JPH05302371A - Heat dissipation control device - Google Patents

Heat dissipation control device

Info

Publication number
JPH05302371A
JPH05302371A JP4104994A JP10499492A JPH05302371A JP H05302371 A JPH05302371 A JP H05302371A JP 4104994 A JP4104994 A JP 4104994A JP 10499492 A JP10499492 A JP 10499492A JP H05302371 A JPH05302371 A JP H05302371A
Authority
JP
Japan
Prior art keywords
heat dissipation
heat
space
airtight space
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4104994A
Other languages
Japanese (ja)
Inventor
Takashi Kishimoto
隆 岸本
Mikio Sei
三喜男 清
Futoshi Maeda
太 前田
Mitsuhiro Tsuruki
充啓 鶴来
Akira Sugawara
亮 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4104994A priority Critical patent/JPH05302371A/en
Publication of JPH05302371A publication Critical patent/JPH05302371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

PURPOSE:To perform free control of heat dissipation ability by providing a heat dissipation control body wherein an airtight space is filled with a porous substance having a continuous bore and a suction discharge means to feed and discharge gas to and from the airtight space of the heat dissipation control body. CONSTITUTION:An internal airtight space 12 of a heat dissipation control body 10, the outer wall of which is formed of a stainless steel, is filled with a porous substance 20 having a continuous pore. A suction discharge port 14 is formed in one end of the airtight space 12 and a suction discharge piping 30 is coupled thereto, and a breathable filter 16 is attached to the inner side of the suction discharge port 14. When the heat of a heat source H is transmitted to an external space 0, a gas conveying pump 34 is actuated to feed gas in the airtight space 12. When the degree of vacuum of the airtight space 12 is decreased, heat dissipation ability of the heat dissipation control body 10 is increased, and the heat of the heat source H is transmitted to the external space 0 through the heat dissipation control body 10. This constitution enables control of a heat dissipation amount when dissipation of heat to a low temperature space is effected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、放熱制御装置に関
し、詳しくは、建築構造の室内空間と室外空間、各種機
械装置の発熱部と外部空間など、隣接する空間の間で熱
の移動すなわち高温空間から低温空間への放熱が行われ
る場合に、その放熱量を制御するための装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipation control device, and more specifically, to heat transfer between adjacent spaces such as an indoor space and an outdoor space of a building structure, a heat generating portion and an external space of various mechanical devices. The present invention relates to a device for controlling the amount of heat radiation when heat is radiated from a space to a low temperature space.

【0002】[0002]

【従来の技術】一般住宅などの建築物では、室内空間を
暖房したり冷房したりしている時には、室内の熱エネル
ギーあるいは冷熱エネルギーが、室外に出来るだけ逃げ
ないようにしなければならない。そのため、室内と室外
を仕切る壁や床あるいは天井などの、いわゆる壁体構造
は、出来るだけ断熱性の良好な構造にしておく。すなわ
ち、室内空間と室外空間の間における高温空間から低温
空間への放熱が出来るだけ少ない状態にしておくのであ
る。
2. Description of the Related Art In a building such as a general house, when heating or cooling an indoor space, it is necessary to prevent heat energy or cold energy in the room from escaping to the outside as much as possible. Therefore, a so-called wall structure such as a wall or a floor or a ceiling that separates the room from the outdoors should have a structure with good heat insulation. That is, the heat radiation from the high temperature space to the low temperature space between the indoor space and the outdoor space is kept as small as possible.

【0003】しかし、外気温が適当で、暖房や冷房を行
わなくても良い状態で、室内空間で加熱調理を行った
り、発熱量の多い機械装置などを作動させている場合な
どは、室内空間に熱がこもらないように、高温の室内空
間から低温の室外空間への放熱を良好にしておく必要が
ある。この場合には、壁体構造として、出来るだけ放熱
性のよい構造が望まれる。また、太陽熱で室内を温めよ
うとする場合には、室外空間から室内空間への熱の供給
が効率的に行われるように、やはり、壁体構造の放熱性
を高めておくのが好ましいことになる。
However, when the room temperature is adequate and heating or cooling is not required and cooking is performed in the indoor space or a mechanical device having a large amount of heat generation is operated, the indoor space is In order to prevent heat from staying in the room, it is necessary to ensure good heat dissipation from the high temperature indoor space to the low temperature outdoor space. In this case, the wall structure is desired to have a structure with good heat dissipation. In addition, when trying to warm the room with solar heat, it is preferable to enhance the heat dissipation of the wall structure so that heat can be efficiently supplied from the outdoor space to the indoor space. Become.

【0004】このように、建築物の壁体構造について
は、状況によって、高い放熱性が要求されたり、逆に、
低い放熱性が要求されたりする場合がある。そのため、
壁体構造を単純に、断熱性材料あるいは高放熱性材料で
構成していると、前記したように逆の性質が要求される
場合に、十分に対応できないことになる。そこで、同じ
壁体構造で、状況に合わせて、その放熱性を制御できる
ようにしておくことが要求される。
As described above, in the wall structure of a building, high heat dissipation is required depending on the situation, or conversely,
There are cases where low heat dissipation is required. for that reason,
If the wall structure is simply made of a heat insulating material or a highly heat radiating material, it is not possible to sufficiently cope with the case where the opposite property is required as described above. Therefore, it is required to control the heat radiation property of the same wall structure according to the situation.

【0005】従来、壁体構造の放熱性を制御する方法と
して、例えば、窓に対してカーテンを取り付けておく方
法がある。カーテンを閉めた状態では、カーテンと窓ガ
ラスの間に存在する空気層が良好な断熱材として機能す
るので、断熱性の高いすなわち放熱性の低い壁体構造と
なる。しかし、カーテンを開ければ、窓ガラスのみで室
内空間と室外空間が仕切られるので、放熱性が高くな
る。カーテンと同様の機能を有する構造として、障子や
シャッターなどもある。
Conventionally, as a method of controlling the heat dissipation of the wall structure, for example, there is a method of attaching a curtain to a window. When the curtain is closed, the air layer existing between the curtain and the window glass functions as a good heat insulating material, so that the wall structure has a high heat insulating property, that is, a low heat radiating property. However, when the curtain is opened, the indoor space and the outdoor space are separated from each other only by the window glass, so that the heat dissipation is enhanced. As a structure having the same function as the curtain, there are shoji screens and shutters.

【0006】上記のような放熱性の制御を要求されるの
は、建築物の壁体構造だけではない。例えば、近年、省
エネあるいは電力の平準化を目的として、各種蓄熱装置
の利用が増加しているが、このような蓄熱装置において
は、熱源から外部空間への放熱量を自由に制御できるよ
うにしておく必要がある。すなわち、熱を蓄える段階で
は、熱源から外部空間への放熱を遮断しておき、蓄えら
れた熱を暖房などに利用する段階では、熱源から外部空
間への放熱性を良好にしておく必要がある。その他、各
種機械装置においても、高温空間と低温空間との間で、
熱の移動すなわち放熱性を、高くしたり低くしたり、自
由に制御することが要求される場合がある。
It is not only the wall structure of the building that is required to control the heat dissipation as described above. For example, in recent years, the use of various heat storage devices has been increasing for the purpose of energy saving or leveling of electric power. In such heat storage devices, it is possible to freely control the amount of heat released from the heat source to the external space. I need to leave. That is, at the stage of storing heat, it is necessary to block the heat radiation from the heat source to the external space, and at the stage of utilizing the stored heat for heating etc., it is necessary to make the heat radiation from the heat source to the external space good. .. In addition, in various mechanical devices, between the high temperature space and the low temperature space,
In some cases, it is required to freely control the transfer of heat, that is, the heat dissipation property, by increasing or decreasing it.

【0007】一般的に、放熱性を制御する方法として
は、例えば、高温空間と低温空間の間に存在する温度境
界層を気流や水流等で強制的に攪乱することによって伝
熱性すなわち放熱性を高めるとともに、この気流や水流
等の強さを調整することによって放熱性を制御すること
が考えられる。また、金属等の熱伝導率の高い材料を熱
源あるいは冷熱源に接触させ、熱や冷熱を強制的にリー
クさせて放熱性を高めるとともに、この金属等の接触あ
るいは非接触を操作して、放熱性を制御することも考え
られている。これらの方法では、放熱性の制御を、強制
対流と自然対流との状態変更、あるいは、熱リークの有
無などで行っていることになる。
Generally, as a method of controlling heat dissipation, for example, the heat transfer property, that is, heat dissipation is obtained by forcibly disturbing the temperature boundary layer existing between the high temperature space and the low temperature space by an air flow or a water flow. It is conceivable that the heat dissipation is controlled by increasing the strength and adjusting the strength of the air flow or water flow. In addition, a material with high thermal conductivity such as metal is brought into contact with a heat source or a cold heat source to forcibly leak heat or cold heat to enhance heat radiation, and the contact or non-contact of this metal is operated to release heat. It is also considered to control sex. In these methods, the heat dissipation is controlled by changing the state of forced convection and natural convection, or by the presence or absence of heat leak.

【0008】[0008]

【発明が解決しようとする課題】ところが、前記のよう
な従来における放熱性の制御方法では、放熱性の制御を
効率的に行うことができないという問題があった。すな
わち、例えば、前記した建築物の窓にカーテンを取り付
けておく方法では、カーテンを開けた状態での放熱性は
良好であるが、カーテンを閉めても、カーテンと窓ガラ
スの間に空気層が存在するだけでは、完全な断熱性は望
めない。
However, the conventional heat dissipation control method described above has a problem that the heat dissipation cannot be efficiently controlled. That is, for example, in the method of attaching the curtain to the window of the building described above, the heat dissipation is good when the curtain is open, but even when the curtain is closed, an air layer is present between the curtain and the window glass. It is not possible to expect perfect heat insulation if it exists.

【0009】また、断熱性を高めるには、既知の各種断
熱材を用いればよいが、断熱材自体の伝熱特性は一定で
あるから、この断熱材の表面で、前記した気流や水流の
供給、熱伝導材料の接触などを行っても、全体の放熱性
を大きく変化させることは不可能である。このように、
従来の方法では、ある程度の放熱性を有する状態で、そ
の放熱性を制御するのは可能であっても、放熱性が極め
て少ない状態すなわちほぼ完全な断熱状態と、放熱性の
良好な状態との間の広い範囲で放熱性を制御することは
不可能であった。
Further, in order to enhance the heat insulating property, various known heat insulating materials may be used, but since the heat transfer characteristics of the heat insulating material itself are constant, the above-mentioned air flow and water flow are supplied on the surface of this heat insulating material. However, it is impossible to greatly change the overall heat dissipation even if the heat conductive material is brought into contact. in this way,
In the conventional method, although it is possible to control the heat radiation property with a certain amount of heat radiation property, there is a very low heat radiation property, that is, an almost completely adiabatic state, and a good heat radiation property. It was impossible to control the heat dissipation in a wide range.

【0010】そこで、この発明の課題は、放熱性の制御
が効率的に行えるとともに、特に、高度の断熱状態から
放熱性の良好な状態までの広い範囲で放熱性の制御が行
える放熱制御装置を提供することにある。
Therefore, an object of the present invention is to provide a heat dissipation control device capable of efficiently controlling the heat dissipation and, in particular, capable of controlling the heat dissipation in a wide range from a highly adiabatic state to a good heat dissipation state. To provide.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる放熱制御装置は、高温空間と低温空間の
間に配置され、気密空間内に連続気孔を有する多孔体が
充填された放熱制御体と、この放熱制御体の気密空間に
気体を供給排出する吸排気手段とを備えている。
A heat dissipation control device according to the present invention, which solves the above problems, is arranged between a high-temperature space and a low-temperature space and has a hermetic space filled with a porous body having continuous pores. A control body and an intake and exhaust means for supplying and exhausting gas to and from the airtight space of the heat dissipation control body are provided.

【0012】高温空間および低温空間とは、建築物の室
内空間と室外空間、蓄熱装置の熱源と外部空間など、温
度差があって、相互の間で熱の移動すなわち放熱を行わ
せたり、放熱を遮断したりする必要のある空間であれ
ば、任意の構造空間に適用できる。放熱制御体は、上記
のような高温空間と低温空間とを仕切る境界部分に配置
される。放熱制御体は、高温空間と低温空間の仕切りと
して板状あるいは壁状に形成されていてもよいし、放熱
制御体が容器状あるいは箱状をなし、その内側と外側に
高温空間および低温空間がそれぞれ配置されるようにな
っていてもよい。さらに、高温空間と低温空間の境界の
うち、大部分を断熱壁で構成し、一部のみを放熱制御体
で構成しておくこともできる。
The high-temperature space and the low-temperature space have a temperature difference such as an indoor space and an outdoor space of a building, a heat source of a heat storage device and an external space, and heat is transferred between them, that is, heat is radiated. It can be applied to any structural space as long as it is a space that needs to be blocked. The heat dissipation control body is arranged at the boundary portion that partitions the high temperature space and the low temperature space as described above. The heat dissipation control body may be formed in a plate shape or a wall shape as a partition between the high temperature space and the low temperature space, or the heat dissipation control body has a container shape or a box shape, and the high temperature space and the low temperature space are provided inside and outside thereof. Each may be arranged. Further, it is also possible to configure most of the boundary between the high-temperature space and the low-temperature space with a heat insulating wall and a part thereof with a heat dissipation control body.

【0013】放熱制御体には、気密空間が設けられ、こ
の気密空間内に連続気孔を有する多孔体が充填されてい
る。気密空間とは、その中に導入する気体が漏れないよ
うな気密状態を構成できる構造であればよく、気密空間
の外壁は、気密性の金属、合成樹脂その他の材料で、容
器状、箱状あるいは袋状に形成されている。気密空間の
外壁材料としては、隣接する高温空間あるいは低温空間
の温度環境に耐えることが必要であり、温度環境に合わ
せて、適当な材料が選択される。具体的には、剛性材料
としては、アルミニウム、ステンレス鋼、亜鉛メッキ鋼
のように、気密構造が作製し易く、腐食しにくい材料が
好ましい。気密空間の外壁を構成する材料として、袋体
を用いる場合、つぎの材料が好ましい。すなわち、ポリ
エチレン、ポリプロピレン等からなる熱融着性プラスチ
ック層と、ポリエチレンテレフタレート、延伸ポリアミ
ド、延伸ポリプロピレン等の表面保護プラスチック層と
の間に、ポリ塩化ビニリデン、ポリエチレンビニルアル
コール、アルミニウム蒸着ポリエステル、アルミニウム
箔などの気体非透過性(ガスバリヤ性)のプラスチック
層や金属層を介在させたラミネート形態のフィルムまた
はシートが用いられる。
An airtight space is provided in the heat dissipation control body, and a porous body having continuous pores is filled in the airtight space. The airtight space may be any structure that can form an airtight state so that the gas introduced into it does not leak, and the outer wall of the airtight space is made of airtight metal, synthetic resin or other material, and has a container shape or a box shape. Alternatively, it is formed in a bag shape. As the outer wall material of the airtight space, it is necessary to withstand the temperature environment of the adjacent high temperature space or low temperature space, and an appropriate material is selected according to the temperature environment. Specifically, the rigid material is preferably a material such as aluminum, stainless steel, or galvanized steel that is easy to form an airtight structure and is resistant to corrosion. When a bag is used as the material forming the outer wall of the airtight space, the following materials are preferable. That is, between the heat-fusible plastic layer made of polyethylene, polypropylene, etc. and the surface protective plastic layer made of polyethylene terephthalate, stretched polyamide, stretched polypropylene, etc., polyvinylidene chloride, polyethylene vinyl alcohol, aluminum vapor-deposited polyester, aluminum foil, etc. A film or sheet in the form of a laminate having a gas impermeable (gas barrier) plastic layer or metal layer is used.

【0014】多孔体は、気密空間に充填された状態で、
全体に微細な連続気孔が形成されるような構造であれば
よい。具体的には、例えば、微粉末材料を気密空間に充
填しておけばよい。微粉末としては、乾式製法あるいは
湿式製法で製造された微粒子シリカ、コロイダルゾルの
乾燥物、エアロゲル、ポリケイ酸、あるいはこれらの表
面に凝集防止処理を施したもの等が挙げられる。
The porous body is filled in an airtight space,
The structure may be such that fine continuous pores are formed throughout. Specifically, for example, the airtight space may be filled with the fine powder material. Examples of the fine powder include fine particle silica produced by a dry method or a wet method, a dried product of colloidal sol, airgel, polysilicic acid, and those obtained by subjecting the surface thereof to an aggregation prevention treatment.

【0015】微粉末の粒径(凝集防止処理を施したもの
は処理後の粒径)は、1〜20nmの範囲であることが好
ましい。以下、この1〜20nmの範囲にある微粉末を
「超微粉末A」という。発明者らは、このような超微粉
末Aを用いた多孔体からなる優れた断熱材を、特願昭6
3−12826号として提案している。微粉末に施す凝
集防止処理としては、例えば、粒子表面のシラノール基
のOHに結合して水素結合の生起を妨げるようにするも
の、粒子同士に反発性をもたせて、直接的に粒子の凝集
を防止するもの等が好ましい。具体例としては、有機シ
ラン化合物、例えば、トリメチルメトキシシラン、ジメ
チルエトキシシラン、メチルトリメトキシシラン等のア
ルコキシシラン化合物、ジメチルクロロシラン、トリメ
チルクロロシラン、トリフェニルクロロシラン等のクロ
ロシラン化合物、ヘキサメチルジシラザン、ジメチルト
リメチルアミン等のシラザン化合物が挙げられるが、こ
れらに限定されるものではない。
The particle size of the fine powder (the particle size after the treatment for the particles subjected to the coagulation prevention treatment) is preferably in the range of 1 to 20 nm. Hereinafter, the fine powder in the range of 1 to 20 nm is referred to as "ultrafine powder A". The inventors of the present invention have proposed an excellent heat insulating material comprising a porous body using such ultrafine powder A in Japanese Patent Application No.
No. 3-12826 is proposed. Examples of the agglomeration prevention treatment applied to the fine powder include those that bind to the OH of the silanol group on the particle surface to prevent the occurrence of hydrogen bonds, and give repulsion to the particles to directly agglomerate the particles. What is prevented is preferable. Specific examples thereof include organic silane compounds, for example, alkoxysilane compounds such as trimethylmethoxysilane, dimethylethoxysilane and methyltrimethoxysilane, chlorosilane compounds such as dimethylchlorosilane, trimethylchlorosilane and triphenylchlorosilane, hexamethyldisilazane and dimethyltrimethylamine. And the like, but are not limited to these.

【0016】また、超微粉末Aとともに、輻射防止効果
のある微粉末(以下、「微粉末B」という)を一緒に用
いてもよい。この微粉末Bは、1次粒子が超微粉末Aの
それと比べて大きく、粒径は20〜10000nmの範囲
がよく、また、熱放射率が大きいもの、特に、波長3μ
m以上の赤外領域での熱放射率が0.8以上のものが好
ましい。
In addition to the ultrafine powder A, fine powder having a radiation preventing effect (hereinafter referred to as "fine powder B") may be used together. The fine powder B has primary particles larger than those of the ultrafine powder A, and the particle size is preferably in the range of 20 to 10000 nm, and the thermal emissivity is large, particularly, the wavelength is 3 μm.
It is preferable that the thermal emissivity in the infrared region of m or more is 0.8 or more.

【0017】微粉末Bの具体例としては、パーライトや
シラスバルーンの微粉砕物、スス、コージェライト、粘
土等の無機層状化合物、ケイソウ土、ケイ酸カルシウ
ム、カーボンブラック、SiC、TiO2 、ZrO、C
rO2 、Fe3 4 、CuS、CuO、MnO2 、Si
2 、Al2 3 、CoO、Li2 O、CaO等の微粉
末が挙げられる。
Specific examples of the fine powder B include finely pulverized products of perlite and shirasu balloon, soot, cordierite, inorganic layered compounds such as clay, diatomaceous earth, calcium silicate, carbon black, SiC, TiO 2 , ZrO, C
rO 2 , Fe 3 O 4 , CuS, CuO, MnO 2 , Si
Fine powders of O 2 , Al 2 O 3 , CoO, Li 2 O, CaO and the like can be mentioned.

【0018】さらに、気密空間内を真空状態で長期間維
持する必要がある場合には、気密空間の外壁などを通し
て外部から侵入する微量のガスを吸着するゲッター剤を
混入しておいてもよい。ゲッター剤としては、活性炭、
合成ゼオライト等のシリカアルミナ系吸着剤、粘土層間
架橋体等の高性能吸着剤が挙げられる。多孔体として
は、上記のような微粉末をそのまま気密空間に充填して
おいてもよいが、微粉末をボード状に圧縮成形し、この
ボード状多孔体を用いれば、取り扱い易く、形状維持性
も良好になる。
Further, when it is necessary to maintain the airtight space in a vacuum state for a long time, a getter agent for adsorbing a small amount of gas invading from the outside through the outer wall of the airtight space may be mixed. As a getter agent, activated carbon,
Examples thereof include silica-alumina-based adsorbents such as synthetic zeolite and high-performance adsorbents such as clay interlayer cross-linked products. As the porous body, the fine powder as described above may be directly filled in the airtight space, but if the fine powder is compression-molded into a board shape and this board-like porous body is used, it is easy to handle and maintain its shape. Will also be good.

【0019】放熱制御体の気密空間には、吸排気口を設
け、この吸排気口につながる吸排気配管を、真空ポンプ
等の吸排気装置に連結しておく。この吸排気装置の駆動
によって、気密空間に、気体を送り込んで満たしたり、
気密空間から気体を排出して、気密空間を真空状態にす
ることができる。吸排気装置は、気密空間内の圧力を、
100torr以下、好ましくは10torr以下程度の真空状
態に維持できる排気能力を備えたものを用いる。
An intake / exhaust port is provided in the airtight space of the heat dissipation controller, and an intake / exhaust pipe connected to the intake / exhaust port is connected to an intake / exhaust device such as a vacuum pump. By driving this intake and exhaust device, gas is sent into the airtight space to fill it,
Gas can be discharged from the airtight space to bring the airtight space into a vacuum state. The intake / exhaust device reduces the pressure in the airtight space,
A material having an exhaust capability capable of maintaining a vacuum state of 100 torr or less, preferably 10 torr or less is used.

【0020】吸排気口に、通気性フィルタを備えておけ
ば、気密空間内の多孔体を構成する微粉末が、外部に逃
げだすのを阻止できる。通気性フィルタの代わりに、多
孔体すなわち微粉末の全体を、通気性の袋で包んでおい
ても、同様の機能が発揮できる。この通気性袋の材料と
しては、排気時に損傷し難いものが適切であり、例え
ば、ポリエステル不織布、ガラス繊維不織布、セラミッ
ク繊維不織布、および、それらのフェルト状材料などが
挙げられる。多孔体が、全体でひとつの固体物であった
り、ある程度の大きさの塊からなるものであれば、通気
性フィルタを設けなくても、吸排気口から逃げだすこと
はない。
If a gas permeable filter is provided at the intake / exhaust port, it is possible to prevent the fine powder constituting the porous body in the airtight space from escaping to the outside. The same function can be achieved by wrapping the entire porous body, that is, the fine powder, in a breathable bag instead of the breathable filter. Suitable materials for the breathable bag are those that are not easily damaged when exhausted, and examples thereof include polyester nonwoven fabric, glass fiber nonwoven fabric, ceramic fiber nonwoven fabric, and felt-like materials thereof. If the porous body is a single solid body as a whole or is composed of a lump of a certain size, it will not escape from the intake / exhaust port without providing a breathable filter.

【0021】気密空間に導入する気体としては、通常の
空気のほか、フロンガス、CO2 ガス、アルゴンガス等
が用いられ、高温環境で発火したり爆発する危険性がな
く、漏れた場合にも毒性のないような安全性の高いガス
が好ましい。放熱制御体を、比較的放熱性の低い断熱状
態で使用することが多い場合には、気体として熱伝導率
の低いものを用いるのが好ましい。逆に、気体の熱伝導
率が高ければ、放熱性が非常に高い状態にも設定するこ
とが可能になる。
As the gas to be introduced into the airtight space, in addition to ordinary air, CFC gas, CO 2 gas, argon gas, etc. are used, and there is no danger of igniting or exploding in a high temperature environment, and toxicity even if leaked. It is preferable to use a highly safe gas that has no When the heat dissipation control body is often used in an adiabatic state having relatively low heat dissipation, it is preferable to use a gas having a low thermal conductivity as the gas. On the contrary, if the thermal conductivity of the gas is high, it is possible to set the state in which the heat dissipation is very high.

【0022】気体として空気を用いる場合には、吸排気
配管を大気中に開放しておき、吸排気装置で、気密空間
に大気を取り込んだり、気密空間の空気を大気に放出し
たりしてもよい。気体として空気以外のガスを用いる場
合は、気密空間に気体を導入しない状態で、気体を保存
しておける気体貯蔵容器を備えておくのが好ましい。気
体貯蔵容器は、通常の気体保存用ボンベやタンク、袋な
どの容器と同様の構造でよい。
When air is used as the gas, the intake / exhaust piping is opened to the atmosphere, and the intake / exhaust device takes the atmosphere into the airtight space or releases the air in the airtight space to the air. Good. When a gas other than air is used as the gas, it is preferable to provide a gas storage container capable of storing the gas in a state where the gas is not introduced into the airtight space. The gas storage container may have the same structure as a container such as an ordinary gas storage cylinder, tank, or bag.

【0023】気密空間への気体の吸排気を良好に制御す
るには、圧力センサや温度センサ、あるいは、吸排気装
置の自動制御装置を組み込むことが有効である。この発
明の放熱制御装置は、前記した建築物の室内外を仕切る
壁体構造や、熱源を備えた機械装置の、熱源と外部空間
とを仕切る壁構造、蓄熱装置の外壁構造など、放熱性の
高い状態と低い状態の両方の状態を、必要に応じて切り
換え調整することが必要とされる各種用途に利用でき
る。
In order to satisfactorily control the intake and exhaust of gas into the airtight space, it is effective to incorporate a pressure sensor, a temperature sensor, or an automatic control device for the intake and exhaust devices. The heat dissipation control device of the present invention has a wall structure that partitions the interior and exterior of the building described above, a wall structure that separates a heat source and an external space of a mechanical device that includes a heat source, an outer wall structure of a heat storage device, etc. Both the high state and the low state can be used for various applications in which it is necessary to switch and adjust as necessary.

【0024】[0024]

【作用】放熱制御体を、高温空間と低温空間の間に配置
しておくと、両空間の間における伝熱性あるいは放熱性
は、放熱制御体の放熱性によって決まる。放熱制御体の
気密空間に、連続気孔を有する多孔体を充填した状態
で、気密空間の気体を排出してしまうと、多孔体の連続
気孔が真空状態になる。真空部分では伝熱は全く行われ
ず、多孔体自体の伝熱性も低いので、放熱制御体の放熱
性は極めて低い状態になる。言い換えると、高度な断熱
性を示すことになる。
When the heat dissipation controller is arranged between the high temperature space and the low temperature space, the heat transferability or heat dissipation between the two spaces is determined by the heat dissipation of the heat dissipation controller. If the gas in the airtight space is exhausted in a state where the airtight space of the heat dissipation control body is filled with the porous body having continuous pores, the continuous pores of the porous body become a vacuum state. Since no heat is transferred in the vacuum portion and the heat transfer property of the porous body itself is low, the heat release property of the heat dissipation control body is extremely low. In other words, it shows a high degree of heat insulation.

【0025】放熱制御体の気密空間に気体を導入する
と、気密空間の真空度が低下する。真空度がわずかでも
変化すると、熱の伝導性はきわめて敏感に変化するの
で、放熱制御体の伝熱性も大きく変化する。すなわち、
気密空間の真空度の調整すなわち気密空間に送り込む気
体の量を調整することによって、同じ放熱制御体を、極
めて放熱性の低い状態から、より放熱性の良好な状態ま
で、放熱性を自由に制御できることになる。気体の吸排
気は、真空ポンプ等で迅速かつ精密に制御できるので、
放熱制御体の放熱性を、必要に応じて迅速かつ正確に制
御することが可能である。このようにして気密空間の真
空度を制御すれば、放熱性の低い状態と放熱性の高い状
態で、放熱制御体の熱伝導率を例えば4〜5倍も広い幅
で変化させることが可能になる。
When a gas is introduced into the airtight space of the heat dissipation control body, the degree of vacuum in the airtight space is lowered. If the degree of vacuum changes even slightly, the thermal conductivity changes extremely sensitively, so the thermal conductivity of the heat dissipation control body also changes significantly. That is,
By adjusting the degree of vacuum in the airtight space, that is, adjusting the amount of gas sent into the airtight space, the same heat dissipation control body can freely control heat dissipation from a state with extremely low heat dissipation to a state with better heat dissipation. You can do it. Intake and exhaust of gas can be controlled quickly and precisely with a vacuum pump, etc.
It is possible to quickly and accurately control the heat dissipation of the heat dissipation controller as needed. By controlling the degree of vacuum in the airtight space in this manner, it is possible to change the thermal conductivity of the heat dissipation control body in a wide range of, for example, 4 to 5 times in a low heat dissipation state and a high heat dissipation state. Become.

【0026】放熱制御体には、機械的な作動部分や操作
部分がないので、放熱制御体を、建築物の壁体構造や機
械装置の内部に埋め込んでおいたり、一体化させておい
たりすることができ、建築物や機械装置などの任意の構
造部分に放熱制御体を組み込んで、その部分の放熱性を
制御することができる。連続気孔を有する多孔体が、微
粉末シリカを圧縮成形してなる多孔体であれば、多孔体
の空隙率が非常に高く、前記した真空状態における断熱
性を非常に高くできるとともに、多孔体が剛性あるいは
機械的強度を備えることになるので、使用中に気密空間
内の空隙率に部分的な偏りが生じることがなく、また、
気密空間の外壁材料の強度がそれほど要求されないの
で、構造の簡略化を図ることができる。
Since the heat dissipation control body does not have a mechanical operation part or an operation part, the heat dissipation control body may be embedded in the wall structure of a building or the inside of a mechanical device, or may be integrated. It is possible to incorporate a heat dissipation control body into an arbitrary structural part such as a building or a mechanical device and control the heat dissipation of that part. If the porous body having continuous pores is a porous body formed by compression-molding fine powder silica, the porosity of the porous body is very high, and the heat insulation property in the above-mentioned vacuum state can be made very high, and the porous body is Since it has rigidity or mechanical strength, there is no partial bias in the porosity in the airtight space during use, and
Since the strength of the outer wall material of the airtight space is not so required, the structure can be simplified.

【0027】[0027]

【実施例】ついで、この発明の実施例を図面を参照しな
がら以下に説明する。図1は、放熱制御装置の全体構造
を表している。放熱制御体10は、概略板状をなしてい
る。放熱制御体10は、外壁がステンレス鋼などで構成
され、その内部は気密空間12となっている。気密空間
12には、微粉末シリカを圧縮成形したものなどからな
り、連続気孔を有する多孔体20が充填されている。気
密空間12の一端に、吸排気口14が設けられ、吸排気
口14には吸排気配管30が連結されている。吸排気口
14の内側には、通気性フィルタ16が取り付けられて
いて、気体だけを通過させて、内部の多孔体20を構成
する微粉末などが逃げださないようにしている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the overall structure of the heat dissipation control device. The heat dissipation control body 10 has a substantially plate shape. The heat dissipation control body 10 has an outer wall made of stainless steel or the like, and has an airtight space 12 inside. The airtight space 12 is made of, for example, compression-molded fine silica powder, and is filled with a porous body 20 having continuous pores. An intake / exhaust port 14 is provided at one end of the airtight space 12, and an intake / exhaust pipe 30 is connected to the intake / exhaust port 14. A gas permeable filter 16 is attached to the inside of the air intake / exhaust port 14 so that only gas is allowed to pass therethrough and fine powder or the like constituting the internal porous body 20 does not escape.

【0028】吸排気配管30は、封止バルブ32を経
て、通常の真空ポンプからなる気体搬送ポンプ34の一
端に連結されている。気体搬送ポンプ34の他端は、配
管を経て気体貯蔵容器40に連結されている。気体貯蔵
容器40には、フロンガスなどの気体が貯蔵されてい
る。このような放熱制御装置で、放熱制御体10を、高
温の熱源Hと外部空間Oの間に配置しておく。気体搬送
ポンプ34を作動させて、放熱制御体10の気密空間1
2を排気すれば、気密空間12内は、ほぼ完全な真空状
態になり、気体は全て気体貯蔵容器40に送られる。気
密空間12が真空状態であれば、放熱制御体10の放熱
性は極めて低いものとなり、放熱制御体10は良好な断
熱材として機能する。したがって、熱源Hからの放熱
は、放熱制御体10で遮断され、外部空間Oに熱が逃げ
ることがない。
The intake / exhaust pipe 30 is connected to one end of a gas transfer pump 34, which is an ordinary vacuum pump, via a sealing valve 32. The other end of the gas transfer pump 34 is connected to the gas storage container 40 via a pipe. The gas storage container 40 stores a gas such as CFC gas. In such a heat dissipation controller, the heat dissipation controller 10 is arranged between the high temperature heat source H and the external space O. By operating the gas transfer pump 34, the airtight space 1 of the heat dissipation control body 10
When 2 is evacuated, the inside of the airtight space 12 becomes almost completely in a vacuum state, and all the gas is sent to the gas storage container 40. When the airtight space 12 is in a vacuum state, the heat dissipation property of the heat dissipation controller 10 is extremely low, and the heat dissipation controller 10 functions as a good heat insulating material. Therefore, the heat radiation from the heat source H is blocked by the heat radiation control body 10, and the heat does not escape to the external space O.

【0029】熱源Hの熱を外部空間Oに伝えたい場合に
は、気体搬送ポンプ34を作動させて、放熱制御体10
の気密空間12に気体を送り込む。気密空間12の真空
度が下がれば、放熱制御体10の放熱性が高まるので、
熱源Hの熱は放熱制御体10を経て外部空間Oに伝わる
ことになる。図2は、上記ような構造の放熱制御装置
を、建築物の床暖房設備に組み込んだ状態を表してい
る。床材50の下方で柱材52の間の空間に、上方か
ら、放熱制御体10、蓄熱材54、ヒータ56、蓄熱材
54を順番に積み重ねて配置している。さらに、その下
には断熱材58が施工されている。放熱制御体10に
は、吸排気配管30を経て気体搬送ポンプなどが接続さ
れているが、前記図1と同様の構造であるので、図示を
省略している。
When it is desired to transfer the heat of the heat source H to the external space O, the gas transfer pump 34 is operated and the heat dissipation control unit 10 is operated.
The gas is sent into the airtight space 12 of. If the degree of vacuum of the airtight space 12 decreases, the heat dissipation of the heat dissipation control body 10 increases,
The heat of the heat source H is transmitted to the external space O via the heat dissipation control body 10. FIG. 2 shows a state in which the heat dissipation control device having the above-described structure is incorporated in a floor heating facility for a building. The heat radiation control body 10, the heat storage material 54, the heater 56, and the heat storage material 54 are stacked in this order from the top in the space below the floor material 50 and between the pillar materials 52. Further, a heat insulating material 58 is installed below it. A gas transfer pump or the like is connected to the heat dissipation controller 10 via an intake / exhaust pipe 30, but the structure is similar to that of FIG. 1 and is not shown.

【0030】ヒータ56に通電して加熱し、蓄熱材54
に熱を蓄えた状態で、放熱制御体10の放熱性を調整制
御する。放熱制御体10の放熱性を高くしておけば、蓄
熱材54から床材50の上に室内空間に、熱が良好に伝
わり、室内を暖房することができる。放熱制御体10の
放熱性を低くしておけば、蓄熱材54から室内空間への
熱の伝達が少なくなるので、室内の暖房を弱くしたり、
暖房を遮断したりすることができる。
The heater 56 is energized and heated to heat the heat storage material 54.
The heat radiation property of the heat radiation control body 10 is adjusted and controlled while the heat is stored in the. If the heat dissipation of the heat dissipation controller 10 is increased, the heat can be satisfactorily transferred from the heat storage material 54 to the floor material 50 into the indoor space, and the room can be heated. If the heat dissipation of the heat dissipation control body 10 is set low, the heat transfer from the heat storage material 54 to the indoor space is reduced, so that the heating of the room is weakened,
You can turn off the heating.

【0031】したがって、放熱制御体10の放熱性を制
御することによって、室内空間の暖房の強さを自由に調
整できることになる。この場合、ヒータ56の発熱量や
蓄熱材54の温度自体とは関係なく、室内空間の暖房を
制御できる。このような構造であれば、例えば、深夜電
力などを利用してヒータ56を発熱させ、蓄熱材54に
熱エネルギーを蓄えておくとともに、昼間は、ヒータ5
6を止めて、放熱制御体10による暖房の制御のみを行
うことも可能であり、暖房コストの低減あるいは電気エ
ネルギーおよび熱エネルギーの有効利用を図ることがで
きる。
Therefore, by controlling the heat dissipation of the heat dissipation controller 10, the heating intensity of the indoor space can be freely adjusted. In this case, the heating of the indoor space can be controlled regardless of the amount of heat generated by the heater 56 and the temperature itself of the heat storage material 54. With such a structure, for example, the heater 56 is caused to generate heat by using late-night power or the like to store thermal energy in the heat storage material 54, and the heater 5 is used during the daytime.
It is also possible to stop 6 and only control the heating by the heat radiation control body 10, and it is possible to reduce the heating cost or effectively use the electric energy and the thermal energy.

【0032】つぎに、図3に示す実施例では、気体貯蔵
容器を用いず、気体として大気を用いている。放熱制御
体10につながる吸排気配管30の途中に、大気中に開
放された吸気口38と真空ポンプ34側への接続を切り
換える切換バルブ36を備えている。真空ポンプ34に
は、大気に開放された排気口39を備えている。この実
施例では、放熱制御体10の放熱性を下げるには、切換
バルブ36を、気密空間12と真空ポンプ34をつなぐ
状態に切り換えて、真空ポンプ34を作動させ、気密空
間12内の空気を排出して、排気口39から大気中に放
出する。放熱制御体10の放熱性を高めるには、切換バ
ルブ36を、気密空間12と吸気口38がつながる状態
にする。気密空間12が真空状態であれば、吸気口38
からは自然に大気が流入して、気密空間12の真空度が
下がり、放熱制御体10の放熱性が高くなる。
Next, in the embodiment shown in FIG. 3, the atmosphere is used as the gas without using the gas storage container. In the middle of the intake / exhaust pipe 30 connected to the heat dissipation control body 10, a switching valve 36 for switching the connection to the intake port 38 opened to the atmosphere and the vacuum pump 34 side is provided. The vacuum pump 34 has an exhaust port 39 that is open to the atmosphere. In this embodiment, in order to reduce the heat radiation performance of the heat radiation control body 10, the switching valve 36 is switched to a state in which the airtight space 12 and the vacuum pump 34 are connected, and the vacuum pump 34 is operated to remove the air in the airtight space 12. It is discharged and discharged from the exhaust port 39 into the atmosphere. In order to improve the heat dissipation of the heat dissipation control body 10, the switching valve 36 is brought into a state where the airtight space 12 and the intake port 38 are connected. If the airtight space 12 is in a vacuum state, the intake port 38
From this, the air naturally flows in, the degree of vacuum of the airtight space 12 is lowered, and the heat dissipation of the heat dissipation control body 10 is increased.

【0033】図4は、多孔体20の構造が異なる実施例
を表している。この実施例では、ポリエステル不織布な
どからなる通気性袋24の内部に、微粉末の圧縮成形体
22を封入して、多孔体20を構成している。そして、
この通気性袋24すなわち多孔体20を、気密容器状を
なす放熱制御体10の気密空間12に収容している。し
たがって、多孔体20を取り扱うときには、通気性袋2
4のままで取り扱うことができるので、微粉末が飛び散
ったり、圧縮成形体22が欠けたり損傷したりする心配
がなく、放熱制御体10の気密空間12に多孔体20を
出し入れする作業を行い易い。
FIG. 4 shows an embodiment in which the structure of the porous body 20 is different. In this embodiment, a fine powder compression molded body 22 is enclosed in a breathable bag 24 made of polyester nonwoven fabric or the like to form a porous body 20. And
The breathable bag 24, that is, the porous body 20 is housed in the airtight space 12 of the heat dissipation control body 10 in the form of an airtight container. Therefore, when handling the porous body 20, the breathable bag 2
Since it can be handled as it is, there is no concern that the fine powder will scatter and the compression molded body 22 will be chipped or damaged, and the work of putting the porous body 20 in and out of the airtight space 12 of the heat dissipation control body 10 can be easily performed. ..

【0034】つぎに、より具体的な実施例について説明
する。 −実施例1− 微粉末として、ジメチルジクロロシランで表面処理され
た超微粒子乾式シリカ(一次粒径6nm)を用意し、この
微粉末を、ポリエステル不織布からなる通気性シートで
作製された袋に充填し、プレス成形して、嵩密度210
kg/m3 、厚さ5mmの板状をなす多孔体を得た。PET/
アルミ箔/LLDPEの3層構成からなるガスバリヤ性
シートで作製され、一部に吸排気口を設けた袋に、前記
板状多孔体を収容し、袋をヒートシールして密封した。
これが、放熱制御体となる。
Next, a more specific embodiment will be described. -Example 1-As a fine powder, ultrafine particle dry silica (primary particle size: 6 nm) surface-treated with dimethyldichlorosilane was prepared, and this fine powder was filled in a bag made of a breathable sheet made of a polyester nonwoven fabric. And press-mold to obtain bulk density 210
A plate-shaped porous body having a kg / m 3 and a thickness of 5 mm was obtained. PET /
The plate-shaped porous body was housed in a bag made of a gas barrier sheet having a three-layer structure of aluminum foil / LLDPE and provided with an intake / exhaust port, and the bag was heat-sealed and sealed.
This serves as a heat dissipation control body.

【0035】吸排気口には吸排気配管を取り付け、吸排
気配管には、封止バルブ、小型真空ポンプ、リークバル
ブ、圧力計などを取り付けた。この吸排気系は、前記図
3に示したものと同様の構造である。したがって、気体
としては空気を用い、気体貯蔵容器を用いていない。こ
の放熱制御装置を、前記図2に示したような、蓄熱暖房
システムに組み込んで、評価試験を行ったところ、熱源
から室内空間への放熱制御が良好に行えることが確かめ
られた。
An intake / exhaust pipe was attached to the intake / exhaust port, and a sealing valve, a small vacuum pump, a leak valve, a pressure gauge, etc. were attached to the intake / exhaust pipe. This intake / exhaust system has the same structure as that shown in FIG. Therefore, air is used as the gas and no gas storage container is used. When this heat dissipation control device was incorporated into a heat storage heating system as shown in FIG. 2 and an evaluation test was conducted, it was confirmed that heat dissipation from the heat source to the indoor space could be favorably controlled.

【0036】−実施例2− 微粉末として、湿式製法で得られた超微粒子シリカ(一
次粒径8nm)を用い、、この微粉末を、実施例1と同様
の通気性袋に収容した。得られた多孔体の嵩密度は22
0kg/m3 、厚さ5 mmであった。この多孔体を用いて、実
施例1と同様に、放熱制御体を作製した。
Example 2 Ultrafine particle silica (primary particle size 8 nm) obtained by a wet process was used as the fine powder, and the fine powder was placed in the same breathable bag as in Example 1. The bulk density of the obtained porous body is 22.
The thickness was 0 kg / m 3 and the thickness was 5 mm. Using this porous body, a heat dissipation control body was produced in the same manner as in Example 1.

【0037】この放熱制御体に、前記図1に示した構造
の吸排気系を取り付けた。すなわち、吸排気系には、気
体搬送ポンプ、封止バルブ、気体貯蔵容器などが備えら
れている。気体貯蔵容器には、前記多孔体を製造すると
きに用いた通気性袋と同じ材料で袋を作製して、気体貯
蔵容器とした。この放熱制御装置を、前記図2に示した
ような、蓄熱暖房システムに組み込んで、評価試験を行
ったところ、実施例1と同様に優れた評価が得られた。
An intake / exhaust system having the structure shown in FIG. 1 was attached to the heat dissipation control body. That is, the intake / exhaust system is equipped with a gas transfer pump, a sealing valve, a gas storage container, and the like. For the gas storage container, a bag was made of the same material as the gas permeable bag used when the porous body was manufactured to obtain a gas storage container. When this heat dissipation control device was incorporated into a heat storage and heating system as shown in FIG. 2 and an evaluation test was conducted, excellent evaluation was obtained as in Example 1.

【0038】[0038]

【発明の効果】以上に述べた、この発明にかかる放熱制
御装置は、連続気孔を有する多孔体が充填された気密空
間の真空度を変えることによって、気密空間すなわち放
熱制御体の放熱性を、高度な断熱状態から放熱性の高い
状態まで、広い範囲にわたって放熱性を自由に制御する
ことができる。
As described above, in the heat dissipation control device according to the present invention, by changing the vacuum degree of the airtight space filled with the porous body having continuous pores, the heat dissipation property of the airtight space, that is, the heat dissipation control body can be improved. It is possible to freely control the heat radiation over a wide range from a highly heat-insulated state to a state with high heat radiation.

【0039】特に、多孔体が充填された気密空間を真空
状態にしておけば、従来の各種断熱材では到底得られな
いほど、高い断熱性を発揮することができ、不必要な放
熱を完全に遮断して、蓄熱装置などにおける熱エネルギ
ーの損失を大幅に減らして、省エネルギーあるいは稼働
コストの低減に大きく貢献することが可能になる。しか
も、放熱制御体には、複雑な機構部分や操作部分がない
ので、放熱制御体を、建築物や機械装置の任意の構造部
分に組み込んで使用することが可能であり、放熱制御が
必要とされる多くの用途あるいは技術分野で利用するこ
とができる。
In particular, if the airtight space filled with the porous material is kept in a vacuum state, it is possible to exert a high heat insulating property that cannot be obtained by various conventional heat insulating materials, and to completely eliminate unnecessary heat radiation. By cutting off the heat storage device, it is possible to greatly reduce the heat energy loss in the heat storage device and the like, which can greatly contribute to energy saving or reduction in operating cost. Moreover, since the heat dissipation control body does not have a complicated mechanical part or operation part, it is possible to incorporate the heat dissipation control body into any structure part of a building or a mechanical device for use, and heat dissipation control is required. It can be used in many applications or technical fields.

【0040】さらに、連続気孔を有する多孔体が、微粉
末シリカを圧縮成形してなる多孔体であれば、高度な断
熱状態が実現できるとともに、気密空間の外壁構造とと
もに多孔体でも放熱制御体の構造強度を負担することが
できるので、気密空間の構造を簡略化することが可能に
なる。
Furthermore, if the porous body having continuous pores is a porous body formed by compression molding fine powder silica, a high degree of heat insulation can be realized, and the outer wall structure of the airtight space and the porous body can be used as a heat dissipation control body. Since it is possible to bear the structural strength, it is possible to simplify the structure of the airtight space.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例を示す放熱制御装置の全体
構造図
FIG. 1 is an overall structural diagram of a heat dissipation control device showing an embodiment of the present invention.

【図2】 放熱制御装置を床下暖房構造に組み込んだ状
態の断面図
FIG. 2 is a sectional view showing a state in which a heat dissipation control device is incorporated in an underfloor heating structure.

【図3】 別の実施例を表す全体構造図FIG. 3 is an overall structural diagram showing another embodiment.

【図4】 多孔体の別の実施例を示す、多孔体の断面図
(a) および多孔体を組み込んだ放熱制御体の断面図(b)
FIG. 4 is a cross-sectional view of a porous body showing another example of the porous body.
(a) and a cross-sectional view of a heat dissipation control body incorporating a porous body (b)

【符号の説明】[Explanation of symbols]

10 放熱制御体 12 気密空間 14 吸排気口 20 多孔体 30 吸排気配管 34 真空ポンプ 40 気体貯蔵容器 H 熱源 O 外部空間 10 Heat Dissipation Control Body 12 Airtight Space 14 Intake / Exhaust Port 20 Porous Body 30 Intake / Exhaust Pipe 34 Vacuum Pump 40 Gas Storage Container H Heat Source O External Space

フロントページの続き (72)発明者 鶴来 充啓 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 菅原 亮 大阪府門真市大字門真1048番地松下電工株 式会社内Front page continuation (72) Inventor Mitsuhiro Tsurugi, 1048, Kadoma, Kadoma, Osaka Prefecture, Matsushita Electric Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温空間と低温空間の間に配置され、気
密空間内に連続気孔を有する多孔体が充填された放熱制
御体と、この放熱制御体の気密空間に気体を供給排出す
る吸排気手段とを備えている放熱制御装置。
1. A heat dissipation control body which is arranged between a high temperature space and a low temperature space and is filled with a porous body having continuous pores in the airtight space, and intake and exhaust for supplying and exhausting gas to the airtight space of the heat dissipation control body. And a heat dissipation control device.
【請求項2】 請求項1の装置において、連続気孔を有
する多孔体が、微粉末シリカを圧縮成形してなる多孔体
である放熱制御装置。
2. The heat dissipation control device according to claim 1, wherein the porous body having continuous pores is a porous body formed by compression molding fine powder silica.
JP4104994A 1992-04-23 1992-04-23 Heat dissipation control device Pending JPH05302371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104994A JPH05302371A (en) 1992-04-23 1992-04-23 Heat dissipation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104994A JPH05302371A (en) 1992-04-23 1992-04-23 Heat dissipation control device

Publications (1)

Publication Number Publication Date
JPH05302371A true JPH05302371A (en) 1993-11-16

Family

ID=14395655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104994A Pending JPH05302371A (en) 1992-04-23 1992-04-23 Heat dissipation control device

Country Status (1)

Country Link
JP (1) JPH05302371A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016007687A1 (en) 2015-06-30 2017-01-05 Fanuc Corporation A waveform display device for displaying a period of oscillation by converting it to a length on a processed surface
KR20190097690A (en) * 2018-02-13 2019-08-21 호서대학교 산학협력단 Anti-corrosion Heat Radiant Paint and fabricating method of the same
JP2022508995A (en) * 2018-09-19 2022-01-20 アールト ユニバーシティ ファンデーション エスアール How to Make Architectural Elements with Wooden Frames, Architectural Elements with Wooden Frames, and Architectural Element Systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016007687A1 (en) 2015-06-30 2017-01-05 Fanuc Corporation A waveform display device for displaying a period of oscillation by converting it to a length on a processed surface
KR20190097690A (en) * 2018-02-13 2019-08-21 호서대학교 산학협력단 Anti-corrosion Heat Radiant Paint and fabricating method of the same
JP2022508995A (en) * 2018-09-19 2022-01-20 アールト ユニバーシティ ファンデーション エスアール How to Make Architectural Elements with Wooden Frames, Architectural Elements with Wooden Frames, and Architectural Element Systems

Similar Documents

Publication Publication Date Title
US8281558B2 (en) Method for the production of a vacuum insulation element wrapped in a film, filled with powder
US20090179541A1 (en) Vacuum insulation panel with smooth surface method for making and applications of same
US5389420A (en) Heat insulator and method of making it
JPS61217668A (en) Precipitated silica heat-insulating material
EP1818595B1 (en) Method for the manufacture of vacuum insulation products
JP2005036975A (en) Heat insulation material, method for manufacturing the same, and device using the heat insulation material
WO2012034297A1 (en) Aerating type wall body material and aerating type mini cold storage or air conditioned storage using wall body material
JP2007238141A (en) Vacuum container
JP2599515B2 (en) Insulating molded body, method for producing the same, container made of the molded body, and heat insulating material in refrigerator and freezer
JPH05302371A (en) Heat dissipation control device
JP2008063158A (en) Glass panel
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
JP2009287586A (en) Vacuum heat insulating material
JP2009041649A (en) Vacuum heat insulating material and its manufacturing method
JPH09145241A (en) Vacuum heat-insulating material
JP2008215492A (en) Vacuum heat insulation material
JP2002161994A (en) Vacuum insulant, vacuum insulant applied refrigerator
JPH05118492A (en) Manufacture of heat insulating material
JPH02256999A (en) Perlite charging method in perlite vacuum heat insulated double shell storage tank
JP2007239904A (en) Information apparatus
JP2574028B2 (en) Insulation structure
JP3191968B2 (en) Floor heating members
JP5023597B2 (en) Heat insulation variable heat insulating material, building material heat insulating material using heat conductivity variable heat insulating material, automobile engine
JP4813847B2 (en) Manufacturing method of vacuum insulation member
JPH11351493A (en) Vacuum insulation panel and manufacture of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041215

A61 First payment of annual fees (during grant procedure)

Effective date: 20051129

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20081209

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101209

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111209

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121209

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121209

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

EXPY Cancellation because of completion of term