JPH05302891A - Measuring method of refractive index of light-transmitting substrate - Google Patents
Measuring method of refractive index of light-transmitting substrateInfo
- Publication number
- JPH05302891A JPH05302891A JP10971692A JP10971692A JPH05302891A JP H05302891 A JPH05302891 A JP H05302891A JP 10971692 A JP10971692 A JP 10971692A JP 10971692 A JP10971692 A JP 10971692A JP H05302891 A JPH05302891 A JP H05302891A
- Authority
- JP
- Japan
- Prior art keywords
- light
- transmitting substrate
- refractive index
- substrate
- transparent substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、透光性基体の一主面に
光を照射し、その反射光から透光性基体の屈折率を測定
する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a main surface of a transparent substrate with light and measuring the refractive index of the transparent substrate from the reflected light.
【0002】[0002]
【従来の技術とその問題点】従来より電子デバイスや光
デバイス等には、LiNbO3 ,LiTaO3 ,サイフ
ァイヤ等の酸化物単結晶基板、液晶用ガラス基板、光デ
ィスク原板等の透光性基板が使用されているが、近年は
各種デバイスの高機能化,高集積化,薄膜化が要求され
ており、これらの高い要求を満足するために、上記基板
材料の選択やその均質性がたいへん重要視されている。2. Description of the Related Art Conventionally, in electronic devices and optical devices, oxide single crystal substrates such as LiNbO 3 , LiTaO 3 and sapphire, glass substrates for liquid crystals, and transparent substrates such as optical disc original plates have been used. In recent years, various devices have been required to have high functionality, high integration, and thin film. In order to meet these high requirements, selection of the substrate material and its homogeneity are very important. Has been done.
【0003】従来、基板の均質性を評価する代表的な方
法として、例えばエリプソメータによる測定方法が知ら
れている。この方法は、光源Lからの直線偏光された光
を基板や薄膜を被覆した基板上に照射し、その反射光の
偏光状態や光強度から基板の屈折率や薄膜の厚さを測定
するものである。Conventionally, as a typical method for evaluating the homogeneity of a substrate, for example, a measuring method using an ellipsometer is known. In this method, linearly polarized light from a light source L is irradiated onto a substrate or a substrate coated with a thin film, and the refractive index of the substrate and the thickness of the thin film are measured from the polarization state and light intensity of the reflected light. is there.
【0004】しかしながら、この方法は表面反射率の高
い基板などの評価方法として適するが、基板が図3に示
すような透光性基板1であったり、この上に透光性の薄
膜が形成されたものを評価するような場合、特に透光性
基板1の裏面1aが鏡面であるような場合には、光源L
からの照射光2がこの裏面で反射するなどして、この反
射光3が検出器Dにノイズとして検出されることがあ
り、測定値のばらつきが大きくなり、さらに測定精度も
著しく低下するので問題であり、透光性基板を信頼性よ
く精確に評価しうる方法がないのが現状である。However, this method is suitable as an evaluation method for a substrate having a high surface reflectance, but the substrate is the translucent substrate 1 as shown in FIG. 3, or a translucent thin film is formed thereon. In the case of evaluating the light source, especially when the back surface 1a of the transparent substrate 1 is a mirror surface, the light source L
The reflected light 3 may be detected by the detector D as noise due to the reflection of the irradiation light 2 from the back surface and the like, resulting in a large variation in the measured values and a significant decrease in the measurement accuracy. At present, there is no method for reliably and accurately evaluating a transparent substrate.
【0005】なお、従来は測定基板を厚くしたり、光源
を絞る等の方法で上記問題を対処したものもあるが、光
強度の低下を招来したりして、やはり測定精度が低下す
るので問題である。Conventionally, there is a method of dealing with the above problem by a method such as thickening the measurement substrate or narrowing the light source, but the measurement accuracy is also deteriorated due to the decrease in light intensity, which is a problem. Is.
【0006】[0006]
【目的】そこで、本発明は、被検体が透光性基板や透光
性の薄膜を設けた透光性基板であっても、精度よく測定
できる信頼性の高い透光性基板の屈折率測定方法を提供
することを目的とする。[Purpose] Therefore, the present invention provides a highly reliable refractive index measurement of a transparent substrate that can be accurately measured even if the subject is a transparent substrate or a transparent substrate provided with a transparent thin film. The purpose is to provide a method.
【0007】[0007]
【課題を解決するための手段】上記目的を達成する透光
性基板の屈折率測定方法は、透光性基板の表面へ光を照
射し、該表面からの反射光の偏光状態もしくは光強度に
より透光性基板の屈折率を測定する方法であって、透光
性基板の裏面の表面粗さを、照射される光の最短波長の
1/10以上の中心線平均粗さに設定しておくことを特
徴とする。Means for Solving the Problems A method for measuring the refractive index of a transparent substrate that achieves the above object is to irradiate the surface of the transparent substrate with light and determine the polarization state or light intensity of the reflected light from the surface. A method for measuring the refractive index of a transparent substrate, wherein the surface roughness of the back surface of the transparent substrate is set to a center line average roughness of 1/10 or more of the shortest wavelength of the light to be irradiated. It is characterized by
【0008】なお、ここで透光性基板とは、基板そのも
の以外に薄膜を被覆した透光性基板にも適用されるもの
とする。The term "translucent substrate" as used herein refers to a translucent substrate coated with a thin film in addition to the substrate itself.
【0009】[0009]
〔実施例1〕外径 3インチ, 長さ100 mmのLiNbO3
単結晶をチョクラルスキー法にて育成し、この単結晶を
キュリー温度以上の1200℃まで再加熱し、C軸方向に1.
5V/cm の電圧を印加することによって単一分域化した。
次いで、この育成結晶の肩部から約10mm( ),約80mm(
) の位置で切り出し、C面, 3 インチ径,0.5mm厚の両
面をGC砥粒で荒研磨した後、コロイダルシリカにより鏡
面出しを行って透光性基板であるウエハ, を得た。
そして、エリプソメータによって同一測定点で10回測定
したときのバラツキR(R=最大値−最小値)と、ウエ
ハ面内のバラツキRとを測定した。Example 1 LiNbO 3 having an outer diameter of 3 inches and a length of 100 mm
A single crystal is grown by the Czochralski method, this single crystal is reheated to 1200 ° C., which is higher than the Curie temperature, and 1.
A single domain was created by applying a voltage of 5 V / cm.
Then, from the shoulder of this grown crystal, about 10 mm (), about 80 mm (
), The C surface, 3 inch diameter, and 0.5 mm thick both surfaces were roughly polished with GC abrasive grains, and then mirror-finished with colloidal silica to obtain a transparent substrate wafer.
Then, the variation R (R = maximum value−minimum value) and the variation R within the wafer surface when measured 10 times at the same measurement point by an ellipsometer were measured.
【0010】次に、同一ウエハの一主面をGC#1200 で粗
面加工し、同様の測定を行った結果、表1に示すように
光照射面の裏面を粗面化したものは測定精度が著しく向
上したことが判明した。なお、この装置の機械的保証精
度( 公称誤差) は10-2以上であるので、ウエハ, お
よびウエハ面内のバラツキRは測定誤差内であり、ウエ
ハの屈折率変動が均一であると評価できた。Next, one main surface of the same wafer was roughened by GC # 1200 and the same measurement was carried out. As a result, as shown in Table 1, the roughened back surface of the light irradiation surface was measured with high accuracy. Was found to be significantly improved. Since the mechanical guarantee accuracy (nominal error) of this device is 10 -2 or more, the variation R within the wafer and the wafer surface is within the measurement error, and it can be evaluated that the variation in the refractive index of the wafer is uniform. It was
【0011】[0011]
【表1】 [Table 1]
【0012】上記粗面加工の番手を種々変えて測定値の
バラツキとその中心線平均粗さを調べたところ、図1の
結果となった。この図から明らかなように、透光性基板
への照射光の波長は約800 nmであり、研磨をGC#2000 以
下の番手で行った場合、すなわち照射光の最短波長の約
1/10である0.08μm Ra以上の中心線平均粗さとした
研磨では測定値のバラツキは測定誤差内であり、また他
の材料であるサファイア等についてもほぼ同様な傾向が
得られた。When the variations in the measured values and the center line average roughness were investigated by changing the number of the rough surface processing, the results shown in FIG. 1 were obtained. As is clear from this figure, the wavelength of the irradiation light on the transparent substrate is about 800 nm, and when polishing is performed with a count of GC # 2000 or less, that is, about 1/10 of the shortest wavelength of the irradiation light. In polishing with a center line average roughness of 0.08 μm Ra or more, the variation in the measured values was within the measurement error, and almost the same tendency was obtained for other materials such as sapphire.
【0013】図1の結果は、図2に示すように透光性基
板1の光照射面の裏面1aを、光源Lからの照射光2の
最短波長の1/10以上の中心線平均粗さとしたことによ
り、透光性基板1を透過した光4が裏面1aにより程よ
く散乱され、これにより裏面1aからの反射光が検出器
Dにノイズとして検出されることが防止されるためであ
ると考えられる。As shown in FIG. 2, the result of FIG. 1 shows that the back surface 1a of the light-irradiating surface of the transparent substrate 1 has a center line average roughness of 1/10 or more of the shortest wavelength of the irradiation light 2 from the light source L. It is considered that this is because the light 4 transmitted through the transparent substrate 1 is appropriately scattered by the back surface 1a, which prevents the reflected light from the back surface 1a from being detected as noise by the detector D. Be done.
【0014】〔実施例2〕実施例1と同一な方法によっ
て得られた同一サイズの両面研磨ウエハの屈折率面内分
布を結晶表面屈折率測定装置(RMX-01;(株) リマンドハ
イテクノス製) 、すなわち反射光の強度変化から屈折率
を測定する装置により測定を行い、また上記両面研磨ウ
エハの一主面を粗面加工(GC#1200)して再度屈折率の面
内分布を測定しところ、表2のような結果が得られた。
すなわち、この実施例においても片面を粗面とすること
で、粗面化しないものに比して測定精度が著しく向上し
ていることが判明した。なお、この装置の機械的保証精
度は10-4以上であるので、ウエハの屈折率分布は測定誤
差内で均一であるということが評価できた。[Embodiment 2] The in-plane distribution of the refractive index of a double-side polished wafer of the same size obtained by the same method as in Embodiment 1 is measured by a crystal surface refractive index measuring device (RMX-01; Remand High-Technos Co., Ltd.). That is, the refractive index is measured from the intensity change of the reflected light, and the main surface of the double-sided polished wafer is roughened (GC # 1200) to measure the in-plane distribution of the refractive index again. However, the results shown in Table 2 were obtained.
That is, also in this example, it was found that by making one surface rough, the measurement accuracy was remarkably improved as compared with the case where the surface was not roughened. Since the mechanical guarantee accuracy of this device is 10 −4 or more, it can be evaluated that the refractive index distribution of the wafer is uniform within the measurement error.
【0015】[0015]
【表2】 [Table 2]
【0016】〔実施例3〕実施例1と同様な方法により
研磨加工した両面鏡面のサファイア基板の光照射面に、
厚さ約100 Å、すなわち光が透過できる厚みにSi3 N
4 膜を被着形成し、薄膜の屈折率を測定するために実施
例1で用いたエリプソメータで同一点を10回測定し
た。その後、サファイア基板の一主面をGC#600で
粗面加工して、再度、同一点における屈折率の測定を10
回測定した結果、この実施例においても光照射面の裏面
を粗面化することで、測定精度が向上していることが判
明した。なお、薄膜の屈折率は、予め測定して求めたサ
ファイア基板の屈折率を使用した。[Embodiment 3] A light-irradiated surface of a double-sided mirror-finished sapphire substrate polished by the same method as in Embodiment 1,
The thickness is about 100Å, that is, the thickness of Si 3 N
Four films were deposited and the same point was measured 10 times with the ellipsometer used in Example 1 to measure the refractive index of the thin film. After that, the main surface of the sapphire substrate is roughened with GC # 600, and the refractive index at the same point is measured again.
As a result of repeated measurements, it was found that the measurement accuracy was improved by roughening the back surface of the light irradiation surface in this example as well. As the refractive index of the thin film, the refractive index of the sapphire substrate obtained by measurement in advance was used.
【0017】なお、被検体は上記透光性基板の他に、例
えばタンタル酸リチウム等の電気光学材料基板,各種半
導体ウエハ,ガラス基板,光ディスク等の透光性基板に
適用することが可能であり、表面だけでなく内部の欠陥
をも精度良く観察できる。また、透光性基板の光照射面
の裏面の粗面化は、上述の方法に限定されるものではな
く、例えば砂かけ等周知の方法で適宜変更し実施しう
る。The subject can be applied to a transparent substrate such as an electro-optical material substrate such as lithium tantalate, various semiconductor wafers, a glass substrate, an optical disk, etc., in addition to the above-mentioned transparent substrate. , It is possible to accurately observe not only the surface but also the internal defect. Further, the roughening of the back surface of the light-irradiated surface of the translucent substrate is not limited to the above-mentioned method, and may be appropriately changed and carried out by a known method such as sanding.
【0018】[0018]
【発明の効果】以上のように、本発明の透光性基板の屈
折率測定方法によれば、透光性基板の入射光が裏面によ
り散乱され、これにより従来問題となっていたノイズを
極力除去することができ、高精度な測定評価を行うこと
が可能となり、透光性基板の品質を信頼性良く評価でき
る。As described above, according to the method for measuring the refractive index of the transparent substrate of the present invention, the incident light of the transparent substrate is scattered by the back surface, and as a result, noise which has been a problem in the past is minimized. Since it can be removed, highly accurate measurement and evaluation can be performed, and the quality of the transparent substrate can be evaluated with high reliability.
【図1】本発明に係る実施例1において、裏面加工のGC
砥粒の番手と平均中心粗さとの関係を示すグラフであ
る。FIG. 1 is a back side processed GC in Example 1 according to the present invention.
It is a graph which shows the relationship between the count of an abrasive grain and average center roughness.
【図2】本発明の測定原理を説明する模式図である。FIG. 2 is a schematic diagram illustrating the measurement principle of the present invention.
【図3】従来の測定方法における裏面の影響を説明する
模式図である。FIG. 3 is a schematic diagram illustrating the influence of the back surface in a conventional measurement method.
1 ・・・ 透光性基板 2 ・・・ 照射光 3 ・・・ 反射光 4 ・・・ 透過光 L ・・・ 光源 D ・・・ 検出器 1 ... Translucent substrate 2 ... Irradiated light 3 ... Reflected light 4 ... Transmitted light L ... Light source D ... Detector
Claims (1)
からの反射光の偏光状態もしくは光強度により前記透光
性基板の屈折率を測定する方法であって、前記透光性基
板の裏面の表面粗さを、照射される光の最短波長の1/
10以上の中心線平均粗さに設定しておくことを特徴と
する透光性基板の屈折率測定方法。1. A method of irradiating light to the surface of a transparent substrate and measuring the refractive index of the transparent substrate by the polarization state or light intensity of the reflected light from the surface, the method comprising: The surface roughness of the back surface of the substrate is 1 / the shortest wavelength of the emitted light.
A refractive index measuring method for a transparent substrate, characterized in that the center line average roughness is set to 10 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10971692A JPH05302891A (en) | 1992-04-28 | 1992-04-28 | Measuring method of refractive index of light-transmitting substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10971692A JPH05302891A (en) | 1992-04-28 | 1992-04-28 | Measuring method of refractive index of light-transmitting substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05302891A true JPH05302891A (en) | 1993-11-16 |
Family
ID=14517419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10971692A Pending JPH05302891A (en) | 1992-04-28 | 1992-04-28 | Measuring method of refractive index of light-transmitting substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05302891A (en) |
-
1992
- 1992-04-28 JP JP10971692A patent/JPH05302891A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4352016A (en) | Method and apparatus for determining the quality of a semiconductor surface | |
US6645045B2 (en) | Method of measuring thickness of a semiconductor layer and method of manufacturing a semiconductor substrate | |
EP0278577B1 (en) | A process for determining thicknesses of layers, application thereof in determining certain interactions and a means for carrying out this process | |
King et al. | Ellipsometry applied to films on dielectric substrates | |
Sussner et al. | Brillouin scattering from surface waves on Al-coated transparent media | |
Birch | The absolute determination of complex reflectivity | |
JPH05302891A (en) | Measuring method of refractive index of light-transmitting substrate | |
US6731386B2 (en) | Measurement technique for ultra-thin oxides | |
JP2890588B2 (en) | Method of measuring film thickness | |
JPS5947822A (en) | Manufacture of substrate for surface acoustic wave | |
JP3642250B2 (en) | Method for judging polishing conditions of semiconductor substrate | |
Petrich et al. | Modeling of transmittance, reflectance and scattering of rough polycrystalline CVD diamond layers in application to the determination of optical constants | |
RU2703830C1 (en) | Method for non-destructive quality control of near-surface layer of optical materials | |
JP3007944B2 (en) | A method for determining the optical properties of thin films. | |
JPH05264440A (en) | Polarization analyzing apparatus | |
JP2544548B2 (en) | Surface roughness measurement method | |
JPH0296639A (en) | Method and jig for measuring infrared absorption spectrum | |
Jansen et al. | Ellipsometric determination of optical constants of metals; a contribution to reflectivity standards for ore microscopy | |
Ohlídal et al. | Immersion ellipsometry of semiconductor surfaces | |
Kondo et al. | Internal reflection method for measuring optical constants of deposited films | |
JPS61213611A (en) | Polishing method for crystal | |
JPS63167207A (en) | Measuring method for surface working affected layer of insb semiconductor wafer | |
SU1459426A1 (en) | Method of determining optical absortion factor of semiconductors and dielectrics | |
Wacogne et al. | In situ measurement of zinc oxide film thickness and optical losses | |
Berkovic | Strategies for measuring third harmonic generation from ultrathin films |