JPH05302767A - Space cooling and heating device - Google Patents

Space cooling and heating device

Info

Publication number
JPH05302767A
JPH05302767A JP10739292A JP10739292A JPH05302767A JP H05302767 A JPH05302767 A JP H05302767A JP 10739292 A JP10739292 A JP 10739292A JP 10739292 A JP10739292 A JP 10739292A JP H05302767 A JPH05302767 A JP H05302767A
Authority
JP
Japan
Prior art keywords
pressure
cooling
heating
intermediate pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10739292A
Other languages
Japanese (ja)
Other versions
JP3231393B2 (en
Inventor
Nobuhiro Nakagawa
信博 中川
Masao Kurachi
正夫 蔵地
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP10739292A priority Critical patent/JP3231393B2/en
Publication of JPH05302767A publication Critical patent/JPH05302767A/en
Application granted granted Critical
Publication of JP3231393B2 publication Critical patent/JP3231393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a space cooling and heating device in which a gas injection can be used without damaging a reliability in operation of a compressor even in the case that both cooling and heating operations are being carried out and an indoor and outdoor load is varied. CONSTITUTION:There are provided a discharging pressure sensing means 21 for use in detecting a discharging pressure of a compressor 1, an intermediate pressure sensing means 22 for sensing an intermediate pressure of a gas-liquid separator 14, a cooling or heating mode discriminating means 24 for discriminating either a cooling operation or a heating operation and a set intermediate pressure calculating means 25 for calculating a set intermediate pressure in response to a discharging pressure. In addition, there are provided an intermediate pressure discriminating means 26 for comparing and discriminating a result of calculation with an intermediate pressure, a pressure reducing amount discriminating means 27 for discriminating a pressure reducing amount of a cooling or heating pressure reducing device 15 in response to a result of the discrimination and a pressure reducing device driving means 28 for driving the cooling or heating pressure reducing device 15 in response to the pressure reducing amount.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスインジェクションを
備えた冷暖房装置の制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of a heating / cooling system equipped with gas injection.

【0002】[0002]

【従来の技術】従来の技術としては特開昭57−124
661号公報で知られるような空気調和機がある。
2. Description of the Related Art As a conventional technique, JP-A-57-124 is known.
There is an air conditioner as known from Japanese Patent No. 661.

【0003】以下、図面を参照しながら従来の技術につ
いて説明する。図5において、1は圧縮機、2は四方
弁、3は室外側熱交換器、4は毛細管よりなる第一減圧
装置、5は気液分離器、6は毛細管よりなる第二減圧装
置、7は室内側熱交換器、8はアキュムレータであり、
これらを冷媒管9を介して連通し冷媒サイクルを構成し
ている。
A conventional technique will be described below with reference to the drawings. In FIG. 5, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a first pressure reducing device made of a capillary, 5 is a gas-liquid separator, 6 is a second pressure reducing device made of a capillary, 7 Is an indoor heat exchanger, 8 is an accumulator,
These are communicated via the refrigerant pipe 9 to form a refrigerant cycle.

【0004】10は開閉弁であり、圧縮機1と気液分離
器5の上部とを連通するインジェクション管11に設け
られている。
An on-off valve 10 is provided on an injection pipe 11 which connects the compressor 1 and the upper portion of the gas-liquid separator 5 to each other.

【0005】以上のように構成された空気調和機につい
て、その動作を説明する。まず、冷房運転時は図5の実
線矢印の冷媒サイクルとなり、圧縮機1で圧縮された高
温高圧ガスは四方弁2を通り室外側熱交換器3で放熱し
て凝縮液化し、第一減圧装置4で中間圧力(約1MP
a)に減圧されて気液分離器5に送られる。
The operation of the air conditioner configured as above will be described. First, during the cooling operation, the refrigerant cycle indicated by the solid arrow in FIG. 5 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 and radiates heat in the outdoor heat exchanger 3 to be condensed and liquefied. Intermediate pressure at 4 (about 1MP
It is depressurized to a) and sent to the gas-liquid separator 5.

【0006】気液分離器5から出た冷媒は第二減圧装置
6で減圧され、室内側熱交換器7で吸熱蒸発して四方弁
2とアキュムレータ8を通って圧縮機1へ循環する。
The refrigerant discharged from the gas-liquid separator 5 is decompressed by the second decompression device 6, endothermicly evaporated by the indoor heat exchanger 7, and circulated to the compressor 1 through the four-way valve 2 and the accumulator 8.

【0007】このとき開閉弁10を開くと、気液分離器
5からガス冷媒がインジェクション管11を通って圧縮
機1に導かれるため、室内側熱交換器7にエンタルピー
の小さい液冷媒が流れ、冷房能力が増大する。
At this time, when the on-off valve 10 is opened, the gas refrigerant from the gas-liquid separator 5 is guided to the compressor 1 through the injection pipe 11, so that the liquid refrigerant having a small enthalpy flows to the indoor heat exchanger 7, Cooling capacity increases.

【0008】一方、暖房運転時は図5の破線矢印の冷媒
サイクルとなり、圧縮機1で圧縮された高温高圧ガスは
四方弁2を通り室内側熱交換器7で放熱して凝縮液化
し、第二減圧装置6で中間圧力(約0.6MPa)に減
圧されて気液分離器5に送られる。
On the other hand, during the heating operation, the refrigerant cycle indicated by the broken line arrow in FIG. 5 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 and radiates heat in the indoor heat exchanger 7 to be condensed and liquefied. The pressure is reduced to an intermediate pressure (about 0.6 MPa) by the decompression device 6 and sent to the gas-liquid separator 5.

【0009】このとき開閉弁10を開くと、気液分離器
5からガス冷媒がインジェクション管11を通って圧縮
機1に導かれるため、このガス冷媒量分だけ室内側熱交
換器7を流れる冷媒量が増加し、暖房能力が増大する。
At this time, when the on-off valve 10 is opened, the gas refrigerant from the gas-liquid separator 5 is guided to the compressor 1 through the injection pipe 11, so that the refrigerant flowing through the indoor heat exchanger 7 by the amount of this gas refrigerant. The amount increases and the heating capacity increases.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、冷暖房運転で適正中間圧力が異なるにも
かかわらず、第一減圧装置4と第二減圧装置6の減圧量
が一定であるため、冷暖房運転両方でガスインジェクシ
ョンを使用した場合には、どちらかの運転時に液冷媒が
インジェクション管11を通って圧縮機1に流れ込み、
圧縮機1の信頼性を損なうという課題を有していた。
However, in the above-mentioned configuration, the decompression amounts of the first decompression device 4 and the second decompression device 6 are constant, although the proper intermediate pressures differ during the heating and cooling operation. When gas injection is used in both heating and cooling operations, the liquid refrigerant flows into the compressor 1 through the injection pipe 11 during either operation,
There was a problem of impairing the reliability of the compressor 1.

【0011】また、第一減圧装置4と第二減圧装置6の
減圧量が一定であるため、室外負荷及び室内負荷が変動
して冷媒循環量が変動した場合にも、液冷媒がインジェ
クション管11を通って圧縮機1に流れ込み、圧縮機1
の信頼性を損なうという課題を有していた。
Further, since the decompression amounts of the first decompression device 4 and the second decompression device 6 are constant, the liquid refrigerant is injected into the injection pipe 11 even when the refrigerant circulation amount fluctuates due to the fluctuation of the outdoor load and the indoor load. Flows into the compressor 1 through the compressor 1
Had a problem of impairing the reliability of the.

【0012】本発明は上記課題を解決するもので、冷暖
房両運転時、さらには室外負荷及び室内負荷が変動した
場合にも、圧縮機の信頼性を損なうことなくガスインジ
ェクションを使用でき、冷暖房能力を増大できる冷暖房
装置を提供することを目的としている。
The present invention solves the above-mentioned problems, and gas injection can be used without impairing the reliability of the compressor during both heating and cooling operations, and also when the outdoor load and indoor load fluctuate, and the cooling and heating capacity is improved. It is an object of the present invention to provide an air conditioning system that can increase the power consumption.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明の冷暖房装置は冷房用減圧装置、冷房用逆止
弁、気液分離器、減圧量可変の冷暖兼用減圧装置を備
え、冷房用減圧装置と冷房用逆止弁に並列に位置する暖
房用逆止弁と暖房用減圧装置と、気液分離器と圧縮機を
連通して開閉弁を有するインジェクション管と、圧縮機
出口の圧力を検出する吐出圧力検出手段と、気液分離器
の圧力を検出する中間圧力検出手段と、冷房ないし暖房
を判定する冷暖モード判定手段と、吐出圧力検出手段で
検出した圧力を基に中間圧力の設定値を冷暖房に応じて
演算する設定中間圧力演算手段と、この演算結果と中間
圧力検出手段で検出した圧力とを比較判定する中間圧力
判定手段と、この判定結果に応じて冷暖兼用減圧装置の
減圧量を判定する減圧量判定手段と、この減圧量に応じ
て冷暖兼用減圧装置を駆動する減圧装置駆動手段を備え
た構成となっている。
In order to achieve this object, an air conditioner according to the present invention comprises a pressure reducing device for cooling, a check valve for cooling, a gas-liquid separator, and a pressure reducing device for both heating and cooling of a reduced pressure amount. Check valve for heating and a pressure reducing device for heating, which are located in parallel with the pressure reducing device for cooling and the check valve for cooling, an injection pipe having an on-off valve that connects the gas-liquid separator and the compressor, and the pressure at the outlet of the compressor. Discharge pressure detecting means for detecting, an intermediate pressure detecting means for detecting the pressure of the gas-liquid separator, a cooling / heating mode determining means for determining cooling or heating, and an intermediate pressure of the intermediate pressure based on the pressure detected by the discharge pressure detecting means. A set intermediate pressure calculating means for calculating a set value according to heating and cooling, an intermediate pressure determining means for comparing and comparing the calculated result and the pressure detected by the intermediate pressure detecting means, and a heating / cooling decompression device according to the determination result. Decompression to judge decompression amount And determining means has a configuration provided with a pressure reducing device driving means for driving the cooling and heating combined decompressor in response to the pressure reduction amount.

【0014】[0014]

【作用】本発明は上記のような構成により、冷暖モード
判定手段で冷房運転と判定した時は、吐出圧力検出手段
で検出した吐出圧力を基に冷房運転に適した中間圧力を
設定中間圧力演算手段で演算し、この結果と中間圧力検
出手段で検出した圧力とを中間圧力判定手段で比較判定
し、この結果に応じて減圧量判定手段で減圧量を決め、
減圧装置駆動手段で冷暖兼用減圧装置を駆動する。
According to the present invention, when the cooling / heating mode determining means determines the cooling operation, the intermediate pressure suitable for the cooling operation is set based on the discharge pressure detected by the discharge pressure detecting means. Calculated by the means, the result and the pressure detected by the intermediate pressure detection means are compared and determined by the intermediate pressure determination means, and the reduced pressure amount is determined by the reduced pressure amount determination means according to the result,
The decompression device driving means drives the cooling / heating decompression device.

【0015】また、冷暖モード判定手段で暖房運転と判
定した時は、吐出圧力検出手段で検出した吐出圧力を基
に暖房運転に適した中間圧力を設定中間圧力演算手段で
演算し、この結果と中間圧力検出手段で検出した圧力と
を中間圧力判定手段で比較判定し、この結果に応じて減
圧量判定手段で減圧量を決め、減圧装置駆動手段で冷暖
兼用減圧装置を駆動する。
When the cooling / heating mode determination means determines that the heating operation is performed, the intermediate pressure suitable for the heating operation is calculated by the set intermediate pressure calculation means based on the discharge pressure detected by the discharge pressure detection means. The pressure detected by the intermediate pressure detection means is compared and determined by the intermediate pressure determination means, the reduced pressure amount determination means determines the reduced pressure amount according to the result, and the pressure reduction device driving means drives the cooling / heating combined pressure reduction device.

【0016】これらのことにより、冷暖房両運転時に室
外負荷及び室内負荷が変動した場合にも中間圧力を適正
値に保ち、インジェクション管から圧縮機への液冷媒の
流入を防止する。
As a result, the intermediate pressure is maintained at an appropriate value even when the outdoor load and the indoor load fluctuate during both heating and cooling operations, and the inflow of liquid refrigerant from the injection pipe to the compressor is prevented.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1から図4を用
いて説明する。図1は本実施例における冷暖房装置の冷
媒サイクル図、図2は冷暖兼用減圧装置の制御フローチ
ャート、図3は冷房運転時の設定中間圧力と圧縮機吐出
圧力の相関を示す特性図、図4は暖房運転時の設定中間
圧力と圧縮機吐出圧力の相関を示す特性図である。尚、
従来と同一構成については同一符号を付し、その詳細な
説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a refrigerant cycle diagram of an air conditioner according to the present embodiment, FIG. 2 is a control flowchart of a heating / cooling decompression device, FIG. 3 is a characteristic diagram showing a correlation between a set intermediate pressure and a compressor discharge pressure during a cooling operation, and FIG. It is a characteristic view which shows the correlation of the setting intermediate pressure at the time of heating operation, and compressor discharge pressure. still,
The same components as those of the related art will be designated by the same reference numerals, and detailed description thereof will be omitted.

【0018】図1において、12は冷房用減圧装置であ
り、JIS冷房標準条件で運転した場合に圧力を約1M
Paに減圧できる毛細管を使用している。13は冷房用
逆止弁である。14は気液分離器である。15は冷暖兼
用減圧装置で、電動膨張弁を使用している。16は室内
側熱交換器であり、室内機17に収納されている。
In FIG. 1, reference numeral 12 is a cooling decompressor, which has a pressure of about 1 M when operated under JIS cooling standard conditions.
A capillary tube that can reduce the pressure to Pa is used. Reference numeral 13 is a check valve for cooling. 14 is a gas-liquid separator. Reference numeral 15 is a cooling / heating decompression device, which uses an electric expansion valve. Reference numeral 16 denotes an indoor heat exchanger, which is housed in the indoor unit 17.

【0019】圧縮機1、四方弁2、室外側熱交換器3、
冷房用減圧装置12、冷房用逆止弁13、気液分離器1
4の低部、冷暖兼用減圧装置15、室内側熱交換器1
6、アキュムレータ8を冷媒管18を介して連通し冷媒
サイクルを構成している。
Compressor 1, four-way valve 2, outdoor heat exchanger 3,
Cooling decompression device 12, cooling check valve 13, gas-liquid separator 1
4 lower part, cooling / heating combined pressure reducing device 15, indoor heat exchanger 1
6, the accumulator 8 is connected via the refrigerant pipe 18 to form a refrigerant cycle.

【0020】19は暖房用逆止弁である。20は暖房用
減圧装置であり、JIS暖房標準条件で運転した場合に
圧力を約0.6MPaに減圧できる毛細管を使用してい
る。暖房用逆止弁19と暖房用減圧装置20は冷暖兼用
減圧装置12、冷房用逆止弁13と並列に設置されてい
る。
Reference numeral 19 is a check valve for heating. Reference numeral 20 denotes a heating decompression device, which uses a capillary tube capable of reducing the pressure to about 0.6 MPa when operated under JIS heating standard conditions. The heating check valve 19 and the heating decompression device 20 are installed in parallel with the cooling / heating decompression device 12 and the cooling check valve 13.

【0021】21は吐出圧力検出手段であり、圧縮機1
の吐出管に圧力センサが取り付けられている。22は中
間圧力検出手段であり、気液分離器14に圧力センサが
取り付けられている。23は室内機17のリモコンであ
る。
Reference numeral 21 denotes a discharge pressure detecting means, which is the compressor 1
A pressure sensor is attached to the discharge pipe. Reference numeral 22 is an intermediate pressure detecting means, and a pressure sensor is attached to the gas-liquid separator 14. Reference numeral 23 is a remote controller for the indoor unit 17.

【0022】24は冷暖モード判定手段であり、リモコ
ン23の信号に応じて冷房運転か暖房運転かを判定す
る。25は設定中間圧力演算手段であり、吐出圧力検出
手段21で検出した圧力を基に、冷房・暖房運転に適し
た設定中間圧力を決定する。26は中間圧力判定手段で
あり、中間圧力検出手段22で検出した圧力が設定中間
圧力より大きいか、小さいかを判定する。27は減圧量
判定手段であり、中間圧力判定手段26の判定結果に従
って電動膨張弁15をどれだけ(例えば20パルス)開
くか、絞るか決める。28は減圧装置駆動手段であり、
減圧量判定手段27の判定結果に応じたパルス数を電動
膨張弁15に送信して駆動させる。
Reference numeral 24 is a cooling / heating mode determining means, which determines whether it is a cooling operation or a heating operation according to a signal from the remote controller 23. Reference numeral 25 denotes a set intermediate pressure calculating means, which determines a set intermediate pressure suitable for cooling / heating operation based on the pressure detected by the discharge pressure detecting means 21. Reference numeral 26 denotes an intermediate pressure determining means, which determines whether the pressure detected by the intermediate pressure detecting means 22 is higher or lower than the set intermediate pressure. Reference numeral 27 denotes a decompression amount determination means, which determines how much (for example, 20 pulses) the electric expansion valve 15 is opened or throttled according to the determination result of the intermediate pressure determination means 26. 28 is a pressure reducing device driving means,
The number of pulses corresponding to the determination result of the pressure reduction amount determination means 27 is transmitted to the electric expansion valve 15 to drive it.

【0023】29は制御装置であり、冷暖モード判定手
段24、設定中間圧力演算手段25、中間圧力判定手段
26、減圧量判定手段27、減圧装置駆動手段28で構
成されている。
Reference numeral 29 is a control device, which comprises a cooling / heating mode determination means 24, a set intermediate pressure calculation means 25, an intermediate pressure determination means 26, a reduced pressure amount determination means 27, and a reduced pressure device drive means 28.

【0024】以上のように構成された冷暖房装置につい
てその動作を説明する。まず、冷房運転時は図1の実線
矢印の冷媒サイクルとなり、圧縮機1で圧縮された高温
高圧ガスは四方弁2を通り室外側熱交換器3で放熱して
凝縮液化し、冷房用減圧装置12で減圧されて冷房用逆
止弁13を通って気液分離器14に送られる。そして、
気液分離器14内の圧力が設定中間圧力になるように電
動膨張弁15で調節され、室内側熱交換器16で吸熱蒸
発して四方弁2とアキュムレータ8を通って圧縮機1へ
循環する。
The operation of the cooling and heating device configured as described above will be described. First, during the cooling operation, the refrigerant cycle indicated by the solid arrow in FIG. 1 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 to radiate heat in the outdoor heat exchanger 3 to be condensed and liquefied, and the decompression device for cooling. The pressure is reduced at 12 and is sent to the gas-liquid separator 14 through the cooling check valve 13. And
The pressure in the gas-liquid separator 14 is adjusted by the electric expansion valve 15 so as to be a set intermediate pressure, and the heat is evaporated by the indoor heat exchanger 16 to circulate to the compressor 1 through the four-way valve 2 and the accumulator 8. ..

【0025】このとき開閉弁10を開くと、気液分離器
14からガス冷媒がインジェクション管11を通って圧
縮機1に導かれる。
At this time, when the opening / closing valve 10 is opened, the gas refrigerant is guided from the gas-liquid separator 14 to the compressor 1 through the injection pipe 11.

【0026】一方、暖房運転時は図1の破線矢印の冷媒
サイクルとなり、圧縮機1で圧縮された高温高圧ガスは
四方弁2を通り室内側熱交換器16で放熱して凝縮液化
し、電動膨張弁15で気液分離器14内の圧力が設定中
間圧力になるように調節される。そして、気液分離器1
4から出た冷媒は暖房用減圧装置20で減圧され暖房用
逆止弁19を通って室外側熱交換器3で吸熱蒸発して四
方弁2とアキュムレータ8を通って圧縮機1へ循環す
る。
On the other hand, during the heating operation, the refrigerant cycle indicated by the broken line arrow in FIG. 1 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 and radiates heat in the indoor heat exchanger 16 to be condensed and liquefied, and then electrically driven. The expansion valve 15 adjusts the pressure in the gas-liquid separator 14 so as to be a set intermediate pressure. And the gas-liquid separator 1
The refrigerant discharged from No. 4 is depressurized by the heating decompression device 20, passes through the heating check valve 19 and is endothermicly evaporated in the outdoor heat exchanger 3, passes through the four-way valve 2 and the accumulator 8, and circulates to the compressor 1.

【0027】このとき開閉弁10を開くと、気液分離器
14からガス冷媒がインジェクション管11を通って圧
縮機1に導かれる。
At this time, when the opening / closing valve 10 is opened, the gas refrigerant is guided from the gas-liquid separator 14 to the compressor 1 through the injection pipe 11.

【0028】次に、電動膨張弁15の制御について図2
を用いて説明する。ステップ1は吐出圧力検出手段21
であり、圧力センサで圧縮機1の吐出圧力Pdを検出し
てステップ2に移行する。ステップ2は中間圧力検出手
段22であり、圧力センサで気液分離器14の中間圧力
Pmを検出してステップ3に移行する。ステップ3は冷
暖モード判定手段24であり、リモコン23の信号から
冷房か暖房かを判定し、冷房運転の時はステップ4に移
行する。
Next, the control of the electric expansion valve 15 will be described with reference to FIG.
Will be explained. Step 1 is discharge pressure detection means 21.
Therefore, the discharge pressure Pd of the compressor 1 is detected by the pressure sensor, and the process proceeds to step 2. Step 2 is the intermediate pressure detecting means 22, which detects the intermediate pressure Pm of the gas-liquid separator 14 with the pressure sensor and shifts to step 3. In step 3, the cooling / heating mode determination means 24 determines whether cooling or heating is performed based on the signal from the remote controller 23. When the cooling operation is performed, the process proceeds to step 4.

【0029】ステップ4は設定中間圧力演算手段25で
あり、冷房時の設定中間圧力Pcmを Pcm=a×Pd+b の式を用いて演算してステップ5に移行する。この式に
おいて、適正な設定中間圧力Pcmと吐出圧力Pdの間
には発明者らの実験から図3に示すような相関関係があ
ることがわかっており、図3から定数a=0.5、b=
0となる。
Step 4 is the set intermediate pressure calculating means 25, which calculates the set intermediate pressure Pcm during cooling using the equation Pcm = a × Pd + b and shifts to step 5. In this equation, it is known from the experiments by the inventors that the proper set intermediate pressure Pcm and the discharge pressure Pd have a correlation as shown in FIG. 3, and the constant a = 0.5, b =
It becomes 0.

【0030】ステップ5は中間圧力判定手段26であ
り、中間圧力Pmと設定中間圧力Pcmが等しいときは
中間圧力Pmが適正であると判定してステップ1に戻
り、中間圧力Pmと設定中間圧力Pcmが等しくないと
きはステップ6に移行する。ステップ6も中間圧力判定
手段26であり、中間圧力Pmが設定中間圧力Pcmよ
り大きいと判定したときはステップ7に移行する。
Step 5 is the intermediate pressure determination means 26, and when the intermediate pressure Pm and the set intermediate pressure Pcm are equal, it is determined that the intermediate pressure Pm is appropriate and the process returns to step 1 to set the intermediate pressure Pm and the set intermediate pressure Pcm. When is not equal, the process proceeds to step 6. Step 6 is also the intermediate pressure determination means 26, and when it is determined that the intermediate pressure Pm is larger than the set intermediate pressure Pcm, the process proceeds to step 7.

【0031】ステップ7は減圧量判定手段27であり、
中間圧力Pmを小さくするために電動膨張弁15の開度
を「20パルス開」と判定してステップ9に移行する。
ステップ9は減圧装置駆動手段28であり、パルス信号
を電動膨張弁15に送信して20パルス開き、ステップ
1に戻る。
Step 7 is the decompression amount determination means 27,
In order to reduce the intermediate pressure Pm, it is determined that the opening degree of the electric expansion valve 15 is "20 pulse open", and the process proceeds to step 9.
In step 9, the pressure reducing device driving means 28 transmits a pulse signal to the electric expansion valve 15, opens 20 pulses, and returns to step 1.

【0032】ステップ6で中間圧力Pmが設定中間圧力
Pcmより小さいと判定したときはステップ8に移行す
る。ステップ8は減圧量判定手段27であり、中間圧力
Pmを大きくするために電動膨張弁15の開度を「20
パルス閉」と判定してステップ9に移行する。ステップ
9は減圧装置駆動手段28であり、パルス信号を電動膨
張弁15に送信して20パルス絞り、ステップ1に戻
る。
When it is determined in step 6 that the intermediate pressure Pm is lower than the set intermediate pressure Pcm, the process proceeds to step 8. Step 8 is the decompression amount determination means 27, and the opening degree of the electric expansion valve 15 is set to "20" to increase the intermediate pressure Pm.
It is determined that the pulse is closed, and the process proceeds to step 9. Step 9 is the pressure reducing device driving means 28, which transmits a pulse signal to the electric expansion valve 15 to throttle it by 20 pulses, and returns to step 1.

【0033】ステップ3で暖房運転と判定したときは、
ステップ10に移行する。ステップ10は設定中間圧力
演算手段25であり、暖房時の設定中間圧力Phmを Phm=c×Pd+d の式を用いて演算してステップ11に移行する。この式
において、適正な設定中間圧力Phmと吐出圧力Pdの
間には発明者らの実験から図4に示すような相関関係が
あることがわかっており、図4から定数c=0.75、
d=−0.8となる。
When the heating operation is determined in step 3,
Go to step 10. Step 10 is the set intermediate pressure calculation means 25, which calculates the set intermediate pressure Phm during heating using the equation Phm = c × Pd + d and shifts to step 11. In this equation, it is known from the experiments by the inventors that the proper set intermediate pressure Phm and the discharge pressure Pd have a correlation as shown in FIG. 4, and the constant c = 0.75,
d = −0.8.

【0034】ステップ11は中間圧力判定手段26であ
り、中間圧力Pmと設定中間圧力Phmが等しいときは
中間圧力Pmが適正であると判定してステップ1に戻
り、中間圧力Pmと設定中間圧力Phmが等しくないと
きはステップ12に移行する。ステップ12も中間圧力
判定手段26であり、中間圧力Pmが設定中間圧力Ph
mより大きいと判定したときはステップ13に移行す
る。
Step 11 is the intermediate pressure determining means 26. When the intermediate pressure Pm and the set intermediate pressure Phm are equal, it is determined that the intermediate pressure Pm is appropriate and the process returns to step 1 to set the intermediate pressure Pm and the set intermediate pressure Phm. When is not equal, the process proceeds to step 12. Step 12 is also the intermediate pressure determination means 26, and the intermediate pressure Pm is the set intermediate pressure Ph.
When it is determined that the value is larger than m, the process proceeds to step 13.

【0035】ステップ13は減圧量判定手段27であ
り、中間圧力Pmを小さくするために電動膨張弁15の
開度を「20パルス閉」と判定してステップ9に移行す
る。ステップ9は減圧装置駆動手段28であり、パルス
信号を電動膨張弁15に送信して20パルス絞り、ステ
ップ1に戻る。
Step 13 is the decompression amount determination means 27, which determines that the opening degree of the electric expansion valve 15 is "20 pulse closed" in order to reduce the intermediate pressure Pm, and then proceeds to step 9. Step 9 is the pressure reducing device driving means 28, which transmits a pulse signal to the electric expansion valve 15 to throttle it by 20 pulses, and returns to step 1.

【0036】ステップ12で中間圧力Pmが設定中間圧
力Phmより小さいと判定したときはステップ14に移
行する。ステップ14は減圧量判定手段27であり、中
間圧力Pmを大きくするために電動膨張弁15の開度を
「20パルス開」と判定してステップ9に移行する。ス
テップ9は減圧装置駆動手段28であり、パルス信号を
電動膨張弁15に送信して20パルス開き、ステップ1
に戻る。
When it is determined in step 12 that the intermediate pressure Pm is lower than the set intermediate pressure Phm, the process proceeds to step 14. Step 14 is the decompression amount determination means 27, which determines that the opening degree of the electric expansion valve 15 is "20 pulse open" in order to increase the intermediate pressure Pm, and proceeds to step 9. Step 9 is the pressure reducing device driving means 28, which transmits a pulse signal to the electric expansion valve 15 to open 20 pulses,
Return to.

【0037】上記実施例によれば、中間圧力Pmが常に
適正値に調節されるので、冷暖房両運転時、さらには室
外負荷及び室内負荷が変動した場合にもインジェクショ
ン管11から圧縮機1に液冷媒が流入するのを防止で
き、圧縮機1の信頼性を損なうことなく冷暖房能力を増
大できる。
According to the above embodiment, since the intermediate pressure Pm is always adjusted to an appropriate value, the liquid is injected from the injection pipe 11 to the compressor 1 during both heating and cooling operation and also when the outdoor load and the indoor load change. The refrigerant can be prevented from flowing in, and the cooling and heating capacity can be increased without impairing the reliability of the compressor 1.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
は、冷房用減圧装置、冷房用逆止弁、気液分離器、減圧
量可変の冷暖兼用減圧装置を備え、冷房用減圧装置と冷
房用逆止弁に並列に位置する暖房用逆止弁と暖房用減圧
装置と、気液分離器と圧縮機を連通して開閉弁を有する
インジェクション管と、圧縮機出口の圧力を検出する吐
出圧力検出手段と、気液分離器の圧力を検出する中間圧
力検出手段と、冷房ないし暖房を判定する冷暖モード判
定手段と、吐出圧力検出手段で検出した圧力を基に中間
圧力の設定値を冷暖房に応じて演算する設定中間圧力演
算手段と、この演算結果と中間圧力検出手段で検出した
圧力とを比較判定する中間圧力判定手段と、この判定結
果に応じて冷暖兼用減圧装置の減圧量を判定する減圧量
判定手段と、この減圧量に応じて冷暖兼用減圧装置を駆
動する減圧装置駆動手段を備えることにより、冷暖房両
運転時、さらには室外負荷及び室内負荷が変動した場合
にも、圧縮機の信頼性を損なうことなく冷暖房能力を増
大できる冷暖房装置を提供できる。
As is apparent from the above description, the present invention comprises a cooling decompression device, a cooling check valve, a gas-liquid separator, and a cooling / heating decompression device with variable decompression amount. A check valve for heating and a pressure reducing device for heating, which are located in parallel with the check valve for cooling, an injection pipe having an on-off valve that connects the gas-liquid separator and the compressor, and a discharge that detects the pressure at the outlet of the compressor. Pressure detection means, intermediate pressure detection means for detecting the pressure of the gas-liquid separator, cooling / heating mode determination means for determining cooling or heating, and a set value of the intermediate pressure based on the pressure detected by the discharge pressure detection means. The intermediate pressure determination means for comparing the calculated result with the pressure detected by the intermediate pressure detection means, and the reduced pressure amount of the cooling / heating decompression device according to the determination result. Decompression amount determination means to By providing the pressure reducing device driving means for driving the heating / cooling decompression device according to the pressure amount, cooling / heating is performed without impairing the reliability of the compressor during both heating and cooling operations, and when the outdoor load and the indoor load fluctuate. It is possible to provide an air conditioner that can increase the capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷暖房装置の冷媒サ
イクル図
FIG. 1 is a refrigerant cycle diagram of an air conditioner according to an embodiment of the present invention.

【図2】同実施例の冷暖兼用減圧装置の制御フローチャ
ート
FIG. 2 is a control flowchart of the heating / cooling decompression device of the embodiment.

【図3】同実施例の冷房運転時の設定中間圧力と圧縮機
吐出圧力の相関を示す特性図
FIG. 3 is a characteristic diagram showing a correlation between a set intermediate pressure and a compressor discharge pressure during a cooling operation of the embodiment.

【図4】同実施例の暖房運転時の設定中間圧力と圧縮機
吐出圧力の相関を示す特性図
FIG. 4 is a characteristic diagram showing a correlation between a set intermediate pressure and a compressor discharge pressure during heating operation in the same embodiment.

【図5】従来の冷暖房装置の冷媒サイクル図FIG. 5: Refrigerant cycle diagram of a conventional cooling and heating device

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外側熱交換器 10 開閉弁 11 インジェクション管 12 冷房用減圧装置 13 冷房用逆止弁 14 気液分離器 15 冷暖兼用減圧装置 16 室内側熱交換器 19 暖房用逆止弁 20 暖房用減圧装置 21 吐出圧力検出手段 22 中間圧力検出手段 24 冷暖モード判定手段 25 設定中間圧力演算手段 26 中間圧力判定手段 27 減圧量判定手段 28 減圧装置駆動手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 10 Opening / closing valve 11 Injection pipe 12 Cooling decompressor 13 Cooling check valve 14 Gas-liquid separator 15 Cooling / heating decompressor 16 Indoor heat exchanger 19 Heating check Valve 20 Heating decompression device 21 Discharge pressure detection means 22 Intermediate pressure detection means 24 Cooling / heating mode determination means 25 Set intermediate pressure calculation means 26 Intermediate pressure determination means 27 Decompression amount determination means 28 Decompression device drive means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外側熱交換器、冷房
用減圧装置、冷房用逆止弁、気液分離器、減圧量可変の
冷暖兼用減圧装置、室内側熱交換器を順次連通し、前記
冷房用減圧装置と前記冷房用逆止弁に並列に位置する暖
房用逆止弁と暖房用減圧装置と、前記気液分離器と前記
圧縮機を連通して開閉弁を有するインジェクション管
と、前記圧縮機出口の圧力を検出する吐出圧力検出手段
と、前記気液分離器の圧力を検出する中間圧力検出手段
と、冷房ないし暖房を判定する冷暖モード判定手段と、
前記吐出圧力検出手段で検出した圧力を基に中間圧力の
設定値を冷暖房に応じて演算する設定中間圧力演算手段
と、この演算結果と前記中間圧力検出手段で検出した圧
力とを比較判定する中間圧力判定手段と、この判定結果
に応じて前記冷暖兼用減圧装置の減圧量を判定する減圧
量判定手段と、この減圧量に応じて前記冷暖兼用減圧装
置を駆動する減圧装置駆動手段とを備えた冷暖房装置。
1. A compressor, a four-way valve, an outdoor heat exchanger, a cooling pressure reducing device, a cooling check valve, a gas-liquid separator, a cooling / heating pressure reducing device with variable pressure reduction amount, and an indoor heat exchanger are sequentially connected. Then, an injection pipe having an opening / closing valve that connects the heating check valve and the heating pressure reducing apparatus, which are located in parallel with the cooling pressure reducing apparatus and the cooling check valve, and connects the gas-liquid separator and the compressor to each other. A discharge pressure detecting means for detecting the pressure of the compressor outlet, an intermediate pressure detecting means for detecting the pressure of the gas-liquid separator, a cooling / heating mode determining means for determining cooling or heating,
A set intermediate pressure calculating means for calculating a set value of the intermediate pressure according to the cooling and heating based on the pressure detected by the discharge pressure detecting means, and an intermediate judgment for comparing the calculation result with the pressure detected by the intermediate pressure detecting means. A pressure determining means, a decompression amount determining means for determining a decompression amount of the cooling / heating decompression device according to the determination result, and a decompression device driving means for driving the cooling / heating decompression device according to the decompression amount. Air conditioner.
JP10739292A 1992-04-27 1992-04-27 Air conditioning Expired - Fee Related JP3231393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10739292A JP3231393B2 (en) 1992-04-27 1992-04-27 Air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10739292A JP3231393B2 (en) 1992-04-27 1992-04-27 Air conditioning

Publications (2)

Publication Number Publication Date
JPH05302767A true JPH05302767A (en) 1993-11-16
JP3231393B2 JP3231393B2 (en) 2001-11-19

Family

ID=14457975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10739292A Expired - Fee Related JP3231393B2 (en) 1992-04-27 1992-04-27 Air conditioning

Country Status (1)

Country Link
JP (1) JP3231393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005424A1 (en) * 2011-07-05 2013-01-10 パナソニック株式会社 Refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005424A1 (en) * 2011-07-05 2013-01-10 パナソニック株式会社 Refrigeration cycle device
CN103348197A (en) * 2011-07-05 2013-10-09 松下电器产业株式会社 Refrigeration cycle device
JPWO2013005424A1 (en) * 2011-07-05 2015-02-23 パナソニック株式会社 Refrigeration cycle equipment
CN103348197B (en) * 2011-07-05 2016-02-10 松下知识产权经营株式会社 Refrigerating circulatory device

Also Published As

Publication number Publication date
JP3231393B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
US6467288B2 (en) Heat-pump water heater
US20080083236A1 (en) Method for controlling stop operation of air conditioner
JPH0522145B2 (en)
JPH11316055A (en) Discharge pressure control system and control method for transporting refrigeration unit using suction modulation
JPH11257762A (en) Refrigeration cycle system
JP2003130481A (en) Vapor compression type refrigerating cycle of air conditioner for automobile
KR100413307B1 (en) Air Conditioner
JP3418287B2 (en) Oil recovery control device for multi-type air conditioner
KR101166203B1 (en) Multi-Type Air conditioner and the controlling method
WO1994012834A1 (en) Air-conditioner
JPH05302767A (en) Space cooling and heating device
JPH06288654A (en) Device for controlling motor-operated expansion valve in air conditioner
JPH08114359A (en) Air conditioner
JPH0611205A (en) Air conditioning apparatus
US6669102B1 (en) Method for operating air conditioner in warming mode
KR100753029B1 (en) Defrosting apparatus and method for out-door unit in heat-pump type air-conditioner
JPH0833245B2 (en) Refrigeration system operation controller
KR100544707B1 (en) Water Cooling Type Air Conditioner And Method Of Controlling The Same
JPH0448170A (en) Separated heat pump type air-conditioning machine
JP2912811B2 (en) Air conditioner
KR100366450B1 (en) Method and device for controlling of stepping motor valve
JP2669069B2 (en) Heating and cooling machine
JP2007120938A (en) Partial overload eliminating method and device for air conditioner
JPH06272973A (en) Air conditioner
JP2836669B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees