JPH05304205A - Semiconductor device and fabrication thereof - Google Patents

Semiconductor device and fabrication thereof

Info

Publication number
JPH05304205A
JPH05304205A JP10778892A JP10778892A JPH05304205A JP H05304205 A JPH05304205 A JP H05304205A JP 10778892 A JP10778892 A JP 10778892A JP 10778892 A JP10778892 A JP 10778892A JP H05304205 A JPH05304205 A JP H05304205A
Authority
JP
Japan
Prior art keywords
silicon
groove
film
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10778892A
Other languages
Japanese (ja)
Inventor
Masahiro Kiyotoshi
正弘 清利
Yoshitaka Tsunashima
祥隆 綱島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10778892A priority Critical patent/JPH05304205A/en
Publication of JPH05304205A publication Critical patent/JPH05304205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an embedded isolation having structure causing no concentration of stress nor deterioration of insulation characteristics. CONSTITUTION:The embedded isolation is realized by a groove made in a silicon substrate 1, a first silicon nitride film 3 having N/Si compositional ratio of 0.8 covering the inner wall face of the groove, and a second silicon nitride film 4 having N/Si compositional ratio of 1.0 or above and filling the groove.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は埋込み素子分離領域を有
する半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a buried element isolation region and its manufacturing method.

【0002】[0002]

【従来の技術】近年、コンピュータや通信機器の重要部
分には、多数のトランジスタや抵抗等を電気回路を達成
するようにむすびつけ、1チップ上に集積化して形成し
た大規模集積回路(LSI)が多用されている。このた
め、機器全体の性能は、LSI単体の性能と大きく結び
付いている。
2. Description of the Related Art In recent years, large-scale integrated circuits (LSIs) formed by integrating a large number of transistors, resistors and the like so as to achieve an electric circuit are formed in important parts of computers and communication devices. It is used a lot. Therefore, the performance of the entire device is largely linked to the performance of the LSI itself.

【0003】LSI単体の性能向上は、集積度を高める
ことにより実現できる。集積度を高めるには素子分離領
域の微細化が必要である。素子分離領域の形成方法とし
ては従来よりLOCOS法が用いられているが、この方
法による素子分離領域の微細化かには限界が見えてき
た。
The performance improvement of a single LSI can be realized by increasing the degree of integration. To increase the degree of integration, it is necessary to miniaturize the element isolation region. The LOCOS method has been conventionally used as a method for forming the element isolation region, but it has been seen that there is a limit to the miniaturization of the element isolation region by this method.

【0004】そこで、微細な素子分離領域を形成するた
めに、LOCOS法の改良を含めて数多くの方法が提案
されいるが、これらの中でも溝埋み素子分離法と呼ばれ
る方法は、微細化に有利な方法として有望しされてい
る。図11は、この方法により形成された素子分離領域
を有する単結晶シリコン基板91の断面図である。これ
を形成工程に従い説明すると、まず、フォトリソグラフ
ィ技術,異方性ドライエッチング等の技術を用いて素子
分離領域となる部分の基板表面に溝を形成する。次いで
熱酸化法を用いて溝の表面に応力緩衝用のシリコン酸化
膜92を形成する。次いでCVD法を用いて溝の内部が
埋まるように基板全面にシリコン酸化膜93を堆積す
る。最後に、異方性エッチングやウエットエッチングを
用いて基板表面のシリコン酸化膜93をエッチング除去
し、溝の内部のみにシリコン酸化膜93を残して素子分
離領域が完成する。しかしながら、この種の溝埋み素子
分離法には次のような問題があった。
Therefore, in order to form a fine element isolation region, many methods including improvement of the LOCOS method have been proposed. Among them, the method called the groove-filled element isolation method is advantageous for miniaturization. Is a promising new method. FIG. 11 is a cross-sectional view of a single crystal silicon substrate 91 having an element isolation region formed by this method. This will be described according to the forming process. First, a groove is formed on the surface of the substrate in a portion to be an element isolation region by using a technique such as a photolithography technique or anisotropic dry etching. Then, a thermal oxidation method is used to form a stress buffering silicon oxide film 92 on the surface of the groove. Next, using a CVD method, a silicon oxide film 93 is deposited on the entire surface of the substrate so as to fill the inside of the groove. Finally, the silicon oxide film 93 on the substrate surface is removed by etching using anisotropic etching or wet etching, and the element isolation region is completed by leaving the silicon oxide film 93 only inside the groove. However, this type of groove filling element isolation method has the following problems.

【0005】即ち、シリコン酸化膜93の成膜応力が大
きいため、シリコン酸化膜92を設けても単結晶シリコ
ン基板91に欠陥が生じるという問題があった。特に溝
底部の単結晶シリコン基板91に応力が集中しやすかっ
たので、基板欠陥は溝底部の単結晶シリコン基板91に
多く発生した。このような基板欠陥は、素子特定の低下
の原因となるので防止する必要がある。また、応力に起
因する基板欠陥は、上記原因の他、シリコン酸化膜93
の熱膨張係数と単結晶シリコン基板91の熱膨脹係数と
の差によっても生じる。
That is, since the film formation stress of the silicon oxide film 93 is large, there is a problem that even if the silicon oxide film 92 is provided, a defect occurs in the single crystal silicon substrate 91. In particular, since stress was likely to be concentrated on the single crystal silicon substrate 91 at the bottom of the groove, many substrate defects occurred on the single crystal silicon substrate 91 at the bottom of the groove. Such a substrate defect causes a deterioration in the specification of the element, and therefore it is necessary to prevent it. In addition to the above-mentioned causes, the substrate defect caused by the stress is caused by the silicon oxide film 93.
It is also caused by the difference between the coefficient of thermal expansion of the single crystal silicon substrate 91 and the coefficient of thermal expansion of the single crystal silicon substrate 91.

【0006】即ち、シリコン酸化膜93の熱膨張係数と
単結晶シリコン基板91の熱膨脹係数との差が大きいた
め、素子分離領域形成後の熱工程の際に、単結晶シリコ
ン基板91に大きな応力が働き、基板欠陥が生じる。
That is, since there is a large difference between the coefficient of thermal expansion of the silicon oxide film 93 and the coefficient of thermal expansion of the single crystal silicon substrate 91, a large stress is applied to the single crystal silicon substrate 91 during the thermal process after the formation of the element isolation region. It works and causes a substrate defect.

【0007】このような熱膨張係数の違いによる応力発
生は、熱膨張係数が単結晶シリコン基板91のそれに近
い絶縁膜、例えば、シリコン窒化膜を用いれば防止でき
る。しかしながら、シリコン窒化膜はSi/N組成比が
小さいほど成膜応力が大きくなるいう特性を持ってい
る。図12は、このことを表しているSi/N組成比と
成膜応力との関係を示す特性図である。この図からシリ
コン窒化膜として一般的であるSi/N組成比が3/4
のシリコン窒化膜(Si3 4 膜)を用いた場合には、
非常に大きい成膜応力(引っ張り応力)が生じることが
分かる。
Generation of stress due to such a difference in thermal expansion coefficient can be prevented by using an insulating film having a thermal expansion coefficient close to that of the single crystal silicon substrate 91, for example, a silicon nitride film. However, the silicon nitride film has a characteristic that the film forming stress increases as the Si / N composition ratio decreases. FIG. 12 is a characteristic diagram showing the relationship between the Si / N composition ratio and the film forming stress, which indicates this. From this figure, the Si / N composition ratio, which is typical for silicon nitride films, is 3/4
When the silicon nitride film (Si 3 N 4 film) is used,
It can be seen that a very large film formation stress (tensile stress) occurs.

【0008】したがって、シリコン窒化膜としてSi3
4 膜を用いた場合、熱膨張係数の違いによる応力によ
る基板欠陥は防止できるが、成膜時の応力による基板欠
陥は防止できないという問題を残している。
Therefore, Si 3 is used as the silicon nitride film.
When the N 4 film is used, the substrate defect due to the stress due to the difference in thermal expansion coefficient can be prevented, but the substrate defect due to the stress at the time of film formation cannot be prevented.

【0009】このような問題は、図12から分かるよう
に、Si/N組成比をある程度大きくすれば解決ができ
るが、シリコン窒化膜はSi/N組成比が大きいほど絶
縁特性が低下するという特性を持っているため、素子分
離に必要な絶縁分離能力が確保できなくなるという新た
な問題が生じる。図13は、このことを表しているN/
Si組成比(0.6,1.0)と電流密度との関係を示
す特性図である。即ち、シリコン窒化膜が2つの電極で
挾持された構成のキャパシタに電圧を印加し、シリコン
窒化膜のN/Si組成比の違いによる電極の電流密度を
調べて得られた特性図である。この図からN/Si組成
比が小さい場合の方が電流密度が大きくなり絶縁特性が
低下していることが分かる。また、シリコン窒化膜は、
シリコン酸化膜に比べて、単結晶シリコン基板91との
エッチング選択比が小さく、溝埋込み用の絶縁膜として
は望ましくない性質を持っている。
As can be seen from FIG. 12, such a problem can be solved by increasing the Si / N composition ratio to some extent, but the silicon nitride film has a characteristic that the insulation characteristics deteriorate as the Si / N composition ratio increases. Therefore, there is a new problem that the insulation isolation capability required for element isolation cannot be ensured. FIG. 13 shows this by N /
It is a characteristic view which shows the relationship between Si composition ratio (0.6, 1.0) and current density. That is, it is a characteristic diagram obtained by applying a voltage to a capacitor having a structure in which a silicon nitride film is sandwiched by two electrodes and examining the current density of the electrode due to the difference in the N / Si composition ratio of the silicon nitride film. From this figure, it can be seen that when the N / Si composition ratio is small, the current density is large and the insulation characteristics are deteriorated. Also, the silicon nitride film is
Compared with the silicon oxide film, the etching selection ratio with respect to the single crystal silicon substrate 91 is small, and it has a property that is not desirable as an insulating film for burying a groove.

【0010】[0010]

【発明が解決しようとする課題】上述の如く、従来の溝
埋み素子分離法では、溝埋込み用の絶縁膜としてシリコ
ン酸化膜を用いていたので、溝の内部にシリコン酸化膜
を埋込む工程及び熱処理を含む工程の際に、シリコン基
板に応力が働き基板欠陥が生じるという問題があった。
また、シリコン酸化膜の代わりにシリコン窒化膜を用い
た場合には、応力に起因する基板欠陥の発生は防止でき
るが、絶縁分離能力が低下するという新たな問題が生じ
た。
As described above, in the conventional trench burying element isolation method, the silicon oxide film is used as the insulating film for burying the trench. Therefore, the step of burying the silicon oxide film inside the trench is performed. There is a problem that stress acts on the silicon substrate to cause a substrate defect during the process including the heat treatment.
Further, when the silicon nitride film is used instead of the silicon oxide film, it is possible to prevent the occurrence of substrate defects due to stress, but there is a new problem that the insulation separation ability is reduced.

【0011】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、素子分離能力の低下及
び応力による基板欠陥の発生を防止できる構造の素子分
離領域を有する半導体装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device having an element isolation region having a structure capable of preventing the occurrence of substrate defects due to a decrease in element isolation capability and stress. To provide.

【0012】[0012]

【課題を解決するための手段】本発明の骨子は、成膜応
力が小さい第1の絶縁膜と絶縁性が高い第2の絶縁膜と
からなる2重構造の絶縁膜で素子分離領域となる溝を埋
めたことにある。
The essence of the present invention is an insulating film having a double structure consisting of a first insulating film having a small film forming stress and a second insulating film having a high insulating property, which serves as an element isolation region. I filled the ditch.

【0013】即ち、上記の目的を達成するために、本発
明の半導体装置は、シリコン基板に形成された溝と、窒
素及び酸素の少なくとも一方の元素と珪素とを主成分に
して、前記溝の少なくとも底部に設けられた第1の絶縁
膜と、窒素及び酸素の少なくとも一方の元素と珪素とを
主成分にして、前記第1の絶縁膜が設けられた前記溝を
埋める第2の絶縁膜とを有し、この第2の絶縁膜中に占
めるシリコンの比率が前記第1の絶縁膜のそれより小さ
いことを特徴とする。
In other words, in order to achieve the above-mentioned object, the semiconductor device of the present invention comprises a groove formed in a silicon substrate, and at least one element of nitrogen and oxygen and silicon as a main component, and A first insulating film provided at least at the bottom, and a second insulating film containing at least one element of nitrogen and oxygen and silicon as a main component and filling the groove provided with the first insulating film. And the ratio of silicon in the second insulating film is smaller than that of the first insulating film.

【0014】また、本発明の半導体装置の製造方法は、
シリコン基板に溝を形成する工程と、CVD法を用いて
前記シリコン基板上に、窒素及び酸素の少なくとも一方
の元素と珪素とを主成分とする第1の絶縁膜を堆積し
て、前記溝の底部を前記第1の絶縁膜で被覆する工程
と、CVD法を用いて前記シリコン基板上に、窒素及び
酸素の少なくとも一方の元素と珪素とを主成分とし、膜
中に占めるシリコンの比率が前記第1の絶縁膜のそれよ
り小さい第2の絶縁膜を堆積して、前記溝の内部を埋め
る工程と、前記第1及び第2の絶縁膜をエッチングし
て、前記溝の内部に前記第1及び第2の絶縁膜を残置さ
せる工程とを有することを特徴とする。
The method of manufacturing a semiconductor device of the present invention is
A step of forming a groove in the silicon substrate; and a step of depositing a first insulating film containing silicon and at least one element of nitrogen and oxygen as a main component on the silicon substrate by using a CVD method. A step of covering the bottom portion with the first insulating film, and a main component is at least one element of nitrogen and oxygen and silicon on the silicon substrate using a CVD method, and the ratio of silicon in the film is Depositing a second insulating film smaller than that of the first insulating film to fill the inside of the groove; and etching the first and second insulating films to form the first insulating film inside the groove. And a step of leaving the second insulating film left.

【0015】また、本発明の他の半導体装置の製造方法
は、シリコン基板に溝を形成する工程と、前記シリコン
基板の全面に、窒素及び酸素の少なくとも一方の元素と
珪素とを主成分とする絶縁膜を堆積して前記溝を埋める
工程と、前記絶縁膜にイオン注入を行なった後、前記絶
縁膜に熱処理を施す工程と、前記絶縁膜をエッチングし
て前記溝の内部に前記絶縁膜を残置させる工程とを有す
ることを特徴とする。また、本発明の他の半導体装置の
製造方法は、開口幅に対する深さの比が所定値以上の溝
をシリコン基板に形成する工程と、CVD法を用いて前
記シリコン基板上に、窒素及び酸素の少なくとも一方の
元素と珪素とを主成分とする絶縁膜を、前記溝の底部に
おけるシリコンの比率が、この底部より上の部分におけ
るシリコンの比率より大きくなるように堆積し、前記溝
を前記絶縁膜で埋める工程と、前記絶縁膜をエッチング
し、前記溝の内部のみに前記絶縁膜を残置させる工程と
を有することを特徴とする。
Further, in another method of manufacturing a semiconductor device of the present invention, a step of forming a groove in a silicon substrate, and at least one element of nitrogen and oxygen and silicon are main components on the entire surface of the silicon substrate. A step of depositing an insulating film to fill the groove; a step of performing a heat treatment on the insulating film after ion-implanting the insulating film; and a step of etching the insulating film to form the insulating film inside the groove. And a step of leaving it. Another method of manufacturing a semiconductor device according to the present invention is a step of forming a groove having a depth ratio to an opening width of a predetermined value or more on a silicon substrate, and nitrogen and oxygen on the silicon substrate using a CVD method. An insulating film containing at least one of the above elements and silicon as a main component is deposited so that the ratio of silicon at the bottom of the groove is higher than the ratio of silicon at the portion above the bottom, and The method is characterized by including a step of filling with a film and a step of etching the insulating film to leave the insulating film only inside the groove.

【0016】[0016]

【作用】本発明の半導体装置では、少なくとも溝の底部
がシリコンの比率が大きい第1の絶縁膜で埋められるこ
とになる。シリコンの比率が大きいと応力が小さくなる
ため、溝の底部で生じやすい応力集中を緩和でき、基板
欠陥による素子特性の低下を防止できる。また、シリコ
ンの比率が大きいと絶縁特性が低下するが、本発明の場
合、第1の絶縁膜で埋められなかった溝の内部は、シリ
コンの比率が小さい、つまり、絶縁特性が良好な第2の
絶縁膜で埋められている。このため、絶縁膜全体として
は十分な絶縁特性を有する溝埋込み用絶縁膜として機能
する。したがって、素子分離能力の低下及び基板欠陥の
発生を防止できる構造の素子分離領域が得られる。
In the semiconductor device of the present invention, at least the bottom of the groove is filled with the first insulating film containing a large proportion of silicon. When the ratio of silicon is large, the stress becomes small, so that the stress concentration that is likely to occur at the bottom of the groove can be relaxed and the deterioration of the element characteristics due to the substrate defect can be prevented. Further, when the ratio of silicon is large, the insulating property is deteriorated. However, in the present invention, the inside of the groove which is not filled with the first insulating film has a small ratio of silicon, that is, the second insulating film having a good insulating property. Is filled with an insulating film. Therefore, the insulating film as a whole functions as a groove-filling insulating film having sufficient insulating characteristics. Therefore, it is possible to obtain the element isolation region having a structure capable of preventing the deterioration of the element isolation ability and the occurrence of the substrate defect.

【0017】また、本発明の半導体装置の製造方法で
は、CVD法を用いて第1,第2の絶縁膜の成膜を行な
っているので、窒素原料ガスの流量又は酸素原料ガスの
流量を調整することでシリコンの比率を制御できる。こ
のため、容易に、溝の内壁面を応力の小さい第1の絶縁
膜で被覆でき、この第1の絶縁膜で埋められなかった溝
の内部を絶縁性の高い第2の絶縁膜で埋めることができ
る。したがって、素子分離能力の低下や基板欠陥を招く
こと無く、溝を絶縁膜で埋めることができる。
Further, in the method of manufacturing a semiconductor device of the present invention, since the first and second insulating films are formed by using the CVD method, the flow rate of the nitrogen source gas or the oxygen source gas is adjusted. By doing so, the ratio of silicon can be controlled. Therefore, the inner wall surface of the groove can be easily covered with the first insulating film having a small stress, and the inside of the groove not filled with the first insulating film can be filled with the second insulating film having a high insulating property. You can Therefore, the trench can be filled with the insulating film without lowering the element isolation capability or causing a substrate defect.

【0018】また、本発明の他の半導体装置の製造方法
では、シリコン基板の全面に絶縁膜を堆積して前記溝を
埋めた後、前記絶縁膜にイオン注入を行なっている。イ
オン注入されたシリコン窒化膜等の絶縁膜に熱処理を行
なうと絶縁特性が改善されることが知られている。この
ため、例えば、シリコンの比率が大きい、つまり、応力
の小さいシリコン窒化膜で溝を埋め、溝内部のシリコン
窒化膜にイオンが届く条件でイオン注入を行なえば、溝
上部のシリコン窒化膜だけを高絶縁化できる。したがっ
て、素子分離能力の低下や基板欠陥を招くこと無く、溝
をシリコン窒化膜等の絶縁膜で埋めることができる。
In another method of manufacturing a semiconductor device of the present invention, an insulating film is deposited on the entire surface of a silicon substrate to fill the groove, and then ion implantation is performed on the insulating film. It is known that heat treatment of an ion-implanted insulating film such as a silicon nitride film improves the insulating characteristics. Therefore, for example, if the groove is filled with a silicon nitride film having a high silicon ratio, that is, a stress is small, and the ions are implanted under the condition that ions reach the silicon nitride film inside the groove, only the silicon nitride film on the upper part of the groove is High insulation can be achieved. Therefore, the groove can be filled with an insulating film such as a silicon nitride film without lowering the element isolation capability or causing a substrate defect.

【0019】また、本発明の他の半導体装置の製造方法
では、開口幅に対する深さの比(深さ/開口幅)が所定
値以上の溝をシリコン基板に形成している。このため、
例えば、この比を2以上にすれば、溝下部には窒素原料
ガスや酸素原料ガスの原料ガスが届き難くなり、溝上部
に供給される上記原料ガスの量を多くできる。したがっ
て、溝下部にはシリコンの比率が大きい低応力の絶縁膜
を形成でき、溝上部にはシリコンの比率が小さい高絶縁
性の絶縁膜を形成できるので、素子分離能力の低下や基
板欠陥を招くこと無く、溝をシリコン窒化膜で埋めるこ
とができる。
In another method of manufacturing a semiconductor device according to the present invention, a groove having a depth to opening width ratio (depth / opening width) of a predetermined value or more is formed in a silicon substrate. For this reason,
For example, if this ratio is set to 2 or more, it becomes difficult for the raw material gas such as the nitrogen raw material gas or the oxygen raw material gas to reach the lower portion of the groove, and the amount of the raw material gas supplied to the upper portion of the groove can be increased. Therefore, a low-stress insulating film having a large proportion of silicon can be formed in the lower portion of the groove, and a high-insulating insulating film having a small proportion of silicon can be formed in the upper portion of the groove, resulting in a decrease in element isolation capability and a substrate defect. The groove can be filled with the silicon nitride film without any need.

【0020】[0020]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1は、本発明の第1の実施例に係わる素子分離領
域の形成方法を示す工程断面図である。
Embodiments will be described below with reference to the drawings. 1A to 1D are process cross-sectional views showing a method for forming an element isolation region according to a first embodiment of the present invention.

【0021】まず、図1(a)に示すように、主面が
(100)、比抵抗が4.5〜6Ωcm程度のp型の単
結晶シリコン基板1を用意し、この単結晶シリコン基板
1の素子分離領域となる表面部分に開口幅が0.3μm
の溝をフォトリソグラフィなどを利用して形成する。次
いでこの単結晶シリコン基板1を900℃、塩酸10%
を含む酸素雰囲気中で熱酸化して、基板全面に厚さ25
nmのシリコン酸化膜2を形成する。このシリコン酸化
膜2は、基板表面の界面準位を下げたり、基板中への汚
染物混入を防止したりするために設けられるものであ
り、1nm以上の膜厚で形成するのが好ましい。また、
膜応力の点から50nm以下の膜厚が好ましい。次いで
単結晶シリコン基板1をLPCVD装置に収容した後、
成膜温度780℃,成膜圧力0.3Torr,ジクロル
シラン流量200cc/分,アンモニア流量15cc/
分の条件で、N/Si組成比0.8で、膜厚50nmの
第1のシリコン窒化膜3をシリコン酸化膜2上に堆積す
る。次いでアンモニアの流量を連続的に200cc/分
まで増加させ、つまり、ジクロルシラン及びアンモニア
の流量を伴に200cc/分にして、N/Si組成比が
1.0以上,膜厚が300nmの第2のシリコン窒化膜
4を第1のシリコン窒化膜3上に堆積して溝を埋める。
First, as shown in FIG. 1A, a p-type single crystal silicon substrate 1 having a main surface of (100) and a specific resistance of about 4.5 to 6 Ωcm is prepared, and this single crystal silicon substrate 1 is prepared. The opening width is 0.3 μm on the surface that will be the element isolation region of
Grooves are formed using photolithography or the like. Next, this single crystal silicon substrate 1 is heated at 900 ° C. and hydrochloric acid 10%.
Is thermally oxidized in an oxygen atmosphere containing oxygen to a thickness of 25
A silicon oxide film 2 having a thickness of nm is formed. The silicon oxide film 2 is provided to lower the interface state of the substrate surface and prevent contamination by contaminants in the substrate, and is preferably formed with a film thickness of 1 nm or more. Also,
From the viewpoint of film stress, a film thickness of 50 nm or less is preferable. Next, after accommodating the single crystal silicon substrate 1 in the LPCVD apparatus,
Deposition temperature 780 ° C., deposition pressure 0.3 Torr, dichlorosilane flow rate 200 cc / min, ammonia flow rate 15 cc /
The first silicon nitride film 3 having a N / Si composition ratio of 0.8 and a film thickness of 50 nm is deposited on the silicon oxide film 2 under the condition of minutes. Then, the flow rate of ammonia is continuously increased to 200 cc / min, that is, the flow rate of dichlorosilane and ammonia is set to 200 cc / min, and the N / Si composition ratio is 1.0 or more and the film thickness is 300 nm. A silicon nitride film 4 is deposited on the first silicon nitride film 3 to fill the groove.

【0022】次に図1(b)に示すように、溝から溢れ
たシリコン基板1上の第1,第2のシリコン窒化膜3,
4を機械研磨を用いて除去して、溝の内部のみに第1,
第2のシリコン窒化膜3,4を残す。最後に、弗化アン
モニウム溶液を用いて基板表面上のシリコン酸化膜2を
除去し、素子分離領域が完成する。
Next, as shown in FIG. 1B, the first and second silicon nitride films 3, 3 on the silicon substrate 1 overflowing from the groove.
4 is removed by mechanical polishing, and the first and
The second silicon nitride films 3 and 4 are left. Finally, the silicon oxide film 2 on the surface of the substrate is removed using an ammonium fluoride solution to complete the element isolation region.

【0023】本実施例では、溝の内壁面がN/Si組成
比(0.8)が小さいシリコン窒化膜3で被覆されてい
る。N/Si組成比が小さいシリコン窒化膜は、図12
の説明から分かるように、成膜応力が小さいのでシリコ
ン窒化膜3の成膜応力によってシリコン基板1に欠陥が
発生し素子特性が低下するという問題は生じない。ま
た、シリコン窒化膜3で埋められなかった溝の内部は、
N/Si組成比(1.0以上)が大きいシリコン窒化膜
4で完全に埋められている。N/Si組成比が大きいシ
リコン窒化膜は、図13の説明から分かるように、絶縁
特性が良いのでシリコン窒化膜3の絶縁能力の不足がシ
リコン窒化膜4で補なわれる結果、シリコン窒化膜全体
の絶縁特性は良好なものになる。また、絶縁特性は溝を
深く形成することでも改善できる。即ち、リーク電流は
溝の上下を往復する経路で流れるので、溝が深ければシ
リコン窒化膜2の絶縁特性が多少低くても実用上は問題
ない。また、シリコン基板1に働くシリコン窒化膜4の
応力はシリコン窒化膜3により低減される。
In this embodiment, the inner wall surface of the groove is covered with the silicon nitride film 3 having a small N / Si composition ratio (0.8). The silicon nitride film having a small N / Si composition ratio is shown in FIG.
As will be understood from the above description, since the film forming stress is small, there is no problem that the film forming stress of the silicon nitride film 3 causes a defect in the silicon substrate 1 to deteriorate the device characteristics. In addition, the inside of the groove not filled with the silicon nitride film 3 is
It is completely filled with the silicon nitride film 4 having a large N / Si composition ratio (1.0 or more). As can be seen from the description of FIG. 13, since the silicon nitride film having a large N / Si composition ratio has good insulating characteristics, the lack of insulating ability of the silicon nitride film 3 is compensated by the silicon nitride film 4, resulting in the entire silicon nitride film. The insulation characteristics of are good. Also, the insulating property can be improved by forming the groove deep. That is, since the leak current flows in a path that reciprocates above and below the groove, if the groove is deep, there is no problem in practical use even if the insulating property of the silicon nitride film 2 is somewhat low. Further, the stress of the silicon nitride film 4 acting on the silicon substrate 1 is reduced by the silicon nitride film 3.

【0024】かくして本実施例によれば、N/Si組成
比が小さいシリコン窒化膜3とN/Si組成比が大きい
シリコン窒化膜4との2重構造のシリコン窒化膜で溝を
埋めることで、十分な絶縁能力を確保できると共に、応
力集中に起因する素子特性の低下を防止でき、今後のU
lSIの微細化に十分対応できる素子分離領域が得られ
る。図2,図3は、本発明の第2の実施例に係わる素子
分離領域及びゲート電極の形成方法を示す工程断面図で
ある。
Thus, according to the present embodiment, by filling the groove with a silicon nitride film having a double structure of the silicon nitride film 3 having a small N / Si composition ratio and the silicon nitride film 4 having a large N / Si composition ratio, Sufficient insulation capacity can be ensured, and deterioration of element characteristics due to stress concentration can be prevented, and future U
It is possible to obtain an element isolation region that can sufficiently cope with the miniaturization of 1SI. 2 and 3 are process sectional views showing a method for forming an element isolation region and a gate electrode according to the second embodiment of the present invention.

【0025】まず、図2(a)に示すように、主面が
(100)で、比抵抗が4.5〜6Ωcm程度のp型の
単結晶シリコン基板11を用意し、この単結晶シリコン
基板11を800℃,塩酸10%を含む酸素雰囲気中で
熱酸化して基板全面に厚さ16nmのシリコン酸化膜1
2を形成する。次いでLPCVD装置を用いて厚さ20
0nmの多結晶シリコン膜13をシリコン酸化膜12上
に堆積した後、この多結晶シリコン膜13上に厚さ10
00nmのポジ型のフォトレジスト14を塗布する。
First, as shown in FIG. 2A, a p-type single crystal silicon substrate 11 having a main surface of (100) and a specific resistance of about 4.5 to 6 Ωcm is prepared, and this single crystal silicon substrate is prepared. 11 is thermally oxidized in an oxygen atmosphere containing 800 ° C. and 10% hydrochloric acid to form a silicon oxide film 1 having a thickness of 16 nm on the entire surface of the substrate.
Form 2. Then, using an LPCVD apparatus, a thickness of 20
After depositing a 0 nm polycrystalline silicon film 13 on the silicon oxide film 12, a thickness 10 is formed on the polycrystalline silicon film 13.
A positive photoresist 14 of 00 nm is applied.

【0026】次に図2(b)に示すように、フォトリソ
グラフィ等を利用して素子分離領域のフォトレジスト1
4を除去する。次いで残ったフォトレジストをマスクに
用いて、異方性ドライエッチングにより、多結晶シリコ
ン膜13,シリコン酸化膜12、単結晶シリコン基板1
1を順次エッチングして、シリコン基板11に溝を形成
する。
Next, as shown in FIG. 2B, the photoresist 1 in the element isolation region is formed by using photolithography or the like.
Remove 4. Then, using the remaining photoresist as a mask, anisotropic dry etching is performed to form the polycrystalline silicon film 13, the silicon oxide film 12, and the single crystal silicon substrate 1.
1 is sequentially etched to form a groove in the silicon substrate 11.

【0027】次に図2(c)に示すように、強酸などを
用いてフォトレジスト14を除去した後、950℃の窒
素雰囲気中でアニールを行ない、続いて900℃,塩酸
10%を含む酸素雰囲気中で厚さ35nmのシリコン酸
化膜15を基板表面及び溝の内壁面に形成する。次いで
LPCVD装置を用い、N/Si比が0.8程度で厚さ
が1000nmのシリコン窒化膜16を全面に堆積して
溝を埋める。
Next, as shown in FIG. 2C, after removing the photoresist 14 using a strong acid or the like, annealing is performed in a nitrogen atmosphere at 950 ° C., and then 900 ° C., oxygen containing 10% hydrochloric acid. A 35-nm-thick silicon oxide film 15 is formed in the atmosphere on the substrate surface and the inner wall surface of the groove. Then, using a LPCVD apparatus, a silicon nitride film 16 having an N / Si ratio of about 0.8 and a thickness of 1000 nm is deposited on the entire surface to fill the groove.

【0028】次に図3(a)に示すように、加速電圧1
50kV、ドーズ量1×1016/cm2 の条件で酸素イ
オンをシリコン窒化膜16に注入した後、酸素雰囲気中
でのアニール処理を行なう。アニール温度は、例えば、
950℃が良い。イオン注入したシリコン窒化膜16に
アニール処理を施すと原子組成が変化して絶縁特性が改
善されるので、シリコン窒化膜16の上部は絶縁特性に
優れたシリコン酸化窒化膜17に変わる。図4は、その
ことを表す図で、イオン注入量と電流(リーク電流)と
の関係を示す特性図である。即ち、イオン注入後にアニ
ール処理(950℃)が施されたシリコン窒化膜が、2
つの電極で挾持された構成のキャパシタに電圧を印加
し、シリコン窒化膜中の酸素イオン量の違いによる電極
に流れる電流(リーク電流)を調べて得られた特性図で
ある。図中、曲線aはドーズ量が0/cm2 (イオン注
入なし),曲線bはドーズ量が5×1018/cm2 、曲
線cはドーズ量が1×1019/cm2 の場合の特性曲線
である。この図から酸素イオンを注入することにより、
リーク電流が減少し絶縁特性を改善できることが分か
る。
Next, as shown in FIG. 3A, the acceleration voltage 1
50kV, dose 1 × 10 16 / cm 2 After implanting oxygen ions into the silicon nitride film 16 under the above condition, annealing treatment is performed in an oxygen atmosphere. The annealing temperature is, for example,
950 ° C is good. When the ion-implanted silicon nitride film 16 is annealed, the atomic composition is changed and the insulating characteristics are improved. Therefore, the upper portion of the silicon nitride film 16 is changed to the silicon oxynitride film 17 having excellent insulating characteristics. FIG. 4 is a diagram showing this, and is a characteristic diagram showing the relationship between the ion implantation amount and the current (leakage current). That is, the silicon nitride film that has been annealed (950 ° C.) after the ion implantation is 2
FIG. 11 is a characteristic diagram obtained by applying a voltage to a capacitor sandwiched by two electrodes and examining a current (leakage current) flowing through the electrodes due to a difference in the amount of oxygen ions in the silicon nitride film. In the figure, the curve a has a dose of 0 / cm 2 (Without ion implantation), the curve b has a dose amount of 5 × 10 18 / cm 2. , The curve c has a dose of 1 × 10 19 / cm 2 It is a characteristic curve in the case of. By implanting oxygen ions from this figure,
It can be seen that the leakage current is reduced and the insulation characteristics can be improved.

【0029】次に図3(b)に示すように、多結晶シリ
コン膜13をストッパに用いてシリコン窒化窒化膜17
を機械研磨することにより、素子領域上のシリコン酸化
窒化膜17,シリコン酸化膜15を除去し、溝の内部だ
けにシリコン酸化窒化膜17を残す。最後に、LPCV
D装置を用いて厚さ200nmの多結晶シリコン膜18
を全面に堆積した後、多結晶シリコン膜13,18をパ
ターニングして素子分離領域19とゲート電極20とが
完成する。
Next, as shown in FIG. 3B, a silicon nitride nitride film 17 is formed by using the polycrystalline silicon film 13 as a stopper.
Are mechanically polished to remove the silicon oxynitride film 17 and the silicon oxide film 15 on the element region, leaving the silicon oxynitride film 17 only inside the groove. Finally, LPCV
200 nm thick polycrystalline silicon film 18 using D device
Is deposited on the entire surface and then the polycrystalline silicon films 13 and 18 are patterned to complete the element isolation region 19 and the gate electrode 20.

【0030】以上述べた方法によれば、溝の下部はN/
Si比(0.8程度)が小さいシリコン窒化膜16で埋
められているので、溝底部での応力集中を緩和でき、基
板欠陥による素子特性の低下を防止できる。また、溝の
上部は絶縁性の高いシリコン酸化窒化膜17で埋められ
ているので、溝埋込み用絶縁膜の全体としての絶縁特性
は良好なものになる。更に、本実施例によれば、シリコ
ン酸化窒化膜17の表面がシリコン酸化膜12の表面よ
り高く形成されているので、シリコン酸化窒化膜17の
表面とシリコン酸化膜12の表面とが同じ高さの場合に
比べて、シリコン酸化膜12の角部での電界集中が小さ
くなるという利点がある。図5は、本発明の第3の実施
例に係わる素子分離領域の形成方法を示す工程断面図で
ある。
According to the method described above, the lower part of the groove is N /
Since it is filled with the silicon nitride film 16 having a small Si ratio (about 0.8), the stress concentration at the groove bottom can be relaxed and the deterioration of the device characteristics due to the substrate defect can be prevented. Further, since the upper part of the groove is filled with the silicon oxynitride film 17 having a high insulating property, the insulating property of the groove-filling insulating film as a whole becomes good. Further, according to this embodiment, the surface of the silicon oxynitride film 17 is formed higher than the surface of the silicon oxide film 12, so that the surface of the silicon oxynitride film 17 and the surface of the silicon oxide film 12 have the same height. Compared with the above case, there is an advantage that the electric field concentration at the corners of the silicon oxide film 12 becomes smaller. 5A to 5D are process sectional views showing a method of forming an element isolation region according to the third embodiment of the present invention.

【0031】まず、図5(a)に示すように、主面が
(100)で、比抵抗が4.5〜6Ωcm程度のp型の
単結晶シリコン基板21を用意し、この単結晶シリコン
基板21を950℃,塩酸10%を含む酸素雰囲気中で
熱酸化して基板全面に厚さ25nmのシリコン酸化膜2
2を形成する。次いでLPCVD装置を用いてシリコン
酸化膜22上に厚さ200nmのシリコン酸化膜23を
堆積した後、このシリコン酸化膜23上に厚さ1000
nmのポジ型のフォトレジスト24を塗布し、続いてフ
ォトリソグラフィを用いてフォトレジスト24をパター
ニングし、素子分離領域のフォトレジスト24を除去す
る。
First, as shown in FIG. 5A, a p-type single crystal silicon substrate 21 having a main surface of (100) and a specific resistance of about 4.5 to 6 Ωcm is prepared, and this single crystal silicon substrate is prepared. 21 is thermally oxidized in an oxygen atmosphere containing 950 ° C. and 10% hydrochloric acid to form a 25 nm thick silicon oxide film 2 on the entire surface of the substrate.
Form 2. Then, a 200 nm thick silicon oxide film 23 is deposited on the silicon oxide film 22 by using an LPCVD apparatus, and then a thickness of 1000 is formed on the silicon oxide film 23.
A positive photoresist 24 having a thickness of nm is applied, and then the photoresist 24 is patterned by using photolithography to remove the photoresist 24 in the element isolation region.

【0032】次に図5(b)に示すように、残ったフォ
トレジスト24をマスクに用いた異方性ドライエッチン
グにより、シリコン酸化膜23,22、単結晶シリコン
基板21を順次エッチングして基板表面に溝を形成す
る。次いで強酸などを用いてフォトレジスト24を除去
した後、弗化アンモニウム溶液を用いてシリコン酸化膜
22,23を除去する。次いで単結晶シリコン基板21
を900℃,塩酸10%を含む酸素雰囲気中で熱酸化し
て基板表面及び溝の内壁面に厚さ35nmのシリコン酸
化膜25を形成した後、LPCVD装置を用いてN/S
i比が0.8程度で、厚さが100nmのシリコン窒化
膜26を全面に堆積して溝を埋める。
Next, as shown in FIG. 5B, the silicon oxide films 23 and 22 and the single crystal silicon substrate 21 are sequentially etched by anisotropic dry etching using the remaining photoresist 24 as a mask. Form a groove on the surface. Then, the photoresist 24 is removed using a strong acid or the like, and then the silicon oxide films 22 and 23 are removed using an ammonium fluoride solution. Next, the single crystal silicon substrate 21
Is thermally oxidized in an oxygen atmosphere containing 900 ° C. and 10% hydrochloric acid to form a silicon oxide film 25 having a thickness of 35 nm on the substrate surface and the inner wall surface of the groove, and then N / S is performed by using an LPCVD apparatus.
A silicon nitride film 26 having an i ratio of about 0.8 and a thickness of 100 nm is deposited on the entire surface to fill the groove.

【0033】次に図5(c)に示すように、厚さ400
nmのポジ型のフォトレジスト27を塗布した後、フォ
トリソグラフィを用いてフォトレジスト27をパターニ
ングし、溝の上部のみにフォトレジスト27を残す。こ
のとき、フォトレジスト27の上面とシリコン窒化膜2
6の上面とは略同一平面にある。次いで加速電圧100
kV,ドーズ量1×1016/cm2 の条件で弗素イオン
をシリコン窒化膜26にイオン注入する。このイオン注
入の結果、基板表面上の弗素イオンが注入されたシリコ
ン窒化膜26aのエッチングレートは、弗素イオンが注
入されなかった溝内部のシリコン窒化膜26のそれより
高くなる。
Next, as shown in FIG.
After applying a positive photoresist 27 of nm thickness, the photoresist 27 is patterned using photolithography, and the photoresist 27 is left only on the upper part of the groove. At this time, the upper surface of the photoresist 27 and the silicon nitride film 2
The upper surface of 6 is substantially on the same plane. Then acceleration voltage 100
kV, dose 1 × 10 16 / cm 2 Under the above conditions, fluorine ions are ion-implanted into the silicon nitride film 26. As a result of this ion implantation, the etching rate of the silicon nitride film 26a on the surface of the substrate, into which the fluorine ions have been implanted, becomes higher than that of the silicon nitride film 26 inside the trench into which the fluorine ions have not been implanted.

【0034】次に図5(c)に示すように、エッチング
レートの低いシリコン窒化膜26をエッチングストッパ
に用いて、フォトレジスト27及びエッチングレートの
高いシリコン窒化膜26aを除去する。最後に、溝上部
のシリコン酸化膜26に、例えば、酸素イオンを注入し
た後にアニール処理を行ない、溝上部に絶縁性の高いシ
リコン酸化窒化膜28を形成して素子分離領域が完成す
る。以上述べた方法によれば、シリコン窒化膜26自身
がエッチングストッパとして働くので、余計なエッチン
グストッパを形成し、除去する手間が省ける。
Next, as shown in FIG. 5C, the photoresist 27 and the silicon nitride film 26a having a high etching rate are removed by using the silicon nitride film 26 having a low etching rate as an etching stopper. Finally, for example, oxygen ions are implanted into the silicon oxide film 26 in the upper part of the groove, and then an annealing process is performed to form a silicon oxynitride film 28 having a high insulating property in the upper part of the groove to complete the element isolation region. According to the method described above, since the silicon nitride film 26 itself acts as an etching stopper, it is possible to save the trouble of forming and removing an extra etching stopper.

【0035】また、溝の底部はN/Siが小さい(0.
8程度)シリコン窒化膜26で埋められているので、成
膜時の応力によってシリコン基板21に欠陥が生じて素
子特性が低下するという問題は生じない。また、溝上部
は絶縁性の高いシリコン酸化窒化膜28で埋められてい
るので、十分な素子分離特性が得られる。図6は、本発
明の第4の実施例に係わる素子分離領域の形成方法を示
す工程断面図である。
N / Si is small at the bottom of the groove (0.
Since the silicon nitride film 26 is buried in the silicon nitride film 26, there is no problem that the silicon substrate 21 is defective due to the stress during film formation and the device characteristics are deteriorated. Further, since the upper part of the groove is filled with the silicon oxynitride film 28 having a high insulating property, sufficient element isolation characteristics can be obtained. 6A to 6D are process sectional views showing a method of forming an element isolation region according to the fourth embodiment of the present invention.

【0036】まず、図6(a)に示すように、主面が
(100)で、比抵抗が4.5〜6Ωcm程度のp型の
単結晶シリコン基板31を用意し、この単結晶シリコン
基板31を950℃,塩酸10%を含む酸素雰囲気中で
熱酸化して基板全面に厚さ25nmのシリコン酸化膜3
2を形成する。次いでLPCVD装置を用いてシリコン
酸化膜32上に厚さ200nmのシリコン酸化膜33を
堆積した後、このシリコン酸化膜33上に厚さ1000
nmのポジ型のフォトレジスト34を塗布し、続いてフ
ォトリソグラフィを用いてフォトレジスト34をパター
ニングし、素子分離領域のフォトレジスト34を除去す
る。
First, as shown in FIG. 6A, a p-type single crystal silicon substrate 31 having a main surface of (100) and a specific resistance of about 4.5 to 6 Ωcm is prepared. 31 is thermally oxidized in an oxygen atmosphere containing 950 ° C. and 10% hydrochloric acid, and a silicon oxide film 3 having a thickness of 25 nm is formed on the entire surface of the substrate.
Form 2. Then, a 200 nm-thickness silicon oxide film 33 is deposited on the silicon oxide film 32 using an LPCVD apparatus, and then a thickness of 1000 nm is formed on the silicon oxide film 33.
A positive photoresist 34 of nm thickness is applied, and then the photoresist 34 is patterned by using photolithography to remove the photoresist 34 in the element isolation region.

【0037】次に図6(b)に示すように、残ったフォ
トレジスト34をマスクに用いた異方性ドライエッチン
グにより、シリコン酸化膜33,32、単結晶シリコン
基板31を順次エッチングして基板表面に開口幅0.3
μm,深さ0.8μmの溝を形成すると共に、後工程の
溝埋込み用絶縁膜の形成工程のときにこの溝埋込み用絶
縁膜中に巣が生じないように、基板表面に垂直な方向に
対して5°の傾斜を溝の側壁につける。次いで希薄弗化
アンモニウム溶液中でシリコン酸化膜33及びシリコン
酸化膜22を20nm後退させる。これは溝埋込み用絶
縁膜により溝の開口部の角が覆われるようにするためで
ある。これにより素子分離領域が完成した後の熱工程の
際に、溝の側壁が酸化されることで生じる応力集中を防
止できる。次いで強酸などを用いてフォトレジスト34
を除去した後、単結晶シリコン基板31を900℃,塩
酸10%を含む酸素雰囲気中で熱酸化してシリコンが露
出した基板表面及び溝の内壁面に厚さ15nmのシリコ
ン酸化膜35を形成する。次いでLPCVD装置を用
い、成膜温度が780℃,成膜圧力が0.3Torr,
原料ガスのジクロルシランの流量が200cc/分,ア
ンモニアの流量が20cc/分という条件で、つまり、
成膜反応が窒素についての供給律速になる条件で全面に
厚さ600nmのシリコン窒化膜36を堆積する。この
とき、基板表面から深さ0.5μm程度より上の領域に
は、N/Si組成比が0.8の絶縁性の高いシリコン窒
化膜36aが形成される。一方、それ以下の領域には、
溝の形状が原因して、つまり、溝のアスペクト比(深さ
/幅)が2.0以上なので十分なアンモニアが供給され
ず、N/Si組成比が0.5程度の低応力のシリコン窒
化膜36bが形成される。
Next, as shown in FIG. 6B, the silicon oxide films 33 and 32 and the single crystal silicon substrate 31 are sequentially etched by anisotropic dry etching using the remaining photoresist 34 as a mask to form a substrate. Opening width 0.3 on the surface
A groove having a depth of 0.8 μm and a depth of 0.8 μm is formed. An inclination of 5 ° is applied to the side wall of the groove. Then, the silicon oxide film 33 and the silicon oxide film 22 are set back by 20 nm in a dilute ammonium fluoride solution. This is to cover the corners of the opening of the groove with the insulating film for burying the groove. As a result, it is possible to prevent stress concentration caused by oxidation of the side wall of the groove in the thermal process after the element isolation region is completed. Then, using a strong acid or the like, the photoresist 34
Then, the single crystal silicon substrate 31 is thermally oxidized at 900 ° C. in an oxygen atmosphere containing hydrochloric acid 10% to form a silicon oxide film 35 having a thickness of 15 nm on the substrate surface where the silicon is exposed and the inner wall surface of the groove. .. Next, using an LPCVD apparatus, the film forming temperature is 780 ° C., the film forming pressure is 0.3 Torr,
Under the condition that the flow rate of dichlorosilane of the raw material gas is 200 cc / min and the flow rate of ammonia is 20 cc / min, that is,
A 600-nm-thick silicon nitride film 36 is deposited on the entire surface under the condition that the film formation reaction is the rate-determining supply of nitrogen. At this time, a highly insulating silicon nitride film 36a having an N / Si composition ratio of 0.8 is formed in a region above the substrate surface and having a depth of about 0.5 μm. On the other hand, in areas below that,
Due to the shape of the groove, that is, the aspect ratio (depth / width) of the groove is 2.0 or more, sufficient ammonia is not supplied, and the low-silicon silicon nitriding ratio of N / Si is about 0.5. The film 36b is formed.

【0038】最後に、図6(c)に示すように、シリコ
ン酸化膜33をストッパに用いてシリコン窒化膜36a
を機械研磨した後、弗化アンモニウム溶液を用いてシリ
コン酸化膜33及びこれによって覆われる部分のシリコ
ン酸化膜32を除去して素子分離領域が完成する。
Finally, as shown in FIG. 6C, the silicon oxide film 33 is used as a stopper to form the silicon nitride film 36a.
After mechanical polishing, the silicon oxide film 33 and the portion of the silicon oxide film 32 covered by the silicon oxide film 33 are removed using an ammonium fluoride solution to complete the element isolation region.

【0039】以上述べた方法によれば、溝下部のシリコ
ン窒化膜36bの成膜応力が小さいので、本来応力集中
を惹起しやすい溝底部での応力集中を緩和でき、基板欠
陥による素子特性の低下を防止できる。また、溝上部に
は絶縁性の高いシリコン窒化膜36aが形成されている
ので、十分な分離特性が得られる。
According to the method described above, since the film formation stress of the silicon nitride film 36b under the groove is small, the stress concentration at the groove bottom portion, which is likely to cause stress concentration originally, can be relaxed, and the device characteristics are deteriorated due to the substrate defect. Can be prevented. Further, since the silicon nitride film 36a having a high insulating property is formed on the upper portion of the groove, sufficient isolation characteristics can be obtained.

【0040】図7は、本発明の第5の実施例に係わる素
子分離領域の構造を示す断面図である。本実施例が第4
の実施例と異なる点は、一酸化二窒素を追加した原料ガ
スを用いてシリコン窒化膜を形成したことにある。即
ち、本実施例では、一酸化二窒素の量でシリコン窒化膜
の成膜応力及び絶縁特性を制御している。
FIG. 7 is a sectional view showing the structure of an element isolation region according to the fifth embodiment of the present invention. This embodiment is the fourth
What is different from the example is that the silicon nitride film is formed by using the source gas to which nitrous oxide is added. That is, in this embodiment, the film formation stress and the insulation characteristics of the silicon nitride film are controlled by the amount of dinitrogen monoxide.

【0041】まず、図7(a)に示すように、第4の実
施例と同様な方法を用いて、単結晶シリコン基板41上
にシリコン酸化膜42,43を形成した後、開口幅が
0.3μm,深さが1.5μmで、基板表面に垂直な方
向に対して5°の傾斜の側壁を有する溝を形成する。
First, as shown in FIG. 7A, after the silicon oxide films 42 and 43 are formed on the single crystal silicon substrate 41 by the same method as in the fourth embodiment, the opening width is set to 0. A groove having a side wall of 0.3 μm and a depth of 1.5 μm and having an inclination of 5 ° with respect to the direction perpendicular to the substrate surface is formed.

【0042】次に図7(b)に示すように、希薄弗化ア
ンモニウム溶液を用いてシリコン酸化膜43及びその下
のシリコン酸化膜42を20nmほど後退させる。次い
で単結晶シリコン基板41を900℃,塩酸10%を含
む酸素雰囲気中で熱酸化しすることでシリコンが露出し
た基板表面及び溝の内壁面に厚さ15nmのシリコン酸
化膜44を形成する。この後、LPCVD装置を用い、
成膜温度が780℃,成膜圧力が0.3Torr,原料
ガスのジクロルシランの流量が200cc/分,アンモ
ニアの流量が20cc/分,一酸化二窒素の流量が5c
c/分という条件で、全面に厚さ600nmのシリコン
酸化窒化膜45を堆積して溝を埋める。このとき、基板
表面から深さ0.5μm程度より上の領域には、絶縁特
性に優れたシリコン酸化窒化膜45aが形成され、一
方、それ以下の領域では、一酸化二窒素が溝の上部で消
費されるため、十分な一酸化二窒素が供給されず、N/
Si組成比が0.5程度で、酸素含有量の少ない低応力
のシリコン酸化窒化膜45bが形成される。
Next, as shown in FIG. 7B, the silicon oxide film 43 and the silicon oxide film 42 therebelow are set back by about 20 nm using a dilute ammonium fluoride solution. Next, the single crystal silicon substrate 41 is thermally oxidized at 900 ° C. in an oxygen atmosphere containing hydrochloric acid 10% to form a silicon oxide film 44 having a thickness of 15 nm on the substrate surface where silicon is exposed and the inner wall surface of the groove. After that, using an LPCVD device,
The film forming temperature is 780 ° C., the film forming pressure is 0.3 Torr, the flow rate of the source gas of dichlorosilane is 200 cc / min, the flow rate of ammonia is 20 cc / min, and the flow rate of nitrous oxide is 5 c.
Under the condition of c / min, a silicon oxynitride film 45 having a thickness of 600 nm is deposited on the entire surface to fill the groove. At this time, a silicon oxynitride film 45a having excellent insulating properties is formed in a region above the substrate surface with a depth of about 0.5 μm, while in the region below that, dinitrogen monoxide is formed above the groove. Since it is consumed, sufficient nitrous oxide is not supplied and N /
A low-stress silicon oxynitride film 45b having a low Si content and a Si composition ratio of about 0.5 is formed.

【0043】最後に、図7(c)に示すように、シリコ
ン酸化膜43をストッパに用いてシリコン窒化膜45を
機械研磨した後、弗化アンモニウム溶液を用いてシリコ
ン酸化膜43及びこれによって覆われる部分のシリコン
酸化膜42を除去して素子分離領域が完成する。
Finally, as shown in FIG. 7C, the silicon nitride film 45 is mechanically polished using the silicon oxide film 43 as a stopper, and then the silicon oxide film 43 and the silicon oxide film 43 are covered with ammonium fluoride solution. The silicon oxide film 42 in the exposed portion is removed to complete the element isolation region.

【0044】以上述べた方法でも先の実施例と同様に、
溝下部のシリコン酸化窒化膜45bの成膜応力が小さい
ので、溝底部での応力集中を緩和することができ、基板
欠陥による素子特性の低下を防止できる。また、溝上部
には絶縁性特性の良いシリコン酸化窒化膜45aが形成
されているので、十分な分離特性が得られる。図8,図
9は、本発明の第6の実施例に係わる素子分離領域の形
成方法を示す工程断面図である。
In the method described above, as in the previous embodiment,
Since the film formation stress of the silicon oxynitride film 45b in the lower part of the groove is small, the stress concentration at the groove bottom can be relieved and the deterioration of the device characteristics due to the substrate defect can be prevented. Further, since the silicon oxynitride film 45a having good insulating properties is formed on the upper part of the groove, sufficient isolation property can be obtained. 8 and 9 are process cross-sectional views showing a method for forming an element isolation region according to the sixth embodiment of the present invention.

【0045】まず、図8(a)に示すように、主面が
(100)、比抵抗が4.5〜6Ωcm程度のp型の単
結晶シリコン基板51を、950℃,塩酸10%を含む
酸素雰囲気中で熱酸化して基板全面に厚さ25nmのシ
リコン酸化膜52を形成する。次いでLPCVD装置を
用いてシリコン酸化膜52上に厚さ100nmのシリコ
ン窒化膜53,厚さ50nmのシリコン酸化膜54を順
次堆積した後、このシリコン酸化膜54上に厚さ100
0nmのポジ型のフォトレジスト55を塗布し、続い
て、フォトリソグラフィ技術等を用いて素子分離領域の
フォトレジスト55を除去する。この後、残ったフォト
レジスト55をマスクに用いて、異方性ドライエッチン
グによりシリコン酸化膜54、シリコン窒化膜53を順
次エッチングする。
First, as shown in FIG. 8A, a p-type single crystal silicon substrate 51 having a main surface of (100) and a specific resistance of about 4.5 to 6 Ωcm is contained at 950 ° C. and 10% of hydrochloric acid. Thermal oxidation is performed in an oxygen atmosphere to form a 25 nm thick silicon oxide film 52 on the entire surface of the substrate. Then, a 100 nm thick silicon nitride film 53 and a 50 nm thick silicon oxide film 54 are sequentially deposited on the silicon oxide film 52 using an LPCVD apparatus, and then a 100 nm thick film is formed on the silicon oxide film 54.
A 0 nm positive photoresist 55 is applied, and then the photoresist 55 in the element isolation region is removed by using a photolithography technique or the like. Then, using the remaining photoresist 55 as a mask, the silicon oxide film 54 and the silicon nitride film 53 are sequentially etched by anisotropic dry etching.

【0046】次に強酸を用いてフォトレジスト55を除
去し、続いて弗化アンモニウム溶液を用いてシリコン酸
化膜54及び溝底部のシリコン酸化膜52を除去する。
次いで図8(b)に示すように、例えば、LPCVD装
置を用いて厚さ150nmのシリコン酸化膜56を全面
に堆積し、続いて異方性ドライエッチングを用いてシリ
コン酸化膜56をエッチングし、シリコン窒化膜53に
形成された溝にシリコン酸化膜56を埋込み基板表面を
平坦化する。
Next, the photoresist 55 is removed using a strong acid, and then the silicon oxide film 54 and the silicon oxide film 52 at the bottom of the groove are removed using an ammonium fluoride solution.
Next, as shown in FIG. 8B, a silicon oxide film 56 having a thickness of 150 nm is deposited on the entire surface by using, for example, an LPCVD apparatus, and then the silicon oxide film 56 is etched by using anisotropic dry etching. The silicon oxide film 56 is buried in the groove formed in the silicon nitride film 53 to flatten the substrate surface.

【0047】次に図8(c)に示すように、異方性ドラ
イエッチングを用いてシリコン酸化膜56及びシリコン
窒化膜53をマスクとしてシリコン基板51をエッチン
グし、基板表面に開口部が0.3μm、深さが1.0μ
mで、基板表面に垂直な方向に対して5°の傾斜の側壁
を有する溝を形成する。
Next, as shown in FIG. 8C, the silicon substrate 51 is etched by using anisotropic dry etching with the silicon oxide film 56 and the silicon nitride film 53 as a mask, and an opening portion of 0. 3μm, depth 1.0μ
m, forming trenches with sidewalls inclined at 5 ° to the direction perpendicular to the substrate surface.

【0048】次に図9(a)に示すように、弗化アンモ
ニウム溶液を用いてシリコン酸化膜56を除去した後、
単結晶シリコン基板51を900℃,塩酸10%を酸素
雰囲気中で熱酸化してシリコンが露出した基板表面及び
溝の内壁面に厚さ15nmのシリコン酸化膜57を形成
する。次いでLPCVD装置を用い、成膜温度が680
℃,成膜圧力が0.6Torr,20%モノシラン80
%ヘリウムからなるガスの流量が500cc/分,一酸
化二窒素の流量が20cc/分という条件で、厚さ60
0nmのシリコン酸化膜58を全面に堆積する。このと
き、基板表面から深さ0.6μmより上の領域には、O
/Si組成比が約2.0の絶縁性に優れたシリコン酸化
膜58aが形成され、一方、それ以下の領域には、O/
Si組成比が約1.0の低成膜応力のシリコン酸化膜5
8bが形成される。
Next, as shown in FIG. 9A, after removing the silicon oxide film 56 using an ammonium fluoride solution,
The single crystal silicon substrate 51 is thermally oxidized at 900 ° C. in 10% hydrochloric acid in an oxygen atmosphere to form a silicon oxide film 57 having a thickness of 15 nm on the substrate surface where silicon is exposed and the inner wall surface of the groove. Then, using an LPCVD apparatus, the film formation temperature is 680
℃, film formation pressure 0.6 Torr, 20% monosilane 80
% Helium gas flow rate of 500 cc / min, nitrous oxide flow rate of 20 cc / min, thickness 60
A 0 nm silicon oxide film 58 is deposited on the entire surface. At this time, in the region above the depth of 0.6 μm from the substrate surface, O
A silicon oxide film 58a having an excellent insulating property with a / Si composition ratio of about 2.0 is formed, while O /
Silicon oxide film 5 with a low composition stress of Si composition ratio of about 1.0
8b is formed.

【0049】最後に、図9(b)に示すように、シリコ
ン窒化膜53をストッパに用いてシリコン酸化膜58を
機械研磨した後、熱燐酸水溶液を用いてシリコン窒化膜
53を除去し、続いて弗化アンモニウム溶液などを用い
てシリコン窒化膜53の下のシリコン酸化膜52を除去
することで、素子分離領域のみにシリコン酸化膜58を
残存でき、素子分離領域が完成する。
Finally, as shown in FIG. 9B, the silicon oxide film 58 is mechanically polished by using the silicon nitride film 53 as a stopper, and then the silicon nitride film 53 is removed by using a hot phosphoric acid aqueous solution. By removing the silicon oxide film 52 under the silicon nitride film 53 using an ammonium fluoride solution or the like, the silicon oxide film 58 can be left only in the element isolation region, and the element isolation region is completed.

【0050】以上述べた方法によれば、溝の下部は成膜
応力が小さいシリコン酸化膜58bで埋められているの
で、溝の底部の応力集中を緩和でき、基板欠陥による素
子特性の低下を防止できる。また、溝の上部は絶縁性が
高いシリコン酸化膜58aで埋められているので、十分
な素子分離特性が得られる。図10は、本発明の第7の
実施例に係わる素子分離領域の形成方法を示す工程断面
図である。
According to the method described above, since the lower portion of the groove is filled with the silicon oxide film 58b having a small film forming stress, the stress concentration at the bottom of the groove can be relaxed and the deterioration of the element characteristics due to the substrate defect can be prevented. it can. Further, since the upper portion of the groove is filled with the silicon oxide film 58a having a high insulating property, sufficient element isolation characteristics can be obtained. FIG. 10 is a process sectional view showing a method for forming an element isolation region according to the seventh embodiment of the present invention.

【0051】まず、図10(a)に示すように、主面が
(100)、比抵抗が4.5〜6Ωcm程度のp型の単
結晶シリコン基板61を用意し、この単結晶シリコン基
板61の素子分離領域となる部分の基板表面に開口幅
0.3μmの溝を形成する。次いでこの単結晶シリコン
基板61を900℃,塩酸10%を含む酸素雰囲気中で
熱酸化して基板全面に厚さ25nmのシリコン酸化膜6
2を形成する。次いでLPCVD装置を用い、成膜圧力
が0.3Torr、ジクロルシランの流量が200cc
/分、アンモニアの流量が10cc/分という条件で厚
さ50nmのシリコン窒化膜63をシリコン酸化膜62
上に堆積し、続いてジクロルシラン及びアンモニアの流
量を維持しながら、流量を0cc/分から5cc/分ま
で連続的に増加させながら酸素を加え、全面に厚さ50
nmのシリコン酸化窒化膜64を堆積する。
First, as shown in FIG. 10A, a p-type single crystal silicon substrate 61 having a main surface of (100) and a specific resistance of about 4.5 to 6 Ωcm is prepared, and this single crystal silicon substrate 61 is prepared. A groove having an opening width of 0.3 μm is formed on the surface of the substrate in a portion to be the element isolation region. Next, this single crystal silicon substrate 61 is thermally oxidized in an oxygen atmosphere containing 900 ° C. and 10% hydrochloric acid to form a 25 nm thick silicon oxide film 6 on the entire surface of the substrate.
Form 2. Then, using an LPCVD apparatus, the film forming pressure is 0.3 Torr, and the flow rate of dichlorosilane is 200 cc.
/ Min, the flow rate of ammonia is 10 cc / min, and the silicon nitride film 63 having a thickness of 50 nm is replaced with the silicon oxide film 62.
Then, while maintaining the flow rate of dichlorosilane and ammonia, oxygen was added while continuously increasing the flow rate from 0 cc / min to 5 cc / min, and the total thickness of 50
A silicon oxynitride film 64 having a thickness of nm is deposited.

【0052】次に図10(b)に示すように、シリコン
窒化膜63をストッパに用いてシリコン酸化窒化膜64
に機械研磨をかけて基板表面を平坦化する。最後に、素
子形成領域のシリコン窒化膜63を除去した後、弗化ア
ンモニウム溶液などを用いて基板表面のシリコン酸化膜
62を除去して素子分離領域が完成する。
Next, as shown in FIG. 10B, the silicon oxynitride film 64 is formed by using the silicon nitride film 63 as a stopper.
The surface of the substrate is flattened by mechanical polishing. Finally, after removing the silicon nitride film 63 in the element formation region, the silicon oxide film 62 on the substrate surface is removed using an ammonium fluoride solution or the like to complete the element isolation region.

【0053】以上述べた方法によれば、溝の内壁面が成
膜応力の小さいシリコン窒化膜63で埋められているの
で、このシリコン窒化膜63の成膜の際にシリコン基板
61に欠陥が発生し、素子特性が低下するという問題は
生じない。また、シリコン窒化膜63で埋められなかっ
た溝の内部は、絶縁性が高いシリコン酸化窒化膜64で
埋められているので、これらの絶縁膜は全体として十分
な絶縁特性を有する溝埋込み用絶縁膜として機能する。
また、シリコン基板61の熱膨脹率とシリコン酸化窒化
膜64のそれとが異なることで生じる応力がシリコン基
板61に与える影響は、シリコン窒化膜63より低減さ
れる。
According to the method described above, since the inner wall surface of the groove is filled with the silicon nitride film 63 having a small film formation stress, a defect is generated in the silicon substrate 61 when the silicon nitride film 63 is formed. However, there is no problem that the device characteristics deteriorate. Further, since the inside of the groove which is not filled with the silicon nitride film 63 is filled with the silicon oxynitride film 64 having a high insulating property, these insulating films as a whole have sufficient insulating characteristics for filling the groove. Function as.
Further, the influence of the stress caused by the difference between the thermal expansion coefficient of the silicon substrate 61 and that of the silicon oxynitride film 64 on the silicon substrate 61 is reduced as compared with the silicon nitride film 63.

【0054】かくして本実施例によれば、応力が小さい
シリコン窒化膜63と絶縁性が高いシリコン酸化窒化膜
64との2重構造の溝埋込み用絶縁膜を用いることで、
十分な絶縁特性を確保できると共に、応力集中に起因す
る素子特性の低下を防止できる。
Thus, according to this embodiment, by using the double-layered trench-filling insulating film of the silicon nitride film 63 having a small stress and the silicon oxynitride film 64 having a high insulating property,
It is possible to secure sufficient insulation characteristics and prevent deterioration of element characteristics due to stress concentration.

【0055】なお、本発明は上述した実施例に限定され
るものではない。例えば、第2,第5,第7の実施例で
は、酸素ガスを用いて原料ガスである溝埋込み用絶縁膜
の特性を制御したが他のガスを用いても良い。例えば、
水素イオンのイオン注入によってエッチングレートを大
きくしても良い。その他、本発明の要旨を逸脱しない範
囲で、種々変形して実施できる。
The present invention is not limited to the above embodiment. For example, in the second, fifth, and seventh embodiments, oxygen gas is used to control the characteristics of the groove-filling insulating film, which is the source gas, but other gases may be used. For example,
The etching rate may be increased by implanting hydrogen ions. In addition, various modifications can be made without departing from the scope of the present invention.

【0056】[0056]

【発明の効果】以上詳述したように本発明によれば、成
膜応力が小さい第1の絶縁膜と絶縁性が高い第2の絶縁
膜とからなる2重構造の絶縁膜で溝を埋めることで、素
子分離能力の低下及び応力による基板欠陥の発生を防止
でき、今後のUlSIの微細化に十分対応できる素子分
離領域が得られる。
As described above in detail, according to the present invention, the trench is filled with the double-structured insulating film including the first insulating film having a small film forming stress and the second insulating film having a high insulating property. As a result, it is possible to prevent the occurrence of a substrate defect due to a decrease in the element isolation capability and a stress, and it is possible to obtain an element isolation region that can sufficiently cope with future miniaturization of UlSI.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係わる素子分離領域の
形成方法を示す工程断面図
FIG. 1 is a process sectional view showing a method for forming an element isolation region according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係わる素子分離領域及
びゲート電極の形成方法を示す前半の工程断面図
FIG. 2 is a process sectional view of a first half showing a method for forming an element isolation region and a gate electrode according to a second embodiment of the present invention.

【図3】本発明の第2の実施例に係わる素子分離領域及
びゲート電極の形成方法を示す後半の工程断面図
FIG. 3 is a process sectional view of the latter half showing a method for forming an element isolation region and a gate electrode according to a second embodiment of the present invention.

【図4】イオン注入量と電流との関係を示す特性図FIG. 4 is a characteristic diagram showing a relationship between an ion implantation amount and a current.

【図5】本発明の第3の実施例に係わる素子分離領域の
形成方法を示す工程断面図
FIG. 5 is a process sectional view showing a method of forming an element isolation region according to the third embodiment of the present invention.

【図6】本発明の第4の実施例に係わる素子分離領域の
形成方法を示す工程断面図
FIG. 6 is a process cross-sectional view showing a method for forming an element isolation region according to the fourth embodiment of the present invention.

【図7】本発明の第5の実施例に係わる素子分離領域の
構造を示す断面図
FIG. 7 is a sectional view showing the structure of an element isolation region according to a fifth embodiment of the present invention.

【図8】本発明の第6の実施例に係わる素子分離領域の
形成方法を示す前半の工程断面図
FIG. 8 is a process sectional view of the first half showing a method for forming an element isolation region according to a sixth embodiment of the present invention.

【図9】本発明の第6の実施例に係わる素子分離領域の
形成方法を示す後半の工程断面図
FIG. 9 is a process sectional view of the latter half showing a method for forming an element isolation region according to a sixth embodiment of the present invention.

【図10】本発明の第7の実施例に係わる素子分離領域
の形成方法を示す工程断面図
FIG. 10 is a process sectional view showing a method for forming an element isolation region according to a seventh embodiment of the present invention.

【図11】従来の素子分離領域の形成方法を説明するた
めの図
FIG. 11 is a diagram for explaining a conventional method for forming an element isolation region.

【図12】Si/N組成比と成膜応力との関係を示す特
性図
FIG. 12 is a characteristic diagram showing the relationship between the Si / N composition ratio and film formation stress.

【図13】N/Si組成比と電流密度との関係を示す特
性図
FIG. 13 is a characteristic diagram showing the relationship between the N / Si composition ratio and the current density.

【符号の説明】[Explanation of symbols]

1,11,21,31,41,51,61…シリコン基
板、2…12,15,22,23,25,32,33,
35,42,43,44,52,54,57,58,5
8a,58b,62…シリコン酸化膜、3,4,16,
26,26a,36,36a,36b,53,63…シ
リコン窒化膜、13,18,…多結晶シリコン膜、1
4,24,27,34,55…フォトレジスト、17,
45,45a,45b,64…シリコン酸化窒化膜、1
9…素子分離領域、20…ゲート電極。
1, 11, 21, 31, 41, 51, 61 ... Silicon substrate, 2 ... 12, 15, 22, 23, 25, 32, 33,
35, 42, 43, 44, 52, 54, 57, 58, 5
8a, 58b, 62 ... Silicon oxide film, 3, 4, 16,
26, 26a, 36, 36a, 36b, 53, 63 ... Silicon nitride film, 13, 18, ... Polycrystalline silicon film, 1
4, 24, 27, 34, 55 ... Photoresist, 17,
45, 45a, 45b, 64 ... Silicon oxynitride film, 1
9 ... Element isolation region, 20 ... Gate electrode.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】シリコン基板に形成された溝と、窒素及び
酸素の少なくとも一方の元素と珪素とを主成分にして、
前記溝の少なくとも底部に設けられた第1の絶縁膜と、
窒素及び酸素の少なくとも一方の元素と珪素とを主成分
にして、前記第1の絶縁膜が設けられた前記溝を埋める
第2の絶縁膜とを有し、この第2の絶縁膜中に占めるシ
リコンの比率が前記第1の絶縁膜のそれより小さいこと
を特徴とする半導体装置。
1. A groove formed in a silicon substrate, and at least one element of nitrogen and oxygen and silicon are main components,
A first insulating film provided on at least the bottom of the groove;
A second insulating film which contains at least one element of nitrogen and oxygen and silicon as a main component and fills the groove in which the first insulating film is provided, and occupies in the second insulating film. A semiconductor device, wherein the ratio of silicon is smaller than that of the first insulating film.
【請求項2】シリコン基板に溝を形成する工程と、 CVD法を用いて前記シリコン基板上に、窒素及び酸素
の少なくとも一方の元素と珪素とを主成分とする第1の
絶縁膜を堆積して、前記溝の底部を前記第1の絶縁膜で
被覆する工程と、 CVD法を用いて前記シリコン基板上に、窒素及び酸素
の少なくとも一方の元素と珪素とを主成分とし、膜中に
占めるシリコンの比率が前記第1の絶縁膜のそれより小
さい第2の絶縁膜を堆積して、前記溝の内部を埋める工
程と、 前記第1及び第2の絶縁膜をエッチングして、前記溝の
内部に前記第1及び第2の絶縁膜を残置させる工程と、 を有することを特徴とする半導体装置の製造方法。
2. A step of forming a groove in a silicon substrate, and depositing a first insulating film containing silicon and at least one element of nitrogen and oxygen as a main component on the silicon substrate by using a CVD method. A step of covering the bottom of the groove with the first insulating film, and at least one element of nitrogen and oxygen and silicon are contained as main components in the film on the silicon substrate using a CVD method. Depositing a second insulating film having a silicon ratio smaller than that of the first insulating film to fill the inside of the groove; and etching the first and second insulating films to form the groove A step of leaving the first and second insulating films left inside, and a method of manufacturing a semiconductor device.
【請求項3】シリコン基板に溝を形成する工程と、 前記シリコン基板の全面に、窒素及び酸素の少なくとも
一方の元素と珪素とを主成分とする絶縁膜を堆積して前
記溝を埋める工程と、 前記絶縁膜にイオン注入を行なった後、前記絶縁膜に熱
処理を施す工程と、 前記絶縁膜をエッチングして前記溝の内部に前記絶縁膜
を残置させる工程と、 を有することを特徴とする半導体装置の製造方法。
3. A step of forming a groove in a silicon substrate, and a step of depositing an insulating film containing at least one element of nitrogen and oxygen and silicon as a main component on the entire surface of the silicon substrate to fill the groove. A step of performing a heat treatment on the insulating film after ion-implanting the insulating film, and a step of etching the insulating film to leave the insulating film inside the groove. Method of manufacturing semiconductor device.
【請求項4】開口幅に対する深さの比が所定値以上の溝
をシリコン基板に形成する工程と、 CVD法を用いて前記シリコン基板上に、窒素及び酸素
の少なくとも一方の元素と珪素とを主成分とする絶縁膜
を、前記溝の底部におけるシリコンの比率がこの底部よ
り上の部分におけるシリコンの比率より大きくなるよう
に堆積して、前記溝を前記絶縁膜で埋める工程と、 前記絶縁膜をエッチングして前記溝の内部に前記絶縁膜
を残置させる工程とを有することを特徴とする半導体装
置の製造方法。
4. A step of forming a groove having a depth ratio with respect to an opening width of a predetermined value or more in a silicon substrate; and a step of forming at least one element of nitrogen and oxygen and silicon on the silicon substrate by using a CVD method. A step of depositing an insulating film as a main component so that a ratio of silicon at a bottom portion of the groove is higher than a ratio of silicon at a portion above the bottom portion, and filling the groove with the insulating film; And leaving the insulating film inside the groove.
JP10778892A 1992-04-27 1992-04-27 Semiconductor device and fabrication thereof Pending JPH05304205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10778892A JPH05304205A (en) 1992-04-27 1992-04-27 Semiconductor device and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10778892A JPH05304205A (en) 1992-04-27 1992-04-27 Semiconductor device and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH05304205A true JPH05304205A (en) 1993-11-16

Family

ID=14468047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10778892A Pending JPH05304205A (en) 1992-04-27 1992-04-27 Semiconductor device and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH05304205A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338767B1 (en) * 1999-10-12 2002-05-30 윤종용 Trench Isolation structure and semiconductor device having the same, trench isolation method
US6436790B2 (en) 2000-05-10 2002-08-20 Nec Corporation Method for fabrication semiconductor device having trench isolation structure
KR20030001941A (en) * 2001-06-28 2003-01-08 동부전자 주식회사 Method For Manufacturing Semiconductor Devices
US6764921B2 (en) * 2002-10-01 2004-07-20 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP2007142311A (en) * 2005-11-22 2007-06-07 Toshiba Corp Semiconductor device, and method for manufacturing same
JP2012033648A (en) * 2010-07-29 2012-02-16 Renesas Electronics Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338767B1 (en) * 1999-10-12 2002-05-30 윤종용 Trench Isolation structure and semiconductor device having the same, trench isolation method
US6436790B2 (en) 2000-05-10 2002-08-20 Nec Corporation Method for fabrication semiconductor device having trench isolation structure
KR20030001941A (en) * 2001-06-28 2003-01-08 동부전자 주식회사 Method For Manufacturing Semiconductor Devices
US6764921B2 (en) * 2002-10-01 2004-07-20 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP2007142311A (en) * 2005-11-22 2007-06-07 Toshiba Corp Semiconductor device, and method for manufacturing same
JP2012033648A (en) * 2010-07-29 2012-02-16 Renesas Electronics Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP2607834B2 (en) Method for manufacturing semiconductor device
KR100275908B1 (en) Method of fabricating trench isolation in an integrated circuit
US5151381A (en) Method for local oxidation of silicon employing two oxidation steps
US5897360A (en) Manufacturing method of semiconductor integrated circuit
US5578524A (en) Fabrication process of a semiconductor device with a wiring structure
JP4021593B2 (en) Semiconductor device and manufacturing method thereof
US4407851A (en) Method for manufacturing semiconductor device
US20070275538A1 (en) Method with High Gapfill Capability for Semiconductor Devices
US20010021567A1 (en) Method of forming device isolation structure
JP3414590B2 (en) Method for manufacturing semiconductor device
US6441444B1 (en) Semiconductor device having a nitride barrier for preventing formation of structural defects
JPH11103050A (en) Semiconductor device and manufacture thereof
JPH05304205A (en) Semiconductor device and fabrication thereof
JP2000022158A (en) Field effect transistor and manufacture thereof
JPH10178170A (en) Semiconductor device and its manufacture
JPH11121607A (en) Manufacture of semiconductor device
JP3612144B2 (en) Manufacturing method of semiconductor device
JPH0964323A (en) Manufacture of semiconductor substrate
JP4380116B2 (en) Manufacturing method of semiconductor device
JP4145359B2 (en) Manufacturing method of semiconductor device
JPH03152954A (en) Formation of electric field separation construction and gate construction in integrated misfet device
JPH0822991A (en) Manufacture of semiconductor device
JP2000012674A (en) Manufacture of semiconductor device and method for separating element
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
JPH02174140A (en) Manufacture of semiconductor device