JPH05301708A - Humidification of finely particulate silica - Google Patents

Humidification of finely particulate silica

Info

Publication number
JPH05301708A
JPH05301708A JP4125360A JP12536092A JPH05301708A JP H05301708 A JPH05301708 A JP H05301708A JP 4125360 A JP4125360 A JP 4125360A JP 12536092 A JP12536092 A JP 12536092A JP H05301708 A JPH05301708 A JP H05301708A
Authority
JP
Japan
Prior art keywords
sio2
fine particulate
silica
gas
humidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4125360A
Other languages
Japanese (ja)
Other versions
JPH0733251B2 (en
Inventor
Hiroyuki Kono
博之 河野
Genji Taga
玄治 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP61113775A priority Critical patent/JPS62270415A/en
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP4125360A priority patent/JPH0733251B2/en
Publication of JPH05301708A publication Critical patent/JPH05301708A/en
Publication of JPH0733251B2 publication Critical patent/JPH0733251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To establish the uniform and effective humidifying method by bringing fine particulate SiO2 into contact with a highly humid gas and subsequently cooling the treated SiO2 to a lower temperature than the dew point of the gas. CONSTITUTION:Highly pure fine particulate SiO2 obtained by the flame hydrolysis of SiCl4 is brought into contact with steam and subsequently cooled to a lower temperature than the dew point of the steam to produce the fine particulate SiO2 humidified to a water content of 0.1-10wt.%. The humidified SiO2 particles are fed in a fluidized bed and converted into a fluidized state with air. In a fusing oven equipped with a triple pipe burner, a fuel gas such as H2 is introduced into the central pipe and the outer peripheral pipe, and the humidified fine particulate SiO2 is introduced from the fluidized bed into the circumferential pipe, while accompanied by a flow of O2 gas. Thereby, a flame is formed to melt-treat the SiO2. The produced melted SiO2 is carried with the combustion gas into a cyclone and into a bag filter and collected, thus providing the spherical SiO2 having a particle size distribution of 0.1-100mum and an average particle diameter of <=30mum.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、シリカの加湿方法に関
する。更に詳しくは、本発明は、特に高純度の球状シリ
カの製造に際して出発原料となる微細粒子状シリカの均
一な加湿方法に関するものである。 【0002】 【従来の技術】球状のシリカはIC封止材、種々のプラ
スチックに対する高配合用充填材、硝子原料など各種用
途に利用されている。特に最近においては、球状シリカ
に対する要求特性が厳しくなり、粒度が0.1〜100
μmのシャープな粒度分布、かつ30μm以下の平均粒
径を有する球状シリカが要望されている。 【0003】この種の球状シリカは、一般に揮発性のシ
ラン化合物を火炎中で気相加水分解して調製した微細粒
子状シリカを、更に高温火炎中で溶融することにより製
造している。しかしながら、この溶融法による球状シリ
カにおいては、前記した要求特性を満足する比較的小さ
な粒子を得ることができない。 【0004】前記した溶融法による球状シリカの製造方
法として、例えば高純度シリカビーズの製造方法とし
て、ハロゲン化硅素の火炎中での気相加水分解によって
生成する高純度の超微細粒子状シリカをそのまま、バー
ナー中で溶融する方法(特開昭59−152215)が
提案されている。そして、前記した方法は、火炎中の気
相加水分解反応において、原料の微細粒子状シリカの濃
度をコントロールすることによって製品の粒度分布を調
製することを特徴としているものである。しかしなが
ら、同方法によっても、得られる製品の粒度が0〜25
0μmとブロードな粒度分布と、かつ平均粒径が30〜
150μmと大きなものであり、前記した要求特性を満
足するものではない。 【0005】本発明者らは、前記した溶融法による球状
シリカの製造方法の欠点に鑑み、鋭意検討を加えた。そ
の結果、後述するように微細粒子状シリカを火炎中にて
再溶融するに際して、生成する球状シリカの粒度は、出
発原料である微細粒子状シリカの含水量と極めて強い相
関を有することを見い出した。即ち、溶融法により球状
シリカを製造する場合、生成する球状シリカの粒度をコ
ントロールするうえで、出発原料である微細粒子状シリ
カの含水量は極めて重要な意義を有することを見い出し
た。 【0006】しかしながら、所定の含水量の微細粒子状
シリカを入手しようとする場合、次のような背景から困
難をともなうものである。即ち、従来、微細粒子状シリ
カはシリカ化合物を気相加水分解させて製造されるもの
であり、通常は水分含有量が0.01%以下の乾燥した
状態で製品となる。また製品中の含水量が多くなると規
格外製品となるため、専ら乾燥状態を保持する努力がな
されている。即ち、従来においては、微細粒子状シリカ
が加湿されたもの、特に粒子表面が均一に加湿されたも
のを製造しようとする試みがなされていなかったもので
ある。 【0007】 【発明が解決しようとする課題】本発明は、微細粒子状
シリカの加湿法、特に溶融法により球状シリカを製造す
るに際して不可欠な微細粒子状シリカの加湿法を提供す
るものである。即ち、本発明者らは溶融法により球状シ
リカを製造するに際して、原料となる微細粒子状シリカ
の水分含有量をコントロールすることの重要性を見い出
したが、該微細粒子状シリカの均一かつ効率的な調湿法
がないことに鑑み、本発明を完成させるに至ったもので
ある。 【0008】 【課題を解決するための手段】本発明を概説すれば、本
発明は、微細粒子状シリカを加湿する方法において、微
細粒子状シリカを高湿度のガスと接触させ、該ガスの露
点温度より低い温度に冷却することを特徴とする微細粒
子状シリカの加湿方法に関するものである。以下、本発
明の技術的構成を詳しく説明する。 【0009】前記したように、本発明者らは、溶融法に
より高純度の球状シリカを製造するに際して、高温火炎
中に供する微細粒子状シリカを予め加湿することが、シ
ャープな粒度分布と小さな粒径のものを得るために極め
て重要であることを見い出した。そして、本発明者ら
は、予め微細粒子状シリカを加湿するとの意義を次のよ
うに推察している。即ち、均一に加湿された微細粒子状
シリカが高温火炎中で溶融される直前において、その凝
集粒子(微細粒子状シリカは、ほとんどが二次あるいは
高次の凝集された凝集粒子である。)は、その表面を均
一に加湿している含水分の揮発により凝集状態が分散化
され、これにより微細粒子状シリカがより小さな凝集粒
子の状態で溶融されるため、所望するシャープな粒度分
布と粒径の小さな球状シリカが生成されるものと推測し
ている。従って、前記した微細粒子状シリカの均一かつ
効率的な加湿法の確立は極めて重要なものである。 【0010】本発明において用いる微細粒子状シリカ
は、いわゆるシラン化合物を気相加水分解して得られる
ヒュームド(fumed )シリカであれば特に限定されず使
用出来る。該シラン化合物としては例えばテトラクロル
シラン,トリクロルシラン,ジクロルシラン等のハロゲ
ン化シランあるいはモノメチルトリクロルシランなどの
揮発性を有し且つ加水分解可能なシラン化合物であれば
いずれでもよい。 【0011】本発明において用いる微細粒子状シリカ
は、上記した微細粒子状シリカの製造工程の途中段階の
もの、例えば脱酸工程の前で抜き出したもの、または製
造工程の最終段階のもの、更には袋詰め後の製品のいず
れも良好に用いることができる。 【0012】本発明で用いる高湿度のガスは、通常微細
粒子状シリカの製造で生成する生成ガス,水蒸気等が好
適に使用出来る。本発明の微細粒子状シリカを加湿する
方法は、高湿度のガスを該シリカと接触させ、該ガスの
露点温度より低い温度に冷却する方法で実施される。上
記方法はゲル状塊が生ずることがないので好適である。
また、上記シリカと高湿度ガスとの接触及び冷却処理は
微細粒子状シリカの製造工程において実施することがで
きるものであり、例えば該シリカを含む生成ガスを露点
以下に冷却して該シリカを調湿する方法は、別途加湿す
る工程を省ける点で有利な場合がある。 【0013】本発明における微細粒子状シリカの加湿度
合は、特に限定されるものではないが、該シリカの含水
分量として0.1wt%未満では作用効果が小さく、また
含水量が多すぎるとゲル状塊が生じ高温火炎中で溶融し
難くなったり、また溶融のための燃料効率が悪化する。
従って、一般には該シリカの含水量としては、0.1〜
10wt%、好ましくは0.1〜5wt%の範囲である。な
お、上記シリカに含有される水分量は、高湿度ガス中に
含まれる水分の量、シリカと該ガスとの接触時間等によ
って決定されるので、予めこれらの要因を考慮して加湿
を行なえばよいことはいうまでもないことである。 【0014】次に、本発明の前記加湿処理された微細粒
子状シリカの応用例を説明する。特に、その応用例とし
て球状シリカを製造するための高温火炎処理について説
明する。前記加湿処理後の高温火炎処理としては、加湿
された微細粒子状シリカを溶融できればよく、気体また
は液体燃料、酸素または空気などの支燃ガスを必要によ
り不活性ガスと共にバーナーにて燃焼させることにより
容易に達成させることができ、一般に水素などの燃料、
多重管バーナーなどの公知の燃焼装置が採用される。ま
た、原料としての加湿された微細粒子状シリカの高温火
炎中への供給方法は特に限定的ではなく、一般にエジエ
クター、スクリューフイーダー、流動床などを用いて酸
素など支燃ガスに同伴させる方法が良好に用いられる。
なお、高温火炎中に供給する加湿された微細粒子状シリ
カの量は、その供給速度、支燃ガス中の濃度、火炎中の
分散濃度などを勘案して、該シリカの溶融が均一かつ完
全に達成されるように適宜決定すればよい。 【0015】 【実施例】本発明をさらに具体的に説明するために実施
例および比較例を示すが、本発明はこれら実施例に限定
されるものはない。 実施例1 原料として、テトラクロロシランを火炎加水分解して得
られた高純度の微細粒子状シリカ(徳山曹達社製,商品
名;レオロシル)を用い、水蒸気と接触させ、該水蒸気
の露点温度より低い温度に冷却し、第1表に示す水分量
を吸湿させたシリカを得た。なお、第1表のNo.1は比較
例に相当するものである。 【0016】 【表1】 【0017】応用例1(球状シリカの製造例) 前記実施例1で調製した加湿シリカを流動床に投入し、
0〜1Kg/cm2 に加圧し、空気により流動化の状態に保
持した。次いで、上端に三重管バーナーを設置した円筒
形溶融炉において、該バーナーの中心管および外周管に
燃料ガスとして水素を導入すると共に、円周管に上記し
た流動床より加湿された微細粒子状シリカを支燃ガスと
しての酸素の気流中に同伴させて導入しながら、火炎を
形成させて該シリカの溶融処理を実施した。なお、第1
表に示すように、水量の流量、酸素の流量および微細粒
子状シリカの供給速度を一定にして、微細粒子状シリカ
の含水量を変化させた条件で実施した。生成した溶融シ
リカ粒子は、燃焼ガスと共にサイクロン、バックフイル
ターに送り、それぞれ捕集した。得られた溶融シリカ
は、光解析型粒度分布計により粒度分布および平均粒度
(Dso)を求めた。また、走査型電子顕微鏡(SEM)
により溶融シリカの粒子形状を確認すると共に、溶融の
程度を調べた。その結果を第2表に湿す。なお2表のN
o.1は比較例に相当するものである。 【0018】 【表2】【0019】 【発明の効果】本発明の方法によれば、微細粒子状シリ
カを均一かつ効率よく加湿することが出来る。そして該
加湿されたシリカは、例えば高温火炎中で処理啜ること
により小さい粒度(例えば平均粒径が30μm以下)と
シャープな粒度分布(例えば0.1〜100μm)を有
する球状シリカとすることができる。
Description: FIELD OF THE INVENTION The present invention relates to a method for humidifying silica. More specifically, the present invention relates to a method for uniformly moisturizing fine particle silica which is a starting material for producing high-purity spherical silica. Spherical silica is used in various applications such as IC encapsulants, high-compounding fillers for various plastics, and glass raw materials. Particularly in recent years, the required properties for spherical silica have become strict, and the particle size is 0.1-100.
There is a demand for spherical silica having a sharp particle size distribution of μm and an average particle size of 30 μm or less. This type of spherical silica is generally produced by melting fine particle silica prepared by subjecting a volatile silane compound to gas phase hydrolysis in a flame and then melting it in a high temperature flame. However, in the spherical silica obtained by this fusion method, it is not possible to obtain relatively small particles that satisfy the above-mentioned required characteristics. As a method for producing spherical silica by the above-mentioned melting method, for example, as a method for producing high-purity silica beads, high-purity ultrafine particulate silica produced by gas-phase hydrolysis of a silicon halide in a flame is used. As it is, a method of melting in a burner (JP-A-59-152215) has been proposed. The above-mentioned method is characterized in that the particle size distribution of the product is adjusted by controlling the concentration of the fine particulate silica as a raw material in the gas phase hydrolysis reaction in a flame. However, even with this method, the particle size of the product obtained is 0 to 25.
Broad particle size distribution of 0 μm and average particle size of 30-
It is as large as 150 μm and does not satisfy the above-mentioned required characteristics. The present inventors have conducted extensive studies in view of the drawbacks of the method for producing spherical silica by the melting method described above. As a result, it was found that when re-melting fine particulate silica in a flame as described later, the particle size of the spherical silica produced has a very strong correlation with the water content of the fine particulate silica as a starting material. . That is, it has been found that when the spherical silica is produced by the melting method, the water content of the fine particulate silica as a starting material has a very important meaning in controlling the particle size of the spherical silica produced. However, when trying to obtain fine particulate silica having a predetermined water content, it is difficult from the following background. That is, conventionally, the fine particulate silica is produced by subjecting a silica compound to gas phase hydrolysis, and usually it is a product in a dry state having a water content of 0.01% or less. Further, if the water content in the product increases, the product becomes a nonstandard product, and therefore efforts are made to maintain the dry state. That is, in the past, no attempt has been made to produce a moistened fine particulate silica, particularly one having a uniformly moistened particle surface. SUMMARY OF THE INVENTION The present invention provides a method of humidifying fine particle silica, particularly a method of humidifying fine particle silica which is indispensable for producing spherical silica by a melting method. That is, the present inventors have found that it is important to control the water content of the fine particulate silica used as a raw material when producing spherical silica by the melting method. The present invention has been completed in view of the lack of such a humidity control method. SUMMARY OF THE INVENTION The present invention can be summarized as follows. In the method for humidifying fine particulate silica, the present invention comprises contacting the fine particulate silica with a gas of high humidity, and dew point of the gas. The present invention relates to a method of humidifying fine particulate silica, characterized by cooling to a temperature lower than the temperature. Hereinafter, the technical configuration of the present invention will be described in detail. As described above, when the present inventors produce high-purity spherical silica by the melting method, it is necessary to pre-humidify the fine particulate silica to be subjected to a high temperature flame in order to obtain a sharp particle size distribution and small particles. It has been found to be extremely important for obtaining diameters. Then, the present inventors presume the significance of humidifying the fine particulate silica in advance as follows. That is, just before the uniformly moisturized fine particulate silica is melted in a high temperature flame, the agglomerated particles (the fine particulate silica are mostly secondary or higher agglomerated agglomerated particles). , The surface is uniformly moisturized, the agglomerated state is dispersed by volatilization of the water content, and the fine particulate silica is melted in the state of smaller agglomerated particles, resulting in a desired sharp particle size distribution and particle size. It is speculated that small spherical silica of Therefore, it is extremely important to establish a uniform and efficient humidification method for the fine particulate silica. The fine particulate silica used in the present invention is not particularly limited as long as it is a fumed silica obtained by subjecting a so-called silane compound to gas phase hydrolysis. The silane compound may be any volatile and hydrolyzable silane compound such as a halogenated silane such as tetrachlorosilane, trichlorosilane, dichlorosilane, or monomethyltrichlorosilane. The fine-particulate silica used in the present invention is in the intermediate stage of the above-mentioned fine-particle silica production process, for example, extracted before the deoxidation process, or the final stage of the production process. Any of the products after bagging can be favorably used. As the high-humidity gas used in the present invention, a product gas, steam or the like which is usually produced in the production of fine particulate silica can be preferably used. The method of humidifying the fine particulate silica of the present invention is carried out by bringing a high-humidity gas into contact with the silica and cooling the gas to a temperature lower than the dew point temperature of the gas. The above method is preferable because no gel-like lump is generated.
Further, the contact between the silica and the high-humidity gas and the cooling treatment can be carried out in the production process of the fine particulate silica. For example, the produced gas containing the silica is cooled to a temperature below the dew point to adjust the silica. The moistening method may be advantageous in that a separate step of moistening can be omitted. The humidification degree of the fine particulate silica in the present invention is not particularly limited, but if the water content of the silica is less than 0.1 wt%, the action and effect are small, and if the water content is too large, it becomes gel-like. A lump is generated and it becomes difficult to melt in a high temperature flame, and the fuel efficiency for melting deteriorates.
Therefore, generally, the water content of the silica is 0.1
It is in the range of 10 wt%, preferably 0.1 to 5 wt%. The amount of water contained in the silica is determined by the amount of water contained in the high-humidity gas, the contact time between the silica and the gas, and so on. It goes without saying that it is good. Next, an application example of the humidified fine particulate silica of the present invention will be described. In particular, a high temperature flame treatment for producing spherical silica will be described as an application example thereof. As the high-temperature flame treatment after the humidification treatment, it is sufficient that the humidified fine particulate silica can be melted, and a gas or a liquid fuel, a combustion-supporting gas such as oxygen or air is burned together with an inert gas in a burner if necessary. Fuels, such as hydrogen, which can be easily achieved,
Known combustion devices such as multi-tube burners are used. Further, the method of supplying the humidified fine particulate silica as a raw material into the high temperature flame is not particularly limited, and in general, there is a method of entraining the combustion supporting gas such as oxygen by using an ejector, a screw feeder, a fluidized bed or the like. Used well.
The amount of the humidified fine particulate silica to be supplied into the high temperature flame is such that the melting rate of the silica is uniform and complete in consideration of the supply rate, the concentration in the combustion-supporting gas, the dispersion concentration in the flame, etc. It may be appropriately determined so as to be achieved. EXAMPLES Examples and comparative examples are shown in order to more specifically describe the present invention, but the present invention is not limited to these examples. Example 1 As a raw material, high-purity fine particulate silica obtained by flame hydrolysis of tetrachlorosilane (manufactured by Tokuyama Soda Co., Ltd., trade name: Leorosyl) was used and brought into contact with water vapor, and the temperature was lower than the dew point temperature of the water vapor. After cooling to a temperature, silica having absorbed the water content shown in Table 1 was obtained. No. 1 in Table 1 corresponds to the comparative example. [Table 1] Application Example 1 (Production Example of Spherical Silica) The humidified silica prepared in Example 1 was put into a fluidized bed,
It was pressurized to 0 to 1 kg / cm 2 and kept in a fluidized state by air. Then, in a cylindrical melting furnace having a triple-tube burner installed at the upper end, hydrogen was introduced as a fuel gas into the central tube and the outer tube of the burner, and the fine particles of silica that had been humidified from the fluidized bed were applied to the circumferential tube. Was introduced into the air flow of oxygen as a combustion-supporting gas, a flame was formed, and the silica was melted. The first
As shown in the table, the flow rate of water, the flow rate of oxygen, and the supply rate of the fine particulate silica were kept constant, and the water content of the fine particulate silica was changed. The produced fused silica particles were sent to a cyclone and a back filter together with the combustion gas and collected. The particle size distribution and average particle size (Dso) of the obtained fused silica were determined by an optical analysis type particle size distribution meter. In addition, scanning electron microscope (SEM)
The particle shape of the fused silica was confirmed by and the degree of melting was examined. Wet the results in Table 2. Note that N in Table 2
o.1 corresponds to the comparative example. [Table 2] According to the method of the present invention, the fine particulate silica can be uniformly and efficiently humidified. The humidified silica can be, for example, spherical silica having a smaller particle size (for example, an average particle size of 30 μm or less) and a sharp particle size distribution (for example, 0.1 to 100 μm) when processed in a high temperature flame. ..

Claims (1)

【特許請求の範囲】 1.微細粒子状シリカを加湿する方法において、微細粒
子状シリカを高湿度のガスと接触させ、該ガスの露点温
度より低い温度に冷却することを特徴とする微細粒子状
シリカの加湿方法。
[Claims] 1. A method for humidifying fine particulate silica, which comprises contacting the fine particulate silica with a gas of high humidity and cooling the fine particulate silica to a temperature lower than the dew point temperature of the gas.
JP4125360A 1986-05-20 1992-04-20 Humidification method of fine particulate silica Expired - Fee Related JPH0733251B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61113775A JPS62270415A (en) 1986-05-20 1986-05-20 Production of spherical silica
JP4125360A JPH0733251B2 (en) 1986-05-20 1992-04-20 Humidification method of fine particulate silica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61113775A JPS62270415A (en) 1986-05-20 1986-05-20 Production of spherical silica
JP4125360A JPH0733251B2 (en) 1986-05-20 1992-04-20 Humidification method of fine particulate silica

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61113775A Division JPS62270415A (en) 1986-05-20 1986-05-20 Production of spherical silica

Publications (2)

Publication Number Publication Date
JPH05301708A true JPH05301708A (en) 1993-11-16
JPH0733251B2 JPH0733251B2 (en) 1995-04-12

Family

ID=26452701

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61113775A Granted JPS62270415A (en) 1986-05-20 1986-05-20 Production of spherical silica
JP4125360A Expired - Fee Related JPH0733251B2 (en) 1986-05-20 1992-04-20 Humidification method of fine particulate silica

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP61113775A Granted JPS62270415A (en) 1986-05-20 1986-05-20 Production of spherical silica

Country Status (1)

Country Link
JP (2) JPS62270415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997778A1 (en) 2002-03-18 2008-12-03 Wacker Chemie AG High-purity silica powder and process for producing it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358065A1 (en) * 2003-12-11 2005-07-28 Wacker-Chemie Gmbh Device for producing fused silica

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997778A1 (en) 2002-03-18 2008-12-03 Wacker Chemie AG High-purity silica powder and process for producing it

Also Published As

Publication number Publication date
JPH0336761B2 (en) 1991-06-03
JPS62270415A (en) 1987-11-24
JPH0733251B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US6849242B1 (en) Porous silica granule, method for producing the same, and method for producing synthetic quartz glass powder using the porous silica granule
JPS6354642B2 (en)
US2819151A (en) Process for burning silicon fluorides to form silica
JPH10167717A (en) Oxide obtained by thermal decomposition and doped
CN87107444A (en) Manufacturing has the method for goods of pure quartz glass body and the goods of producing with this method
TWI488812B (en) Synthetic amorphous silica powder and process for producing the same
JP2011157260A (en) Synthetic amorphous silica powder and method for producing same
JP2002003213A (en) Amorphous fine silica particle, its production method and its use
JP2012211070A (en) Synthetic amorphous silica powder and method for producing the same
JP2001130910A (en) Silicon dioxide doped with silver and having germicidal action
US5855860A (en) Method for porifying fine particulate silica
WO2007127232A2 (en) Process for the production of fumed silica
JPS6335567B2 (en)
JPH05301708A (en) Humidification of finely particulate silica
JP2011157262A (en) Synthetic amorphous silica powder and method for producing same
TW593182B (en) Glass powder and manufacturing method therefor
NO147968B (en) ELECTRIC TEETH
JPS59152215A (en) Production of high-purity silica beads
JP2510928B2 (en) High-purity silica beads manufacturing method
JP2000351617A (en) Production of spherical silica particle
JPH06226085A (en) Device for producing oxide fine particles and its production
JP2000351619A (en) Production of spherical silica particle
JP2000191317A (en) Production of fused spherical silica
JP3617153B2 (en) Method for producing synthetic quartz powder
JPH02296711A (en) Spherical silica particle and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees