JPH05304046A - Dry-type high-voltage condensive capacitor - Google Patents

Dry-type high-voltage condensive capacitor

Info

Publication number
JPH05304046A
JPH05304046A JP4107614A JP10761492A JPH05304046A JP H05304046 A JPH05304046 A JP H05304046A JP 4107614 A JP4107614 A JP 4107614A JP 10761492 A JP10761492 A JP 10761492A JP H05304046 A JPH05304046 A JP H05304046A
Authority
JP
Japan
Prior art keywords
capacitor
metal
deposited
aluminum
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4107614A
Other languages
Japanese (ja)
Inventor
Kiyoshi Unami
潔 宇波
Shigeo Okuno
茂男 奥野
Hidekazu Wada
英一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4107614A priority Critical patent/JPH05304046A/en
Publication of JPH05304046A publication Critical patent/JPH05304046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To realize a dry-type high-voltage phase advancing capacitor for power use, which is capable of increasing a potential gradient, has a high safety factor and is used at an important place for prevention of disasters. CONSTITUTION:A dry-type high-voltage phase advancing capacitor is manufactured into a structure, wherein three pieces of aggregates formed by series- connecting unit capacitors are bonded together into a star form, are housed and sealed in a sheathed metal case and sulfer hexafluoride gas is filled in the metal case, and is formed into a constitution, wherein metallized films, each having a deposited layer consisting of a mixed metal 2 of aluminium and zinc, are used for dielectrics of the capacitor, the surface resistances of the end parts, which are respectively bonded to metal spray electrode parts 3 for electrode lead-out use, of the deposited metal films are 1.5 to 5OMEGA/cm<2> and the surface resistance of at least one surface of the counter deposited electrodes is 10 to 25OMEGA/cm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂ポッティングコン
デンサを併設した大容量で電力用,力率改善用に使用さ
れるとともに、特に防災が重要な場所に使用される乾式
高圧進相コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry high-voltage phase-advancing capacitor with a large capacity for use in electric power and power factor improvement equipped with a resin potting capacitor. Is.

【0002】[0002]

【従来の技術】従来、乾式高圧進相コンデンサの蒸着金
属には、アルミあるいは亜鉛が使用されており、その面
抵抗値は2ないし5Ω/cm2であった。
2. Description of the Related Art Conventionally, aluminum or zinc has been used as a vapor-deposited metal of a dry high-voltage phase-advancing capacitor, and its sheet resistance value is 2 to 5 Ω / cm 2 .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のアルミの蒸着金属層または亜鉛の金属化層を使用し
た場合においては、以下に示す問題点があるため、より
高電位傾度の設計,より高い安全性をもとめることは極
めて困難であった。すなわち、アルミ金属化層の場合に
おいては、課電中の自己回復作用および電気化学反応よ
り生成する酸化アルミニウムが絶縁体であるため、自己
回復性能は良いがその自己回復により有効電極面積の減
少をきたし、静電容量の減少を発生させる欠点を有して
いる。また一方、亜鉛金属化層の場合においては、上記
と同様な理由で、生成する酸化亜鉛が半導体物質である
ために、静電容量の減少は少ないが自己回復性が悪く耐
圧レベルが低下し、また長期の連続耐用性試験において
は、絶縁抵抗値(CR値)の低下が発生する場合があり偶
発的破壊に至る場合もあった。そのため、安全性,信頼
性を確保するためにフィルムの電位傾度を上げることが
できず、結果として乾式高圧進相コンデンサの形状全体
を大きくする要因となっていた。本発明は上記従来の問
題を解決するものであり、高電位傾度が可能で高い安全
性を有する乾式高圧進相コンデンサを提供することを目
的とするものである。
However, when the above-mentioned conventional aluminum vapor-deposited metal layer or zinc metallized layer is used, there are the following problems, so that a higher potential gradient design and a higher potential gradient are used. It was extremely difficult to seek safety. That is, in the case of an aluminum metallized layer, the self-recovery performance is good because the self-recovery action during voltage application and aluminum oxide produced by the electrochemical reaction are insulators, but the self-recovery reduces the effective electrode area. However, it has the drawback of causing a decrease in capacitance. On the other hand, in the case of the zinc metallized layer, for the same reason as above, since the zinc oxide produced is a semiconductor substance, the decrease in capacitance is small, but the self-recovery property is poor and the withstand voltage level is lowered. Further, in a long-term continuous durability test, the insulation resistance value (CR value) may be reduced, which may result in accidental breakdown. Therefore, the potential gradient of the film cannot be increased in order to ensure safety and reliability, and as a result, it has been a factor of enlarging the overall shape of the dry high voltage phase-advancing capacitor. The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a dry high-voltage phase-advancing capacitor having a high potential gradient and high safety.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明の乾式高圧進相コンデンサにおいては、複数
の絶縁樹脂ポッティングコンデンサを直列にした3組の
コンデンサ集合体を星型結合(Y結合)してなるコンデン
サ集合体と、これを収納・密閉する外装金属ケースと、
この外装金属ケースの内部に充填される六弗化イオウ
(SF6)ガスから構成されており、前記絶縁樹脂ポッテ
ィングコンデンサの誘電体にアルミと亜鉛の混合蒸着金
属層を具備するアルミ・亜鉛混合蒸着金属化ポリプロピ
レンフィルムを使用し、そのフィルムを巻回し、金属溶
射によって電極の取り出しを行い1個のコンデンサ素子
とするとき、金属溶射の電極と接合する蒸着金属膜端部
の面抵抗(R)が、R=1.5〜2Ω/cm2,対向する蒸着電
極の少なくとも一面の面抵抗値がR=10〜25Ω/cm2とし
たものである。
In order to achieve the above object, in the dry high voltage phase advancing capacitor of the present invention, three sets of capacitor assemblies in which a plurality of insulating resin potting capacitors are connected in series are star-coupled (Y. (Combined) capacitor assembly, and an external metal case that stores and seals this
Sulfur hexafluoride filled inside this exterior metal case
(SF 6) is composed of a gas, using the insulating resin potting capacitor dielectric Aluminum and aluminum-zinc mixed deposited metallized polypropylene films comprising a mixed vapor-deposited metal layer of zinc, wound the film, When the electrode is taken out by metal spraying to form one capacitor element, the surface resistance (R) of the end of the vapor-deposited metal film to be joined with the metal-sprayed electrode is R = 1.5 to 2 Ω / cm 2 , the opposite vapor-deposited electrode. The surface resistance value of at least one surface of R is 10 to 25 Ω / cm 2 .

【0005】[0005]

【作用】したがって上記構成により、本発明の乾式高圧
進相コンデンサにおいては、アルミ,亜鉛の混合蒸着層
により、従来アルミ蒸着電極層の欠点であった自己回復
部周辺電極や、局部的な電気化学反応での蒸着電極層の
酸化による課電寿命の静電容量の減少は、酸化部が半導
体となる亜鉛成分の作用で極めて小さくなる。また、亜
鉛蒸着電極層の欠点である自己回復性能の悪さによる耐
圧低下、絶縁抵抗値(CR値)の連続耐用性試験における
偶発的破壊は、アルミ・亜鉛混合蒸着電極層の面抵抗値
を、金属溶射と接合する蒸着金属端部をR=1.5〜5Ω/
cm2,対向する蒸着電極の少なくとも一面をR=10〜25
Ω/cm2とすることにより解消することになる。
Therefore, in the dry high-voltage phase-advancing capacitor of the present invention having the above-described structure, the mixed vapor deposition layer of aluminum and zinc causes the self-recovery portion peripheral electrode, which has been a drawback of the conventional aluminum vapor deposition electrode layer, and local electrochemical. The decrease in the capacitance of the voltage-applied life due to the oxidation of the vapor-deposited electrode layer in the reaction becomes extremely small due to the action of the zinc component whose oxidized portion becomes a semiconductor. In addition, the withstand voltage drop due to poor self-recovery performance, which is a drawback of the zinc vapor deposition electrode layer, and the accidental breakdown in the continuous durability test of the insulation resistance value (CR value), the surface resistance value of the aluminum / zinc mixed vapor deposition electrode layer R = 1.5 ~ 5Ω /
cm 2 , at least one surface of the facing vapor deposition electrode R = 10 to 25
It will be solved by setting Ω / cm 2 .

【0006】[0006]

【実施例】以下、本発明の実施例の乾式高圧進相コンデ
ンサについて図面を参照して説明する。図1は本発明の
一実施例におけるアルミ・亜鉛混合金属蒸着ポリプロピ
レンフィルムの断面を示すものである。図1において、
ポリプロピレンフィルム1にアルミ・亜鉛の混合金属2
を蒸着したアルミ・亜鉛混合金属化ポリプロピレンフィ
ルムを金属溶射電極部3によって取り出したものであ
る。金属溶射電極部3に接合する蒸着金属膜端部Aは、
主電極部Bの蒸着膜厚より厚く設定している。A部は面
抵抗値3Ω/cm2,B部面抵抗値20Ω/cm2とした。図1よ
り明らかなように対向する蒸着金属の少なくとも一方の
面抵抗値は15〜25Ω/cm2である。図2は図1のアルミ・
亜鉛混合金属蒸着膜に自己回復(セルフヒーリング)が発
生した時を示すものであり、図2において、4はアルミ
・亜鉛混合金属蒸着膜が飛散した自己回復による蒸着膜
飛散部、5は絶縁欠陥部である。また、図3は図2にお
けるセルフヒーリング部のX−X′による切断面の拡大
図である。図8は上記のセルフヒーリングが発生した時
のエネルギー量を示したものであり、従来例におけるセ
ルフヒーリング発生した時(図9,図10)のエネルギー量
と比較したものである。明らかに本発明の実施例のエネ
ルギー量は従来例の1/3以下になっている。このことに
より、従来例の図10の絶縁欠陥部19によって生ずる自己
回復による蒸着膜飛散部18の面積は、本発明によって図
3の自己回復による蒸着膜飛散部4に示すように小さく
なるとともに、ポリプロピレンフィルム1に与えるダメ
ージも少なくなる。従って、後述する寿命試験特性にお
いても優れた特性を示すこととなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A dry high voltage phase-advancing capacitor of an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross section of an aluminum / zinc mixed metal vapor-deposited polypropylene film in one embodiment of the present invention. In FIG.
Polypropylene film 1 and aluminum / zinc mixed metal 2
The aluminum-zinc mixed metallized polypropylene film on which is vapor-deposited is taken out by the metal sprayed electrode part 3. The vapor-deposited metal film end portion A joined to the metal sprayed electrode portion 3 is
It is set thicker than the vapor deposition film thickness of the main electrode portion B. The surface resistance value of the A portion was 3 Ω / cm 2 , and the surface resistance value of the B portion was 20 Ω / cm 2 . As is clear from FIG. 1, at least one of the facing vapor-deposited metals has a sheet resistance value of 15 to 25 Ω / cm 2 . Figure 2 shows the aluminum of Figure 1.
This figure shows the time when self-healing occurs in the zinc mixed metal vapor deposition film. In FIG. 2, 4 is a vapor deposition film scattering portion due to self-healing of the aluminum / zinc mixed metal vapor deposition film, and 5 is an insulation defect. It is a department. Further, FIG. 3 is an enlarged view of a section of the self-healing portion taken along line XX ′ in FIG. FIG. 8 shows the amount of energy when the above-mentioned self-healing occurs, and is compared with the amount of energy when the self-healing occurs in the conventional example (FIGS. 9 and 10). Obviously, the energy amount of the embodiment of the present invention is less than 1/3 of that of the conventional example. As a result, the area of the vapor deposition film scattering portion 18 due to the self-healing caused by the insulation defect portion 19 of FIG. 10 of the conventional example becomes small as shown in the vapor deposition film scattering portion 4 due to the self-healing of FIG. 3 according to the present invention. Damage to the polypropylene film 1 is also reduced. Therefore, it also exhibits excellent characteristics in the life test characteristics described later.

【0007】図4は本発明の一実施例における絶縁樹脂
によりポッティングした巻回コンデンサ素子(以下、ユ
ニットコンデンサという)を示したものであり、3は金
属溶射電極部、6は巻回コンデンサ素子、7はリード
線、8はコンデンサケース、9は絶縁樹脂、10は電気端
子である。また、図5は本発明の一実施例における乾式
高圧進相コンデンサの内部構造を示したものであり、ユ
ニットコンデンサ11を必要個数直列に集合させ、同様な
集合体をさらに2つ用意し、3つの集合体を星型結合し
て外装金属ケース12に収納,密閉を行ったのち六弗化イ
オウ(SF6)ガス15を充填している。13は中性点用リー
ド線、14はリード線、16は硝子である。以上のような構
造を持つサンプルを表1に示すように条件で試作した。
FIG. 4 shows a wound capacitor element potted with an insulating resin (hereinafter referred to as a unit capacitor) according to one embodiment of the present invention, 3 is a metal sprayed electrode portion, 6 is a wound capacitor element, Reference numeral 7 is a lead wire, 8 is a capacitor case, 9 is an insulating resin, and 10 is an electric terminal. FIG. 5 shows the internal structure of the dry high-voltage phase-advancing capacitor according to one embodiment of the present invention, in which a required number of unit capacitors 11 are assembled in series and two similar assemblies are prepared. The two aggregates are star-coupled, housed in an outer metal case 12, sealed, and then filled with sulfur hexafluoride (SF 6 ) gas 15. 13 is a neutral point lead wire, 14 is a lead wire, and 16 is glass. A sample having the above structure was manufactured under the conditions shown in Table 1.

【0008】[0008]

【表1】 [Table 1]

【0009】乾式高圧進相コンデンサの定格は、AC66
00V,50Hz,50Kvarである。本発明の一実施例は表1
の記号Dに相当し、図6,図7中の記号A〜Eは表1の
蒸着電極の種類を表わす記号A〜Eに対応する。図6,
図7は乾式高圧進相コンデンサをn=5で50℃の定格の
1.2Eの加電圧で連続耐用性試験を行った結果を示すも
のであり、図6は容量変化(ΔC/C)と過電時間(Hrs)
とのグラフ、図7は残存率と過電時間とのグラフであ
る。図6,図7より明らかなように、アルミ蒸着層を用
いた記号Aは自己回復性能は良いが(連続耐用性試験中
の残存率が高い)、静電容量の減少率(ΔC/C,ΔCは
静電容量の減少値、Cは連続耐用性試験前の静電容量
値)が大きい。亜鉛蒸着層を用いた記号Bは、静電容量
の減少率は小さいが自己回復特性が悪く、過電時間100H
rs前後よりコンデンサ破壊が始まっている。また、アル
ミ・亜鉛の混合金属蒸着層を用いて従来と同じ面抵抗R
=2〜5Ω/cm2の記号Cは、静電容量の減少は記号Bよ
りもやや大きく自己回復特性は記号Bよりもよいが、過
電時間1000Hrs前後よりコンデンサの破壊が始まってい
る。さらに、アルミ・亜鉛の混合金属蒸着を用いて面抵
抗をR=30〜40Ω/cm2とした記号Eは、静電容量の減少
はやや大きく、自己回復後は記号B,Cよりも良いが過
電時間4000Hrs前後よりコンデンサの破壊が発生してい
る。これらに対し、本発明の実施例のアルミ・亜鉛の混
合金属蒸層を用いた主電極部の面抵抗値R=10〜25Ω/c
m2の記号Dにおいては、静電容量の減少率も小さく自己
回復性も良好であり、過電時間20000Hrsにおいてもコン
デンサの破壊は発生していなく優れた耐用試験結果を得
た。なお、本実施例においては、片面蒸着のポリプロピ
レンフィルムの場合を記したが、ポリエチレンテレフタ
レートフィルム,ポリフェニレンスルフィド等他のフィ
ルムでも同様な効果を得た。また両面蒸着フィルムを用
いた場合も同様な効果を得た。
The rating of the dry type high voltage phase advance capacitor is AC66.
It is 00V, 50Hz, 50Kvar. One embodiment of the present invention is shown in Table 1.
6 and 7, and symbols A to E in FIGS. 6 and 7 correspond to symbols A to E representing the types of vapor deposition electrodes in Table 1. Figure 6,
Figure 7 shows a dry high-voltage phase-advancing capacitor with a rating of 50 ℃ at n = 5.
Fig. 6 shows the results of continuous durability test with an applied voltage of 1.2E. Fig. 6 shows the capacity change (ΔC / C) and overcharge time (Hrs).
Is a graph, and FIG. 7 is a graph of the remaining rate and the overcharge time. As is clear from FIG. 6 and FIG. 7, the symbol A using the aluminum vapor deposition layer has good self-recovery performance (high residual rate during continuous durability test), but the decrease rate of capacitance (ΔC / C, ΔC is a decrease value of capacitance, and C is a large capacitance value before the continuous durability test. The symbol B using the zinc vapor-deposited layer has a small decrease rate of capacitance but poor self-recovery characteristic, and the overcharge time is 100H.
Capacitor destruction has begun around rs. In addition, the same sheet resistance R as before using a mixed metal vapor deposition layer of aluminum and zinc
In the symbol C of 2 to 5 Ω / cm 2 , the decrease in electrostatic capacity is slightly larger than that of the symbol B and the self-recovery characteristic is better than that of the symbol B, but the breakdown of the capacitor starts from overcharge time of about 1000 Hrs. Further, the symbol E, in which the sheet resistance was R = 30 to 40 Ω / cm 2 using the mixed metal vapor deposition of aluminum and zinc, showed a large decrease in capacitance and was better than the symbols B and C after self-recovery. The capacitor has been damaged from overcharge time of around 4000Hrs. On the other hand, the sheet resistance R of the main electrode portion using the aluminum-zinc mixed metal vapor deposition layer of the embodiment of the present invention R = 10 to 25 Ω / c
In the symbol D of m 2, the rate of decrease in capacitance was small and the self-healing property was good, and even at the overcharge time of 20000 Hrs, no breakdown of the capacitor occurred and excellent durability test results were obtained. In this example, the case of a single-sided vapor-deposited polypropylene film was described, but other films such as a polyethylene terephthalate film and polyphenylene sulfide also provided similar effects. The same effect was obtained when a double-sided vapor deposition film was used.

【0010】[0010]

【発明の効果】上記実施例の説明から明らかなように、
本発明の乾式高圧進相コンデンサは、自己回復性に優
れ,連続耐用性時の静電容量の減少率が小さく、特性の
安定した安全性のより高いコンデンサが可能となり、さ
らにコンデンサの小形化,軽量化を促進することができ
る等の効果を有する。
As is apparent from the description of the above embodiment,
The dry high-voltage phase-advancing capacitor of the present invention is excellent in self-recovery, has a small reduction rate of electrostatic capacity during continuous service, enables stable capacitors with stable characteristics, and further miniaturizes the capacitor. It has the effect of promoting weight reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるアルミ・亜鉛混合金
属を蒸着した金属化ポリプロピレンフィルムの断面図で
ある。
FIG. 1 is a cross-sectional view of a metallized polypropylene film on which an aluminum / zinc mixed metal is deposited according to an embodiment of the present invention.

【図2】本発明の一実施例における金属化ポリプロピレ
ンフィルムに自己回復が発生した場合を説明する図であ
る。
FIG. 2 is a diagram illustrating a case where self-recovery occurs in a metallized polypropylene film in one example of the present invention.

【図3】図2のX−X′断面図である。FIG. 3 is a sectional view taken along line XX ′ in FIG.

【図4】本発明の一実施例におけるユニットコンデンサ
の内部構造図である。
FIG. 4 is an internal structural diagram of a unit capacitor according to an embodiment of the present invention.

【図5】本発明の一実施例における乾式高圧進相コンデ
ンサの内部構造図である。
FIG. 5 is an internal structural diagram of a dry high voltage phase-advancing capacitor according to an embodiment of the present invention.

【図6】本発明の実施例および比較用コンデンサの連続
耐用性試験結果の静電容量の減少率を示すグラフであ
る。
FIG. 6 is a graph showing a reduction rate of electrostatic capacitance as a result of continuous durability test of Examples of the present invention and a comparative capacitor.

【図7】本発明の実施例および比較用コンデンサの連続
耐用性試験結果のコンデンサの残存率を示すグラフであ
る。
FIG. 7 is a graph showing the residual ratio of the capacitors as the results of the continuous durability test of the examples of the present invention and the comparative capacitors.

【図8】本発明の実施例と従来例における自己回復時の
必要エネルギー量を示すグラフである。
FIG. 8 is a graph showing a necessary energy amount at the time of self-recovery in the example of the present invention and the conventional example.

【図9】従来例におけるアルミまたは亜鉛を蒸着した金
属化フィルムの断面図である。
FIG. 9 is a cross-sectional view of a metallized film obtained by vapor deposition of aluminum or zinc in a conventional example.

【図10】従来例において自己回復が発生した時を説明
する図である。
FIG. 10 is a diagram illustrating a case where self-healing occurs in a conventional example.

【符号の説明】[Explanation of symbols]

1…ポリプロピレンフィルム、 2…アルミ・亜鉛の混
合金属、 3…金属溶射電極部、 4,18…自己回復に
よる蒸着膜飛散部、 5,19…絶縁欠陥部、6…巻回コ
ンデンサ素子、 7,14…リード線、 8…コンデンサ
ケース、9…絶縁樹脂、 10…電気端子、 11…ユニッ
トコンデンサ、 12…外装金属ケース、 13…中性点リ
ード線、 15…六弗化イオウ(SF6)ガス、 16…硝
子、17…アルミまたは亜鉛の金属化層。
DESCRIPTION OF SYMBOLS 1 ... Polypropylene film, 2 ... Mixed metal of aluminum and zinc, 3 ... Metal sprayed electrode part, 4, 18 ... Vapor deposition film scattering part by self-recovery, 5, 19 ... Insulation defect part, 6 ... Winding capacitor element, 7, 14 ... Lead wire, 8 ... Capacitor case, 9 ... Insulating resin, 10 ... Electrical terminal, 11 ... Unit capacitor, 12 ... Exterior metal case, 13 ... Neutral point lead wire, 15 ... Sulfur hexafluoride (SF 6 ) gas , 16 ... Glass, 17 ... Aluminum or zinc metallization.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の絶縁樹脂ポッティングコンデンサ
(ユニットコンデンサ)を直列にした3組のコンデンサ集
合体で星型結合(Y結合)したコンデンサ集合体と、該コ
ンデンサ集合体を収納・密閉する外装金属ケースと、前
記外装金属ケースの内部に充填される六弗化イオウ(S
6)ガスからなる乾式高圧コンデンサにおいて、前記絶
縁樹脂ポッティングコンデンサの誘電体にアルミと亜鉛
の混合蒸着金属層を備えたアルミ・亜鉛混合蒸着金属化
ポリプロピレンフィルムを使用することを特徴とする乾
式高圧進相コンデンサ。
1. A plurality of insulating resin potting capacitors
A capacitor assembly star-coupled (Y-coupled) with three sets of (unit capacitors) in series, an outer metal case that houses and seals the capacitor assembly, and the inside of the outer metal case is filled. Sulfur hexafluoride (S
F 6) in a dry high-voltage capacitor formed of the gas, dry high pressure, characterized in that the use of aluminum-zinc mixed deposited metallized polypropylene film with a mixed vapor-deposited metal layer of aluminum and zinc in the dielectric of the insulation resin potting capacitor Phase-advancing capacitor.
【請求項2】 アルミ・亜鉛混合蒸着金属化ポリプロピ
レンフィルムを巻回し、金属溶射によって電極の取り出
しを行い1個のコンデンサ素子とする時、前記金属溶射
の電極と接合する蒸着金属膜端部の面抵抗値が1.5ない
し5Ω/cm2,対向する蒸着電極の少なくとも一面の面抵
抗値が10ないし25Ω/cm2であることを特徴とする請求項
1記載の乾式高圧進相コンデンサ。
2. An aluminum / zinc mixed vapor-deposited metallized polypropylene film is wound, and when the electrode is taken out by metal spraying to form one capacitor element, the end face of the vapor-deposited metal film joined to the metal sprayed electrode. dry high power capacitor according to claim 1, wherein the resistance value is equal to or 1.5 to 5 [Omega / cm 2, to no 10 surface resistance of at least one surface of the opposing deposition electrodes is 25 [Omega] / cm 2.
JP4107614A 1992-04-27 1992-04-27 Dry-type high-voltage condensive capacitor Pending JPH05304046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4107614A JPH05304046A (en) 1992-04-27 1992-04-27 Dry-type high-voltage condensive capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4107614A JPH05304046A (en) 1992-04-27 1992-04-27 Dry-type high-voltage condensive capacitor

Publications (1)

Publication Number Publication Date
JPH05304046A true JPH05304046A (en) 1993-11-16

Family

ID=14463643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4107614A Pending JPH05304046A (en) 1992-04-27 1992-04-27 Dry-type high-voltage condensive capacitor

Country Status (1)

Country Link
JP (1) JPH05304046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557751B1 (en) * 1997-04-25 2006-05-16 도레이 가부시끼가이샤 Metal Deposition Film, Manufacturing Method and Condenser Using It

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557751B1 (en) * 1997-04-25 2006-05-16 도레이 가부시끼가이샤 Metal Deposition Film, Manufacturing Method and Condenser Using It

Similar Documents

Publication Publication Date Title
US3457478A (en) Wound film capacitors
JPH09102434A (en) Capacitor
CN112366082A (en) Element for DC support capacitor
JPS5826652B2 (en) Kinzokuka film capacitor
CN112366083A (en) Safe metallized film for direct current support capacitor
JPH05304046A (en) Dry-type high-voltage condensive capacitor
US3211973A (en) Dielectric-coated foil capacitors
CN215377227U (en) Electrode structure of direct-current supporting capacitor
JPH09326328A (en) Gas insulated capacitor
CN113496819A (en) Electrode structure of direct-current supporting capacitor
JP3392525B2 (en) Metallized film capacitors
JP2920240B2 (en) Metallized film capacitors
JP2798611B2 (en) High voltage capacitors for power
JPH1145819A (en) Metallized film capacitor
US3602770A (en) Distributed r-c networks using metallized plastic film
US4141070A (en) Electrolytic capacitors
JP3284384B2 (en) High voltage condenser
US3156853A (en) Electrical capacitor with an impregnated oxide layer
JPH06244054A (en) Metallized film capacitor
JPH09283366A (en) Capacitor
JP2562159Y2 (en) Metallized film capacitors
CN213546144U (en) Element for DC support capacitor
JPH10214748A (en) Cased film capacitor
JPH1126281A (en) Metallized film capacitor
JPH03280410A (en) High voltage power capacitor