JPH05302857A - Thermal hysteresis detector - Google Patents

Thermal hysteresis detector

Info

Publication number
JPH05302857A
JPH05302857A JP4107666A JP10766692A JPH05302857A JP H05302857 A JPH05302857 A JP H05302857A JP 4107666 A JP4107666 A JP 4107666A JP 10766692 A JP10766692 A JP 10766692A JP H05302857 A JPH05302857 A JP H05302857A
Authority
JP
Japan
Prior art keywords
molded body
less
temperature
weight
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4107666A
Other languages
Japanese (ja)
Other versions
JP3170341B2 (en
Inventor
Yoshihiro Okawa
善裕 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10766692A priority Critical patent/JP3170341B2/en
Publication of JPH05302857A publication Critical patent/JPH05302857A/en
Application granted granted Critical
Publication of JP3170341B2 publication Critical patent/JP3170341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the highly accuracy for the measured accuracy of indicated temperature by forming a molded body of an unbaked ceramic molded body so that AlN is the main body, a binder is contained in the molded body and the amount of cation metals other than Al is a specified amount or less. CONSTITUTION:In a thermal hysteresis detector 10, chord parts 12 and 12, which are in parallel with a disk body, are formed, measuring surfaces 11 and 11 having the excellent roundness are formed as the arc parts, a recess part 13, which distinguishes the upper and rear surfaces, is formed in one surface, and chamfered parts 14 are provided at the corner parts of the upper and lower surfaces. Furthermore, the main body of the detection is AlN. The molded body 10 contains a binder of 2-20wt.%. The total of cation metals other than Al is 0.3wt.% or less. The amount of oxygen after degreasing is 0.4-5wt.% and the amount of carbon is 0.5wt.% or less in this composition. The detector is an unbaked ceramic compact. The relationship between the size after baking and the baking temperature is formed as a conversion table. The size after the baking is measured, and the indicated temperature is obtained from the conversion table. The measuring accuracy of the indicated temperature can be made accurate as high as + or -2 deg.C. Even if the baking conditions are changed, the baking step can be strictly controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスなどの焼
成工程における熱履歴を検知するためのものであり、特
に窒化アルミニウム、窒化珪素、窒化チタン等の165
0〜1950℃の温度域の非酸化性雰囲気での焼成にお
ける熱履歴検知用成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for detecting the thermal history of ceramics or the like during the firing process, and in particular 165 of aluminum nitride, silicon nitride, titanium nitride, etc.
The present invention relates to a molded article for detecting thermal history in firing in a non-oxidizing atmosphere in a temperature range of 0 to 1950 ° C.

【0002】[0002]

【従来の技術】セラミックスの焼成工程において、温度
プロファイル、焼成炉の種類、炉内のセッティング等に
よって被焼成体の受ける熱履歴は変化する。即ち、焼成
温度が同じでも他の条件が異なれば熱履歴は異なること
となり、この熱履歴を正しく検知する必要があった。
2. Description of the Related Art In the firing process of ceramics, the thermal history of the body to be fired changes depending on the temperature profile, the type of firing furnace, the settings in the furnace, and the like. That is, even if the firing temperature is the same, the thermal history will be different if other conditions are different, and it is necessary to correctly detect this thermal history.

【0003】例えば、実開昭56−29441号公報な
どに示されているゼーゲルコーンを用いて被焼成体の熱
履歴を検知することが行われていた。ゼーゲルコーンと
は、溶倒温度の異なる複数の三角錐状体を支持台上に備
えたものであり、このゼーゲルコーンを被焼成体と共に
焼成した後、各三角錐状体の倒れ方によって、熱履歴を
検知するようになっていた。しかし、これでは正確な検
知ができないことから、現在では使用されることが少な
くなっている。
For example, the thermal history of a body to be fired has been detected using a Zegel cone as disclosed in Japanese Utility Model Laid-Open No. 56-29441. Zegel cones are provided with a plurality of triangular pyramids having different melting temperatures on a support, and after firing this Zegel cone together with the body to be fired, the thermal history of the triangular pyramids falls, It was supposed to detect. However, since it cannot detect accurately, it is now less used.

【0004】そこで、例えば特開平1−184388号
公報等に示されているように、セラミックスの未焼成成
形体を用いて、この成形体を被焼成体と共に焼成した
後、収縮による寸法変化を測定することによって、熱履
歴を検知することが行われていた。例えば、図2に示す
ようなリング状の成形体20、あるいは図3に示すよう
なシート状の成形体30が用いられていた。
Therefore, as disclosed in, for example, Japanese Unexamined Patent Publication (Kokai) No. 1-184388, an unsintered compact of ceramics is used, and this compact is fired together with the body to be sintered, and then the dimensional change due to shrinkage is measured. By doing so, the thermal history was detected. For example, a ring-shaped molded body 20 as shown in FIG. 2 or a sheet-shaped molded body 30 as shown in FIG. 3 was used.

【0005】なお、このような焼成収縮による寸法変化
を測定する場合、寸法変化は便宜的に温度に変換される
が、この温度は実温を測定したものではなく、熱履歴を
表すものであって、本発明では指示温度と呼ぶこととす
る。
When measuring such a dimensional change due to firing shrinkage, the dimensional change is conveniently converted into a temperature, but this temperature does not represent an actual temperature but represents a thermal history. Therefore, in the present invention, it is referred to as an instruction temperature.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の熱履
歴検知用セラミックス成形体は、Al2 3 −Si
2、またはSiO2 −MgO系を主成分とし、多量の
不純物を含む天然原料からなるものであったため、焼成
収縮率にバラツキがあり、検知された指示温度の精度が
悪かった。
However, the above-mentioned ceramic molded body for thermal history detection has a problem of Al 2 O 3 --Si.
Since it was made of a natural raw material containing O 2 or SiO 2 —MgO system as a main component and containing a large amount of impurities, the firing shrinkage ratio varied, and the accuracy of the detected indicated temperature was poor.

【0007】さらに、図2に示すリング状のものでは、
体積が大きいため、焼成炉内で広いスペースを必要と
し、図3に示すシート状のものでは、ソリが発生して正
しく寸法を測定できないなどの問題点があった。
Further, in the ring shape shown in FIG.
Since the volume is large, a large space is required in the firing furnace, and the sheet-like material shown in FIG. 3 has a problem that warpage occurs and the dimension cannot be measured correctly.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、AlN
を主体としたバインダ−を含有する成形体であって、A
l以外の陽イオン金属の合計が0.3重量%以下である
セラミックス未焼成成形体、またはこれを脱脂して得ら
れる酸素量0.4〜5重量%、炭素量0.5重量%、A
lを除く陽イオン金属の合計0.3重量%のセラミック
ス未焼成成形体を熱履歴検知用成形体としたものであ
る。
Therefore, the present invention is directed to AlN
A molded article containing a binder mainly composed of
Ceramics unfired compact having a total of 0.3% by weight or less of cation metals other than 1 or 0.4 to 5% by weight of oxygen and 0.5% by weight of carbon obtained by degreasing this, A
A ceramic unfired molded body containing 0.3% by weight of cation metals excluding 1 was used as a thermal history detection molded body.

【0009】本発明において、Alを除く陽イオン金属
の合計を0.3重量%以下としたのは、これが0.3重
量%より多いと1650℃以下で緻密化し、また熱履歴
検知用成形体に変化が生じやすく、指示温度が正確に測
定できないためである。
In the present invention, the total amount of the cation metals excluding Al is set to 0.3% by weight or less because if it is more than 0.3% by weight, it is densified below 1650 ° C. This is because changes in temperature tend to occur and the indicated temperature cannot be measured accurately.

【0010】また、脱脂後の熱履歴検知用成形体の酸素
量を0.4〜5重量%としたのは、酸素量が0.4重量
%より少ないと1950℃でほとんど収縮せず、酸素量
が5重量%より多いと熱履歴検知用成形体に焼結後反
り、変形が生じやすいためである。
The oxygen content of the molded article for detecting heat history after degreasing is set to 0.4 to 5% by weight, because when the oxygen content is less than 0.4% by weight, there is almost no shrinkage at 1950 ° C. This is because if the amount is more than 5% by weight, the heat history detection molded body is easily warped and deformed after sintering.

【0011】また、脱脂後の熱履歴検知用成形体の炭素
量を0.5重量%以下としたのは、炭素量が0.5重量
%より多いと1950℃以下でほとんど収縮せず、ま
た、変形しやすいためである。
Further, the carbon content of the heat history detecting molded body after degreasing is set to 0.5% by weight or less, because when the carbon content is more than 0.5% by weight, it does not shrink at 1950 ° C. or less, and , Because it is easily deformed.

【0012】本発明者らによれば熱履歴検知用成形体中
のAlを除く陽イオン金属の合計を0.3重量%以下、
脱脂後の酸素量を0.4〜5重量%、脱脂後の炭素量を
0.5重量%以下とすることにより、1650〜195
0℃で指示温度を正確に求めることができる。
According to the present inventors, the total amount of cation metals excluding Al in the heat history detection molded body is 0.3% by weight or less,
By adjusting the amount of oxygen after degreasing to 0.4 to 5% by weight and the amount of carbon after degreasing to 0.5% by weight or less, 1650 to 195
The indicated temperature can be accurately determined at 0 ° C.

【0013】さらに、熱履歴検知用成形体中のバインダ
−量を2〜20重量%としたのは、バインダ−量が2重
量%より少ないと成形体の保形性が悪くなり、バインダ
−量が20重量%より多いと焼成収縮のばらつきが大き
くなって指示温度の信頼性が低下するためである。バイ
ンダ−量が2〜20重量%の場合は保形性が良好で、焼
成収縮のばらつきも少なく指示温度の信頼性があること
がわかった。
Further, the amount of the binder in the molded article for detecting thermal history is set to 2 to 20% by weight because the shape retention of the molded article becomes poor when the amount of the binder is less than 2% by weight, and the amount of the binder is reduced. If more than 20% by weight, the variation in firing shrinkage becomes large and the reliability of the indicated temperature decreases. It was found that when the amount of the binder was 2 to 20% by weight, the shape-retaining property was good, the variation in firing shrinkage was small, and the indicated temperature was reliable.

【0014】[0014]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0015】図1(a)(b)に示すように、本発明の
熱履歴検知用成形体10は、円板体に平行な弦部12、
12を形成したものであり、残された円弧部は優れた真
円度の測定面11、11としてある。また、表裏を区別
するためのドットあるいはアルファベットなどの刻印に
よる凹部13が片面に形成され、上下面の角部には面取
り14が施されている。
As shown in FIGS. 1 (a) and 1 (b), the heat history detecting molded body 10 of the present invention has a chord portion 12 parallel to the disc body.
12 is formed, and the remaining circular arc portions are the measurement surfaces 11 and 11 having excellent roundness. Further, a concave portion 13 is formed on one surface by marking such as dots or alphabets for distinguishing the front side and the back side, and chamfers 14 are provided at upper and lower corners.

【0016】さらに、この成形体10は、AlNを主体
とし、2〜20重量%のバインダを含有する成形体であ
ってAl以外の陽イオン金属の合計が0.3重量%以下
であり、脱脂後の酸素量が0.4〜5重量%、炭素量
0.5重量%以下の組成からなり、原料粉末の粒径、成
形体の生密度などを極めて厳密に管理し、プレス成形し
てなる未焼成成形体である。そして、後述するように、
ある条件の下で焼成温度を変化させて、この成形体10
の焼成後の寸法を測定し、寸法と焼成温度の関係を換算
表として用意しておく。その後、異なる条件で焼成を行
う際に、被焼成体と共にこの成形体10を焼成し、焼成
後の寸法変化を測定することによって、上記換算表より
指示温度を求めることができる。
Further, the molded body 10 is a molded body mainly composed of AlN and containing 2 to 20% by weight of a binder, and the total amount of cation metals other than Al is 0.3% by weight or less. The subsequent oxygen content is 0.4 to 5% by weight, and the carbon content is 0.5% by weight or less. The particle size of the raw material powder and the green density of the compact are controlled very strictly, and the press molding is performed. It is an unfired compact. And, as described below,
By changing the firing temperature under certain conditions, the molded body 10
Measure the dimensions after firing and prepare the relationship between the dimensions and firing temperature as a conversion table. After that, when firing is performed under different conditions, the molded body 10 is fired together with the body to be fired, and the dimensional change after firing is measured, so that the indicated temperature can be obtained from the conversion table.

【0017】なお、前記したように、この指示温度と
は、実際の温度ではなく、熱履歴を便宜的に表したもの
である。即ち、本発明の熱履歴検知用成形体を用いれ
ば、焼成条件が異なる場合でも、指示温度を求めること
によって、熱履歴自体を管理することが可能となる。
As described above, the indicated temperature is not an actual temperature but a thermal history for convenience. That is, by using the heat history detecting molded body of the present invention, it is possible to manage the heat history itself by obtaining the indicated temperature even when the firing conditions are different.

【0018】また、本発明の成形体は、さまざまの非酸
化性雰囲気の下で使用できるが、熱履歴を検知する前に
脱脂を行った方がよい。
The molded product of the present invention can be used under various non-oxidizing atmospheres, but it is better to degrease it before detecting the thermal history.

【0019】さらに、本発明の成形体10は、弦部1
2、12をもっていることから、図2に示した従来例に
比べて面積が小さく、焼成炉内で大きなスペースを必要
としない。なお、この弦部12、12は互いに平行でな
くてもよく、一ヶ所のみに形成してもよい。さらに、本
発明の成形体10は、3〜10mm程度の肉厚をもった
プレス成形品であるから、特殊な場合、例えば熱履歴検
知用成形体そのものが蒸発しやすい場合や焼成収縮に異
方性がある場合などを除いて、ソリなどが生じることは
なく、また寸法測定時には図1(a)に示すように、円
弧をした測定面11、11間を定圧マイクロメータで測
定すればよく、測定位置がずれても同じ直径Dを正確に
測定できる。
Further, the molded body 10 of the present invention has the chord portion 1
Since it has 2 and 12, it has a smaller area than the conventional example shown in FIG. 2 and does not require a large space in the firing furnace. The string portions 12 and 12 do not have to be parallel to each other, and may be formed at only one place. Further, since the molded product 10 of the present invention is a press-molded product having a wall thickness of about 3 to 10 mm, it is anisotropic in a special case, for example, when the thermal history detection molded product itself is easily evaporated or firing shrinkage occurs. Except when there is a property, warping does not occur, and at the time of dimension measurement, as shown in FIG. 1 (a), a constant pressure micrometer may be used to measure between the arc-shaped measurement surfaces 11, 11. Even if the measurement position is shifted, the same diameter D can be accurately measured.

【0020】また、本発明の成形体10の形状について
は、密度が均一となるような単純な形状であれば、さま
ざまなものとすることができる。
The shape of the molded body 10 of the present invention may be various, as long as it is a simple shape having a uniform density.

【0021】実施例1 種々のAlN粉体単体またはこれに助剤としてCaCO
3 およびYb2 3 を添加して窒化珪素ボ−ルによりメ
タノ−ル中で湿式粉砕し、レ−ザ−光散乱法による粒度
分析を行って平均粒径1.3±0.1μmの範囲とす
る。この原料粉末に6重量%のアクリル系バインダ−と
1重量%のワックス系バインダ−を添加、混合し噴霧乾
燥することによって流動性の良い顆粒を得る。この顆粒
を空調された成形室にて図1(a)(b)に示す形状に
プレス成形するが、このとき成形体の生密度を2.10
0±0.005g/cm3 の範囲内として本発明の熱履
歴検知用成形体を得た。
Example 1 Various AlN powders alone or CaCO as an auxiliary agent
3 and Yb 2 O 3 were added, wet pulverized in methanol with a silicon nitride ball, and subjected to particle size analysis by a laser light scattering method to obtain an average particle size of 1.3 ± 0.1 μm. And 6 wt% of acrylic binder and 1 wt% of wax binder are added to this raw material powder, mixed and spray-dried to obtain granules having good fluidity. The granules are press-molded in an air-conditioned molding chamber into the shape shown in FIGS. 1 (a) and 1 (b), and the green density of the molded body is 2.10 at this time.
A molded article for heat history detection of the present invention was obtained in the range of 0 ± 0.005 g / cm 3 .

【0022】これらの成形体を空気中550℃で3時間
脱脂した後、N2 常圧中1650℃で3時間、1950
℃で3時間焼成した。
These molded bodies were degreased in air at 550 ° C. for 3 hours, and then at 1650 ° C. in N 2 normal pressure for 3 hours.
It was calcined at ℃ for 3 hours.

【0023】表1は熱履歴検知用成形体の組成、表2は
結果である。なお、表1において脱脂前後でAl以外の
陽イオン金属の量に変化はなかった。また、No.1.
6.7.9は比較例である。
Table 1 shows the composition of the molded article for heat history detection, and Table 2 shows the results. In Table 1, there was no change in the amount of cation metal other than Al before and after degreasing. In addition, No. 1.
6.7.9 is a comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1、表2より明らかにAl以外の陽イオ
ン金属の合計が0.3重量%より多いNo.9は195
0℃で緻密化したため、目的とする温度範囲での使用は
できなかった。また、No.9は熱履歴検知用成形体に
焼成後変化が生じて正確に収縮率を測定することが困難
であった。
It is apparent from Tables 1 and 2 that the total amount of cation metals other than Al is more than 0.3% by weight. 9 is 195
Since it was densified at 0 ° C, it could not be used in the intended temperature range. In addition, No. In No. 9, it was difficult to measure the shrinkage rate accurately because the molded product for heat history detection changed after firing.

【0027】また、脱脂後の酸素量が0.32重量%の
No.1は1650℃で焼成収縮が0.3%と極めて小
さく、1950℃で焼成収縮率が2.0%と小さく、目
的とする温度範囲での使用はできなかった。脱脂後の酸
素量が7.14重量%のNo.6は熱履歴検知用成形体
に焼成後肉厚方向の反りが生じ、また熱履歴検知用成形
体そのものが蒸発して表面に凹凸ができたため目的とす
る温度範囲での使用はできなかった。
In addition, the oxygen content after degreasing was 0.32% by weight. No. 1 had a very small firing shrinkage of 0.3% at 1650 ° C and a small firing shrinkage of 2.0% at 1950 ° C, and thus could not be used in the intended temperature range. The oxygen content after degreasing was 7.14% by weight. No. 6 could not be used in the intended temperature range because the molded article for heat history detection was warped in the thickness direction after firing and the molded article for heat history detection was itself evaporated to form irregularities on the surface.

【0028】また、脱脂後の炭素量が0.67重量%の
No.7は1650℃で焼成収縮が0.1%と極めて小
さく、1950℃でほとんど収縮せず、また肉厚方向に
反りが生じたため目的とする温度範囲での使用はできな
かった。これらに対しAlを除く陽イオン不純物の合計
が0.3重量%以下、脱脂後の酸素量が0.4〜5重量
%、脱脂後の炭素量が0.5重量%以下のNo.2.
3.4.5.8は目的とする温度範囲で熱履歴を検知す
ることが可能であった。
[0028] Further, No. 1 having a carbon content of 0.67% by weight after degreasing. No. 7 had an extremely small firing shrinkage of 0.1% at 1650 ° C., almost no shrinkage at 1950 ° C., and warpage occurred in the thickness direction, so that it could not be used in the intended temperature range. On the other hand, No. 3 having a total of 0.3 wt% or less of cationic impurities except Al, an oxygen amount after degreasing of 0.4 to 5 wt% and a carbon amount after degreasing of 0.5 wt% or less. 2.
In 3.4.5.8, it was possible to detect the thermal history in the target temperature range.

【0029】実施例2 AlN粉体を窒化珪素ボ−ルによりメタノ−ル中で湿式
粉砕し、レ−ザ−光散乱法による粒度分析を行って平均
粒径1.2±0.1μmの範囲とする。この原料粉末に
表3に示したバインダ−を添加、混合し噴霧乾燥するこ
とによって流動性の良い顆粒を得る。この顆粒を空調さ
れた成形室にて図1(a)(b)に示す形状にプレスー
成形するが、このとき成形体の生密度を2.100±
0.005g/cm3 の範囲内として表3に示した本発
明の熱履歴検知用成形体を得た。
Example 2 AlN powder was wet pulverized in methanol with a silicon nitride ball and subjected to particle size analysis by a laser light scattering method to obtain an average particle size of 1.2 ± 0.1 μm. And Binders shown in Table 3 are added to this raw material powder, mixed, and spray-dried to obtain granules having good fluidity. The granules are press-molded in an air-conditioned molding chamber into the shape shown in FIGS. 1 (a) and 1 (b). At this time, the green density of the molded body is 2.100 ±.
The heat history detection molding of the present invention shown in Table 3 was obtained in the range of 0.005 g / cm 3 .

【0030】[0030]

【表3】 [Table 3]

【0031】これらの成形体を空気中550℃で3時間
脱脂した後、厳密に管理校正された焼成炉を用いて、N
2 常圧雰囲気にて昇温速度500℃/時間、最高温度で
3時間保持、降温速度600℃/時間として焼成した。
焼成後の熱履歴検知用成形体の寸法を20℃にて低定圧
マイクロメ−タで測定した。
After degreasing these molded bodies in the air at 550 ° C. for 3 hours, the molded product was N
2 Firing was performed in a normal pressure atmosphere with a temperature rising rate of 500 ° C./hour, a maximum temperature of 3 hours, and a temperature lowering rate of 600 ° C./hour.
The dimensions of the molded body for detecting thermal history after firing were measured at 20 ° C. with a low constant pressure micrometer.

【0032】焼成温度(指示温度)をさまざまに変形さ
せて、それぞれ20個の成形体の焼成を3回繰り返して
行った。この結果は表4および表5に示す通りである。
The firing temperature (instructed temperature) was variously changed, and the firing of 20 molded articles was repeated three times. The results are shown in Tables 4 and 5.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】また、各温度における、寸法のばらつき
(3σ)と、その温度での1℃当たりの寸法変化量(接
線の傾き)から、 指示温度の検知精度=±寸法のばらつき/1℃当たりの
寸法変化量 により、指示温度の検知精度(3σ)を算出した。
From the dimensional variation (3σ) at each temperature and the dimensional change amount (tangent slope) per 1 ° C. at that temperature, the detection accuracy of the indicated temperature = ± dimensional variation / per 1 ° C. The detection accuracy (3σ) of the indicated temperature was calculated from the dimensional change amount.

【0036】表4に示した様に1650〜1950℃の
範囲内で、指示温度の検知精度を±2℃以内とすること
ができた。
As shown in Table 4, in the range of 1650 to 1950 ° C., the detection accuracy of the indicated temperature could be kept within ± 2 ° C.

【0037】さらに、表4では指示温度50℃ごとの成
形体の寸法を示しているが、もっと細かな指示温度ごと
の寸法を測定しておくことによって、成形体の寸法と指
示温度の換算表とすることができる。
Further, although Table 4 shows the dimensions of the molded body for each indicated temperature of 50 ° C., a conversion table for the dimensions of the molded body and the indicated temperature can be obtained by measuring the dimensions for each of the finer indicated temperatures. Can be

【0038】また、表5に示した結果は、1760℃に
おける寸法、寸法ばらつき、および指示温度の検知精度
を示したものである。この結果からバインダ−量が20
重量%より多いNo.15は検知精度を±2.0℃以内
にすることが出来なかった。また、表中には示されてい
ないが、1650〜1950℃における50℃ごとの指
示温度の検知精度はNo.10〜14が±2℃以内であ
るのに対し、No.15は±2℃より大きくなった。
The results shown in Table 5 show the detection accuracy of the dimensions at 1760 ° C., the variation in dimensions, and the indicated temperature. From this result, the binder amount is 20
No. more than wt. No. 15 could not keep the detection accuracy within ± 2.0 ° C. Further, although not shown in the table, the detection accuracy of the indicated temperature for each 50 ° C. at 1650 to 1950 ° C. is No. Nos. 10 to 14 are within ± 2 ° C, while No. 15 was larger than ± 2 ° C.

【0039】上記実施例2では、熱履歴検知用成形体を
得るために、原料の粒径1.2±0.1μm、成形体の
生密度2.100±0.005g/cm3 としたが、い
ずれもこの値に限定されるものではなく、さまざまに変
化させることができる。通常、粒径については±0.2
μmで管理し、生密度については±0.005g/cm
3 の範囲内にバラツキを押さえれば、指示温度の検知精
度を±2℃とすることが可能であった。
In Example 2, the particle size of the raw material was 1.2 ± 0.1 μm and the green density of the molded article was 2.100 ± 0.005 g / cm 3 in order to obtain the molded article for heat history detection. , Are not limited to this value, and can be variously changed. Normally, the particle size is ± 0.2
It is controlled by μm and the raw density is ± 0.005g / cm
If the variation was suppressed within the range of 3 , the detection accuracy of the indicated temperature could be ± 2 ° C.

【0040】さらに、焼成時の雰囲気ガスをArガス単
独およびN2 87.5%とH2 12.5%の混合ガスを
使用し、圧力を0.9気圧〜3気圧に変化させても実施
例1および実施例2と同様に本発明の熱履歴検知用成形
体は1650〜1950℃の範囲内で指示温度の検知精
度を±2℃以内とすることができた。
Further, Ar gas alone or a mixed gas of N 2 87.5% and H 2 12.5% was used as the atmosphere gas at the time of firing and the pressure was changed from 0.9 atm to 3 atm. As in the case of Example 1 and Example 2, the heat history detection molded body of the present invention was able to detect the indicated temperature within ± 2 ° C within the range of 1650 to 1950 ° C.

【0041】[0041]

【発明の効果】叙述のように本発明によれば、AlNを
主体とし、バインダ−を2〜20重量%を含有する成形
体であって、Al以外の陽イオン金属の合計が0.3重
量%以下で、脱脂後の酸素量が0.4〜5重量%、炭素
量0.5重量%以下であるセラミックス未焼成成形体を
熱履歴検知用成形体とすることによって、指示温度の測
定精度を±2℃と極めて高精度にできることから、焼成
条件が変わっても焼成工程を厳密に管理することがで
き、優れた焼結体を得ることが可能となる。
As described above, according to the present invention, a molded body mainly composed of AlN and containing 2 to 20% by weight of a binder, and the total amount of cation metals other than Al is 0.3% by weight. % Or less, the amount of oxygen after degreasing is 0.4 to 5% by weight, and the amount of carbon is 0.5% by weight or less, the ceramics unfired molded body is used as a thermal history detection molded body, thereby measuring accuracy of the indicated temperature. Since the temperature can be extremely high at ± 2 ° C., the firing process can be strictly controlled even if the firing conditions are changed, and an excellent sintered body can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明実施例の熱履歴検知用成形体を
示す平面図、(b)は同図(a)中のX−X線断面図で
ある。
FIG. 1A is a plan view showing a heat history detection molded body according to an embodiment of the present invention, and FIG. 1B is a sectional view taken along line XX in FIG. 1A.

【図2】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 2 is a perspective view showing a conventional molded body for heat history detection.

【図3】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional molded body for heat history detection.

【符号の説明】[Explanation of symbols]

10・・・熱履歴検知用成形体 11・・・測定面 12・・・弦部 13・・・凹部 14・・・面取り 10 ... Mold for heat history detection 11 ... Measurement surface 12 ... Chord portion 13 ... Recessed portion 14 ... Chamfer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】AlNの粉末を主体とし、バインダ−を含
有する成形体であって、Al以外の陽イオン金属の合計
含有量が0.3重量%以下であるセラミックス未焼成成
形体からなることを特徴とする熱履歴検知用成形体。
1. A compact comprising a powder of AlN as a main component and containing a binder, wherein the total content of cation metals other than Al is 0.3 wt% or less. A molded article for detecting heat history, characterized by:
【請求項2】請求項1記載の熱履歴検知用成形体に含ま
れるバインダ−を脱脂して得られる、酸素量0.4〜5
重量%、炭素量0.5重量%以下、Al以外の陽イオン
金属の合計含有量が0.3重量%以下であるセラミック
ス未焼成成形体からなることを特徴とする熱履歴検知用
成形体。
2. An oxygen content of 0.4 to 5, which is obtained by degreasing the binder contained in the molded article for thermal history detection according to claim 1.
A molded product for thermal history detection, comprising a ceramic unfired molded product having a weight%, a carbon content of 0.5% by weight or less, and a total content of cation metals other than Al of 0.3% by weight or less.
JP10766692A 1992-04-27 1992-04-27 Molded body for thermal history detection Expired - Fee Related JP3170341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10766692A JP3170341B2 (en) 1992-04-27 1992-04-27 Molded body for thermal history detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10766692A JP3170341B2 (en) 1992-04-27 1992-04-27 Molded body for thermal history detection

Publications (2)

Publication Number Publication Date
JPH05302857A true JPH05302857A (en) 1993-11-16
JP3170341B2 JP3170341B2 (en) 2001-05-28

Family

ID=14464932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10766692A Expired - Fee Related JP3170341B2 (en) 1992-04-27 1992-04-27 Molded body for thermal history detection

Country Status (1)

Country Link
JP (1) JP3170341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Also Published As

Publication number Publication date
JP3170341B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
US4325710A (en) Sintered ceramics for cutting tools and manufacturing process thereof
Shojai et al. Effect of sintering temperature and holding time on the properties of 3Y-ZrO2 microfiltration membranes
JPH05302857A (en) Thermal hysteresis detector
JP2892229B2 (en) Molded body for thermal history detection
Liniger et al. Spatial variations in the sintering rate of ordered and disordered particle structures
JP2948973B2 (en) Molded body for thermal history detection
JP3266352B2 (en) Molded body for thermal history detection
JP2899920B2 (en) Molded body for thermal history detection
JP2958166B2 (en) Molded body for thermal history detection
JP2941495B2 (en) Molded body for thermal history detection
JPH0672061B2 (en) Molded body for heat history detection
JP6594575B1 (en) Heat treatment member made of sintered zirconia
US4981823A (en) Beryllium oxide based ceramics
Fang et al. Evolution of pore morphology in sintering powder compacts
JP4762092B2 (en) Thermal history sensor
JP4031578B2 (en) Manufacturing method of bottomed cylindrical ceramic sintered body
JP3142359B2 (en) Press molding method
JP4651330B2 (en) Method for producing ceramic sintered body and ceramic sintered body
JP3604128B2 (en) Displacement control type pressure sintering apparatus and pressure sintering method using the same
GB2191997A (en) Sintered materials
Raether et al. High strength and high thermal conductivity of aluminium nitride ceramics by microstructural design
JP2015212675A (en) Compact for heat history detection
JP2001151563A (en) Dense cordierite sintered compact and method of producing the same
JP2020142951A (en) Heat treatment setter composed of ceramic sintered body with irregularities processed surface
JPH0361625B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees