved in a phenolic solvent is used as a film-forming dope solution. The aromatic polyimide semipermeable membrane of the present invention can be easily produced by using the aromatic polyimide semipermeable membrane of the present invention. The above-mentioned phenolic solvent is a solvent whose main component is a phenolic compound, and preferably a solvent that is 100% phenolic compound. It may be a mixed solvent containing 50% by weight or less, especially 30% by weight or less of a solvent such as carbon disulfide, dichloromethane, trichloromethane, nitrobenzene, o-dichlorobenzene, etc. Suitable phenolic compounds used in the production method of the present invention are those having a melting point of 100°C or lower, preferably 80°C or lower, and a boiling point of 300°C or lower, preferably 280°C or lower at normal pressure. For example, phenol, o-, m-, p-
Suitable examples include cresol, 3,5-xylenol, and halogenated phenols in which hydrogen in the benzene nucleus of monovalent phenol is replaced with halogen. Examples of the above halogenated phenols include:
3-chlorophenol, 4-chlorophenol (sometimes abbreviated as p-chlorophenol, PCP), 3-bromophenol, 4-bromophenol, 2-chloro-4-hydroxytoluene,
2-chloro-5-hydroxytoluene, 3-chloro-6-hydroxytoluene, 4-chloro-2-
Hydroxytoluene, 2-bromo-5-hydroxytoluene, 3-bromo-5-hydroxytoluene, 3-bromo-6-hydroxytoluene, 4-
Examples include bromo-2-hydroxytoluene. The film-forming dope solution may be prepared by polymerizing and imidizing the above-mentioned aromatic tetracarboxylic acid component and aromatic diamine component in the above-mentioned solvent, or by preparing a suitable aromatic polyimide powder consisting of the above-mentioned components. It can also be prepared by dissolving it in the above solvent. In the film-forming dope solution, the concentration of aromatic polyimide is preferably 5 to 30% by weight, more preferably 8 to 20% by weight. The swelling agent is a glycol or a derivative thereof, and can be added at any time before or after polymerization and imidization. As the above swelling agent, glycols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, glycerin, or polymers and oligomers thereof Examples include glycol compounds such as and derivatives, but polyethylene glycol is preferred. The average molecular weight of the polyethylene glycol is preferably 200 to 20,000, more preferably 600 to 1,000. In the production method of the present invention, the amount of the swelling agent used is preferably 5 to 100% by weight, more preferably 20 to 60% by weight of the aromatic polyimide contained in the above dope. The semipermeable membrane of the present invention can be manufactured using the above-mentioned dope according to a known membrane forming method. Examples of the method for manufacturing the semipermeable membrane of the present invention include the following methods. The above-mentioned aromatic tetracarboxylic acid component and aromatic diamine component are polymerized and imidized in one step in p-chlorophenol at a temperature of 140°C or higher in approximately equimolar amounts to obtain a solution of an aromatic polyimide composition,
The above-mentioned swelling agent is added to this to obtain a film-forming dope. Then, the dope solution is cast onto the surface of a flat substrate with a smooth surface, and a thin film of uniform thickness is formed using a doctor blade; the dope solution is supplied onto the surface of a roll with a smooth outer peripheral surface. A method in which a thin film is formed by casting to a uniform thickness with a doctor knife provided close to the roll surface; Alternatively, the above dope liquid is extruded into a thin film from a T-die and wound around the roll surface to form a thin film. Formation method: Form a liquid thin film in various shapes such as a flat film or a hollow fiber from a dope solution by a method such as forming a hollow fiber from a hollow fiber spinning nozzle, and then immerse the thin film in a coagulation bath. and solidify. The coagulation bath may be any solvent that is compatible with the above-mentioned phenolic solvent and in which polyimide is insoluble, such as water, methanol, ethanol, propanol, butanol, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, or water. Examples include mixed solvents of ethanol and these organic solvents, but pure ethanol or ethanol
An aqueous solution of 30% by volume or more can be suitably used. The thin film produced by the above method consists of a dense layer and a porous layer, and already has sufficient properties as a semipermeable membrane. It is desirable to wash away residual solvent. Furthermore, if necessary, the molecular structure may be stabilized by treatment in hot water before use. [Effects of the Invention] The aromatic polyimide semipermeable membrane of the present invention is easy to manufacture as a semipermeable membrane with stable quality, and has excellent not only hot water resistance but also especially water permeability, so it is widely used in the food industry. It can be suitably used in fields where semipermeable membranes need to be periodically heat sterilized, such as in the pharmaceutical industry. Furthermore, since the manufacturing method of the present invention uses a glycol compound that does not dissolve aromatic polyimide as a swelling agent, the semipermeable membrane has significantly improved fractionation properties compared to conventional polyimide semipermeable membranes. can be obtained. Next, Examples and Comparative Examples of the present invention will be shown. Example 1 A nitrogen inlet pipe, a stirrer and a water drain pipe were attached.
3, 3', 4, in a 300ml three-necked separable flask.
30 mmol (8.8266 g) of 4'-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as s-BPDA) and 30 mmol (8.8266 g) of 1,4-bis(4-aminophenoxy)benzene (hereinafter abbreviated as BAPB).
Millimoles (8.7690 g), 148.6 g of p-chlorophenol (hereinafter abbreviated as PCP), and 9.9 g (60% by weight of polyimide) of polyethylene glycol with an average molecular weight of 600 were prepared and heated in an oil bath at 180°C for 3 hours. , stirred, and polymerized to obtain a reddish-brown, transparent, and viscous polyimide solution. After filtering this polyimide solution under pressure, it was left to stand at 100 to 120°C for 3 hours to defoam.
It was used as a dope liquid. Casting the above dope solution onto a clean glass plate,
A 0.2 mm thick liquid thin film was formed using a doctor blade. The liquid thin film was dried in a dust-free oven at 60° C. for 5 minutes, then immersed in a coagulation bath (ethanol) at room temperature and left overnight. The completely coagulated thin film was washed several times with ethanol and then with water, and then heat-treated in boiling water for 4 hours to obtain a semipermeable film. The semipermeable membrane was immersed in hot water at 150°C in an autoclave, and the change in water permeability before and after the heat treatment was examined to evaluate hot water resistance.
The hot water resistance was measured in three ways: when the semipermeable membrane was held in the hot water for 4 hours, for 8 hours, and for 15 hours. Water permeability was measured by attaching the above semipermeable membrane to a batch type cell and applying pure water and 0.2% by weight of polyethylene glycol with an average molecular weight of 20,000 under a pressure of 1Kg/ cm2 .
This was carried out using an aqueous solution. The results are shown in Table 1. Further, the semipermeable membrane was treated in hot water at 200°C for 4 hours, and the tensile strength and elongation at break of the semipermeable membrane were measured, and the retention rates are shown in Table 1. Example 2 30 mmol of s-BPDA, 24 mmol (7.0161 g) of BAPA, 6 mmol (1.2014 g) of 4,4'-diaminodiphenyl ether (hereinafter abbreviated as DADE), 143.7 g of PCP, average molecular weight 600
A semipermeable membrane was obtained in the same manner as in Example 1, except that 6.39 g of polyethylene glycol (40% by weight of polyimide) was used and coagulated by immersion in a 60% by volume ethanol aqueous solution. The hot water resistance of the semipermeable membrane was evaluated in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 A dope solution consisting of 20 parts by weight of polysulfone (manufactured by UCC, Udel P1800), 40 parts by weight of diethylene glycol, and 80 parts by weight of N-methyl-2-pyrrolidone,
It was cast onto a clean glass plate, and a 0.2 mm thick liquid thin film was formed using a doctor blade. The liquid thin film was dried for 30 seconds in a dust-free oven at room temperature, then immersed in a coagulation bath (ice water) and left for 24 hours to obtain a semipermeable film. The hot water resistance of the semipermeable membrane was evaluated in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 2 A liquid thin film was formed in the same manner as Comparative Example 2 except that polyethersulfone (Victrex 200P, manufactured by ICI) was used instead of polysulfone, and the liquid thin film was placed in a dust-free oven at room temperature for 1 minute. Then, the temperature was raised to 60°C and dried for 5 minutes, then immersed in a coagulation bath (ice water) and left for 24 hours to obtain a semipermeable membrane. The hot water resistance of the semipermeable membrane was evaluated in the same manner as in Example 1. However, the semipermeable membranes treated for 8 hours and 15 hours could not be measured because they deteriorated. The results are shown in Table 1.

【衚】 実斜䟋  −BPDAを30ミリモル、BAPBを30ミリモ
ル、PCPを148.6、平均分子量600のポリ゚チレ
ングリコヌルを6.60ポリむミドの40重量
甚い、液状薄膜を也燥するこずなく、℃で60容
量の゚タノヌル氎溶液に浞挬しお凝固された以
倖は、実斜䟋ず同様にしお、芳銙族ポリむミド
半透膜を埗た。 䞊蚘半透膜に぀いお、透氎性を枬定した。透氎
性の枬定は、䞊蚘半透膜をバツチ匏のセルに取付
け、Kgcm2の圧力䞋に、玔氎および平均分子量
20000のポリ゚チレングリコヌル0.2重量氎溶液
を甚いお行な぀た。その結果を第衚に瀺す。 実斜䟋  −BPDAを30ミリモル、BAPBを30ミリモ
ル、PCPを148.6、平均分子量600のポリ゚チレ
ングリコヌルを6.60ポリむミドの40重量
甚い、液状薄膜を也燥するこずなく、℃で50容
量の゚タノヌル氎溶液に浞挬しお凝固させた倖
は、実斜䟋ず同様にしお、芳銙族ポリむミド半
透膜を埗た。 䞊蚘の半透膜に぀いお、実斜䟋ず同様にしお
透氎性を枬定した。その結果を第衚に瀺す。 実斜䟋  −BPDAを30ミリモル、BAPBを30ミリモ
ル、PCPを148.6、平均分子量600のポリ゚チレ
ングリコヌルを8.25ポリむミドの50重量
甚い、液状薄膜を也燥するこずなく、℃で50容
量の゚タノヌル氎溶液に浞挬しお凝固させた倖
は、実斜䟋ず同様にしお、芳銙族ポリむミド半
透膜を埗た。 䞊蚘の半透膜に぀いお、実斜䟋ず同様にしお
透氎性を枬定した。その結果を第衚に瀺す。 実斜䟋  実斜䟋で補造した液状薄膜を、60℃の無塵オ
ヌブン䞭で分間也燥した埌、凝固济に浞挬した
倖は、実斜䟋ず同様にしお、芳銙族ポリむミド
半透膜を埗た。 䞊蚘の半透膜に぀いお、実斜䟋ず同様にしお
透氎性を枬定した。その結果を第衚に瀺す。 実斜䟋  実斜䟋で補造した芳銙族ポリむミド半透膜に
぀いお、実斜䟋ず同様にしお透氎性を枬定し
た。その結果を第衚に瀺す。 比范䟋  垂販ポリスルホン補半透膜アルバツクサヌビ
ス瀟補 ULVAC ST−15、分画分子量20000
に぀いお、実斜䟋ず同様にしお透氎性を枬定し
た。その結果を第衚に瀺す。
[Table] Example 3 30 mmol of s-BPDA, 30 mmol of BAPB, 148.6 g of PCP, 6.60 g of polyethylene glycol with an average molecular weight of 600 (40% by weight of polyimide)
An aromatic polyimide semipermeable membrane was obtained in the same manner as in Example 1, except that the liquid thin membrane was immersed in a 60% by volume aqueous ethanol solution at 0° C. and solidified without drying. The water permeability of the semipermeable membrane was measured. To measure water permeability, the above semipermeable membrane was attached to a batch type cell, and pure water and average molecular weight
The experiment was carried out using a 0.2% by weight aqueous solution of polyethylene glycol 20,000. The results are shown in Table 2. Example 4 30 mmol of s-BPDA, 30 mmol of BAPB, 148.6 g of PCP, 6.60 g of polyethylene glycol with an average molecular weight of 600 (40% by weight of polyimide)
An aromatic polyimide semipermeable membrane was obtained in the same manner as in Example 3, except that the liquid thin membrane was immersed in a 50% by volume ethanol aqueous solution at 0° C. to solidify without drying. The water permeability of the above semipermeable membrane was measured in the same manner as in Example 3. The results are shown in Table 2. Example 5 30 mmol of s-BPDA, 30 mmol of BAPB, 148.6 g of PCP, 8.25 g of polyethylene glycol with an average molecular weight of 600 (50% by weight of polyimide)
An aromatic polyimide semipermeable membrane was obtained in the same manner as in Example 3, except that the liquid thin membrane was immersed in a 50% by volume ethanol aqueous solution at 0° C. to solidify without drying. The water permeability of the above semipermeable membrane was measured in the same manner as in Example 3. The results are shown in Table 2. Example 6 After drying the liquid thin film produced in Example 5 for 5 minutes in a dust-free oven at 60°C, an aromatic polyimide semipermeable membrane was prepared in the same manner as in Example 5, except that it was immersed in a coagulation bath. Obtained. The water permeability of the above semipermeable membrane was measured in the same manner as in Example 3. The results are shown in Table 2. Example 7 The water permeability of the aromatic polyimide semipermeable membrane produced in Example 1 was measured in the same manner as in Example 3. The results are shown in Table 2. Comparative Example 3 Commercially available polysulfone semipermeable membrane (ULVAC ST-15 manufactured by Albac Service Co., Ltd., molecular weight cut off 20000)
The water permeability was measured in the same manner as in Example 3. The results are shown in Table 2.

【衚】 実斜䟋  −BPDAをミリモル、BAPBを27ミリモ
ル7.8931、DADEをミリモル0.6007
、PCPを146.2、平均分子量600のポリ゚チ
レングリコヌルを6.50ポリむミドの40重量
甚い、液状薄膜を也燥するこずなく凝固させ
た倖は、実斜䟋ず同様にしお、芳銙族ポリむミ
ド半透膜を埗た。 䞊蚘の半透膜に぀いお、実斜䟋ず同様にしお
透氎性を枬定した。その結果を第衚に瀺す。 実斜䟋  −BPDAをミリモル、BAPBを24ミリモ
ル、DADEをミリモル、PCPを143.7および、
平均分子量600のポリ゚チレングリコヌルを6.39
ポリむミドの40重量を甚いた倖は、実斜
䟋ず同様にしお、芳銙族ポリむミド半透膜を埗
た。 䞊蚘の半透膜に぀いお、実斜䟋ず同様にしお
透氎性を枬定しお、その結果を第衚に瀺した。 さらに䞊蚘半透膜を250℃の熱氎䞭で時間凊
理しお、その半透膜の匕匵匷床ず砎断点䌞び率ず
を枬定し、その保持率を第衚に瀺した。 比范䟋  −BPDAを30ミリモル、DADEをミリモ
ル6.0072、PCPを124.0および、平均分子
量1000のポリ゚チレングリコヌルを6.9ポリ
むミドの50重量甚いた倖は、実斜䟋ず同様
にしお、芳銙族ポリむミド半透膜を埗た。 䞊蚘の半透膜に぀いお、実斜䟋ず同様にしお
透氎性を枬定し、その結果を第衚に瀺した。 さらに䞊蚘半透膜を250℃の熱氎䞭で時間凊
理しお、その半透膜の匕匵匷床ず砎断点䌞び率ず
を枬定し、その保持率を第衚に瀺した。
[Table] Example 8 3 mmol of s-BPDA, 27 mmol of BAPB (7.8931 g), 3 mmol of DADE (0.6007 g)
g), aromatic polyimide was prepared in the same manner as in Example 1, except that 146.2 g of PCP and 6.50 g of polyethylene glycol (40% by weight of the polyimide) with an average molecular weight of 600 were used, and the liquid thin film was coagulated without drying. A semipermeable membrane was obtained. The water permeability of the above semipermeable membrane was measured in the same manner as in Example 3. The results are shown in Table 3. Example 9 3 mmol of s-BPDA, 24 mmol of BAPB, 6 mmol of DADE, 143.7 g of PCP, and
Polyethylene glycol with an average molecular weight of 600 is 6.39
An aromatic polyimide semi-permeable membrane was obtained in the same manner as in Example 8, except that g (40% by weight of polyimide) was used. The water permeability of the above semipermeable membrane was measured in the same manner as in Example 3, and the results are shown in Table 3. Further, the semipermeable membrane was treated in hot water at 250°C for 4 hours, and the tensile strength and elongation at break of the semipermeable membrane were measured, and the retention rates are shown in Table 3. Comparative Example 4 Same as Example 8 except that 30 mmol of s-BPDA, 3 mmol (6.0072 g) of DADE, 124.0 g of PCP, and 6.9 g of polyethylene glycol (50% by weight of polyimide) having an average molecular weight of 1000 were used. Similarly, an aromatic polyimide semipermeable membrane was obtained. The water permeability of the above semipermeable membrane was measured in the same manner as in Example 3, and the results are shown in Table 3. Further, the semipermeable membrane was treated in hot water at 250°C for 4 hours, and the tensile strength and elongation at break of the semipermeable membrane were measured, and the retention rates are shown in Table 3.

【衚】 比范䟋
 − 100 2.1
1.5 17 53 3
[Table] Comparative example
4-100 2.1
1.5 17 53 3

Claims (1)

【特蚱請求の範囲】  少なくずも50モルのビプニルテトラカル
ボン酞成分を含んでなる芳銙族テトラカルボン酞
成分ず、䞀般匏 ただし、はもしくはである で衚わされるビスアミノプノキシ化合物を
少なくずも50モル含む芳銙族ゞアミン成分ずか
ら圢成された芳銙族ポリむミドからなり、 玔氎の透過速床が0.1m3m2・日・Kgcm2以䞊
であるこずを特城ずする芳銙族ポリむミド半透
膜。  䞀般匏で衚わされるビスアミノプ
ノキシ化合物が、−ビス−アミノフ
゚ノキシベンれンであるこずを特城ずする特蚱
請求の範囲第項蚘茉の芳銙族ポリむミド半透
膜。  芳銙族テトラカルボン酞成分が、実質的にビ
プニルテトラカルボン酞成分のみからなるこず
を特城ずする特蚱請求の範囲第項蚘茉の芳銙族
ポリむミド半透膜。  芳銙族ゞアミン成分が、実質的に䞀般匏
で衚わされるビスアミノプノキシ化
合物からのみなるこずを特城ずする特蚱請求の範
囲第項蚘茉の芳銙族ポリむミド半透膜。  芳銙族ゞアミン成分が、実質的に䞀般匏
で衚わされるビスアミノプノキシ化
合物ず4′−ゞアミノゞプニル゚ヌテルずの
混合物からなるこずを特城ずする特蚱請求の範囲
第項蚘茉の芳銙族ポリむミド半透膜。  (a) 少なくずも50モルのビプニルテトラ
カルボン酞成分を含んでなる芳銙族テトラカル
ボン酞成分ず、 䞀般匏 ただし、はもしくはである で衚わされるビスアミノプノキシ化合物
を少なくずも50モル含む芳銙族ゞアミン成分
ずから圢成された芳銙族ポリむミド (b) プノヌル系溶媒そしお (c) 䞊蚘芳銙族ポリむミドの量に察しお〜100
重量のグリコヌルたたはその誘導䜓からなる
膚最剀からなるポリむミド組成物の溶液の液状
薄膜を圢成し、次いで、該液状薄膜を凝固液䞭
に浞挬しお凝固するこずを特城ずする芳銙族ポ
リむミド半透膜の補造法。
[Scope of Claims] 1. An aromatic tetracarboxylic acid component comprising at least 50 mol% of a biphenyltetracarboxylic acid component, and the general formula []: (However, n is 1 or 2) It is made of an aromatic polyimide formed from an aromatic diamine component containing at least 50 mol% of a bis(aminophenoxy) compound represented by An aromatic polyimide semipermeable membrane characterized in that it has a permeability of m 2 ·day·Kg/cm 2 or more. 2. The aromatic polyimide semipermeable membrane according to claim 1, wherein the bis(aminophenoxy) compound represented by the general formula [] is 1,4-bis(4-aminophenoxy)benzene. 3. The aromatic polyimide semipermeable membrane according to claim 1, wherein the aromatic tetracarboxylic acid component consists essentially of only a biphenyltetracarboxylic acid component. 4. The aromatic polyimide semipermeable membrane according to claim 1, wherein the aromatic diamine component consists essentially of a bis(aminophenoxy) compound represented by the general formula []. 5. Claim 1, characterized in that the aromatic diamine component consists essentially of a mixture of a bis(aminophenoxy) compound represented by the general formula [] and 4,4'-diaminodiphenyl ether. aromatic polyimide semipermeable membrane. 6 (a) an aromatic tetracarboxylic acid component comprising at least 50 mol % of a biphenyltetracarboxylic acid component, and a general formula []: (However, n is 1 or 2) An aromatic polyimide formed from an aromatic diamine component containing at least 50 mol% of a bis(aminophenoxy) compound represented by; (b) a phenolic solvent; and (c) the above 5-100 for the amount of aromatic polyimide
A semipermeable aromatic polyimide characterized by forming a liquid thin film of a solution of a polyimide composition comprising a swelling agent consisting of glycol or its derivative in an amount of % by weight, and then solidifying the liquid thin film by immersing it in a coagulating liquid. Membrane manufacturing method.
JP21384587A 1987-08-27 1987-08-27 Aromatic polyimide semipermeable membrane and its production Granted JPS6456102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21384587A JPS6456102A (en) 1987-08-27 1987-08-27 Aromatic polyimide semipermeable membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21384587A JPS6456102A (en) 1987-08-27 1987-08-27 Aromatic polyimide semipermeable membrane and its production

Publications (2)

Publication Number Publication Date
JPS6456102A JPS6456102A (en) 1989-03-03
JPH0530491B2 true JPH0530491B2 (en) 1993-05-10

Family

ID=16645970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21384587A Granted JPS6456102A (en) 1987-08-27 1987-08-27 Aromatic polyimide semipermeable membrane and its production

Country Status (1)

Country Link
JP (1) JPS6456102A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964698B2 (en) * 2007-11-05 2011-06-21 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wholly aromatic liquid crystalline polyetherimide (LC-PEI) resins
JP6866730B2 (en) * 2017-03-31 2021-04-28 宇郚興産株匏䌚瀟 Gas separation membrane

Also Published As

Publication number Publication date
JPS6456102A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
EP0422886B1 (en) Production of aromatic polyimide membranes
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
JPS5827963B2 (en) Method for manufacturing selectively permeable membrane
JPH0247931B2 (en)
JPS588512A (en) Preparation of polyimide separation membrane
JPS6252603B2 (en)
JPS6252604B2 (en)
JPH05146651A (en) Manufacture of gas separation membrane
JP2684582B2 (en) Polyimide separation membrane
JPS60125210A (en) Improvement in preparation of polyimide membrane
JPS6274410A (en) Production process for separating membrane
JPH0530491B2 (en)
JPS588514A (en) Preparation of composite separation film
JPS6274411A (en) Production process for separating membrane
JP6777308B2 (en) Polyimide solution for forming a porous polyimide film, a method for producing a porous polyimide film, and a porous polyimide film
EP0437611A1 (en) Separative membrane made of aromatic polyimide
JPS621615B2 (en)
JPS5998704A (en) Gas separation membrane comprising polyimide
JPS6261228B2 (en)
JPS621616B2 (en)
JPS6153089B2 (en)
JPS583603A (en) Production of dried separating membrane made of polyimide
JP3440632B2 (en) Aromatic polyimide, semipermeable membrane and method for producing the same
JPS587324B2 (en) Manufacturing method of selectively permeable membrane