JPH05300674A - Superconducting energy storage device and control method for superconducting energy storage device - Google Patents

Superconducting energy storage device and control method for superconducting energy storage device

Info

Publication number
JPH05300674A
JPH05300674A JP4104265A JP10426592A JPH05300674A JP H05300674 A JPH05300674 A JP H05300674A JP 4104265 A JP4104265 A JP 4104265A JP 10426592 A JP10426592 A JP 10426592A JP H05300674 A JPH05300674 A JP H05300674A
Authority
JP
Japan
Prior art keywords
command value
control
storage device
energy storage
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4104265A
Other languages
Japanese (ja)
Inventor
Toshio Okazaki
敏夫 岡崎
Satoru Kitamura
哲 北村
Yukio Ishigaki
幸雄 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4104265A priority Critical patent/JPH05300674A/en
Publication of JPH05300674A publication Critical patent/JPH05300674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To ensure the storage energy within specified range while controlling the requested effective and reactive power by the improvement of the stability of a power system and the control of it, in a superconducting energy storage device. CONSTITUTION:For an A/D converter 3, DC current control circuits are provided for the signal bridge by GTO, the reactive power control circuit 11-1, and the effective power control circuit 11-2, and it adds a DC current control command value to an effective power control command. A circuit 12 operates the circulation ratio D of the A/D converter 3 and the angle alpha of lag in control, based on the command value from each control circuit, and outputs it to a gate pulse generator 9. Hereby, the system control stabilized by the superconducting energy storage device becomes feasible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導エネルギー貯蔵装
置に係り、特に電力系統安定化制御、すなわち、系統周
波数や電力動揺等の安定化を行なう有効電力制御と系統
電圧安定化を行なう無効電力制御の実行期間に、超電導
コイルの直流電流を一定化する制御を同時的に行なう超
電導エネルギー貯蔵装置およびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting energy storage device, and more particularly to power system stabilization control, that is, active power control for stabilizing system frequency and power fluctuation and reactive power control for stabilizing system voltage. The present invention relates to a superconducting energy storage device and a control method thereof, which simultaneously control the DC current of a superconducting coil to be constant during the execution period of.

【0002】[0002]

【従来の技術】超電導エネルギー貯蔵装置(以下、SM
ESと称する)によって電力系統の安定化をはかる技術
に、有効電力制御と無効電力制御を同時に行なうものが
知られている。たとえば、特公昭63−18425 号公報(参
照例1)は、サイリスタ交直変換器を2段カスケード接
続したダブル・ブリッジ方式を採用し、各変換器の制御
遅れ角を独立に変化させて、有効電力と無効電力を非干
渉に制御する。また、PESC1988の論文「INSTANTANEOUS
CONTROL METHODWITH A GTO CONVERTER FORACTIVE AND R
EACTIVE POWERS IN SUPERCONDUCTING MAGNETIC ENERGY
STORAGE」(参照例2)には、自己消弧形サイリスタの
シングル・ブリッジにより、制御遅れ角と通流比を制御
して有効電力と無効電力を独立、かつ、同時に制御する
ものが記載されている。
2. Description of the Related Art A superconducting energy storage device (hereinafter referred to as SM
Known as a technique for stabilizing an electric power system by means of (called ES) is one that simultaneously performs active power control and reactive power control. For example, Japanese Examined Patent Publication (Kokoku) No. 63-18425 (Reference Example 1) employs a double bridge system in which two stages of thyristor AC / DC converters are connected in cascade, and the control delay angle of each converter is changed independently to obtain an effective power. And to control the reactive power non-interfering. In addition, the PESC1988 paper “INSTANTANEOUS
CONTROL METHODWITH A GTO CONVERTER FORACTIVE AND R
EACTIVE POWERS IN SUPERCONDUCTING MAGNETIC ENERGY
"STORAGE" (reference example 2) describes a single bridge of a self-extinguishing thyristor that controls the control delay angle and the conduction ratio to control active power and reactive power independently and simultaneously. There is.

【0003】一方、SMESのコイル電流の変化による
交流損失や、渦電流などによるクライオスタットのエネ
ルギー損失等にたいし、超電導コイルの蓄積エネルギ
ー、すなわち直流電流の低下を防止する技術として、特
開平2−294229 号公報(参照例3)記載のものがある。
これによれば、電力系統の有効電力制御を実行していな
いとき、すなわち、系統が健全で電気エネルギーを貯蔵
しているだけの期間に、2台のサイリスタ変換器の制御
遅れ角を変化させて、無効電力制御と直流電流一定化制
御を同時かつ非干渉に実行する。
On the other hand, as a technique for preventing a decrease in stored energy of a superconducting coil, that is, a direct current, against AC loss due to a change in a coil current of SMES, energy loss of a cryostat due to an eddy current, etc. There is one described in Japanese Patent No. 294229 (Reference Example 3).
According to this, the control delay angle of the two thyristor converters is changed when the active power control of the power system is not executed, that is, while the system is healthy and only stores electric energy. Simultaneously and non-interferingly perform reactive power control and DC current constant control.

【0004】[0004]

【発明が解決しようとする課題】SMESの直流電流の
大きさは有効電力と無効電力の制御可能範囲を示すもの
であり、その確保はSMESによる系統安定化の実運用
には欠かせないものである。しかし上記従来技術は、有
効電力と無効電力の同時制御期間中における直流電流の
減少にたいしては、有効な提案がなされていない。ま
た、上記参照例3に示した無効電力と直流電流の同時制
御は、電力系統安定時のエネルギー貯蔵期間に行なわれ
るもので、もしこの間に電力系統に事故が発生した場合
は、有効電力と無効電力の同時制御に切換る必要があ
る。しかし、この切り換えのタイミングを複雑な電力系
統条件から得ることは、現実には困難がある。
The magnitude of the direct current of SMES indicates the controllable range of active power and reactive power, and its securing is indispensable for actual operation of grid stabilization by SMES. is there. However, the above-mentioned conventional technique has not been effectively proposed to reduce the direct current during the simultaneous control period of active power and reactive power. Further, the simultaneous control of the reactive power and the direct current shown in Reference Example 3 above is performed during the energy storage period when the power system is stable. If an accident occurs in the power system during this time, the active power and the reactive power are disabled. It is necessary to switch to simultaneous power control. However, it is actually difficult to obtain the timing of this switching from complicated power system conditions.

【0005】本発明の目的は、このような従来技術の問
題点を克服し、電力系統安定化制御(有効電力制御と無
効電力制御の一方もしくは同時制御を指す)をしなが
ら、常に、超電導コイルの直流電流を所定範囲内に確保
する制御方法を提供することにある。
An object of the present invention is to overcome the above problems of the prior art, and to perform power system stabilization control (one of active power control and reactive power control or simultaneous control) while always performing superconducting coils. Another object of the present invention is to provide a control method for ensuring the DC current of the above in a predetermined range.

【0006】本発明の他の目的は、有効電力,無効電力
および直流電流制御の組合せを切り換えなしに実行でき
るSMESとその制御方法を提供することにある。
Another object of the present invention is to provide an SMES and a control method therefor capable of executing a combination of active power, reactive power and DC current control without switching.

【0007】さらに他の目的は、直流電流制御の範囲を
定常的な直流減衰分以下に制限し、有効電力制御を直流
電流制御に優先させる制御方法を提供することにある。
Still another object is to provide a control method for limiting the range of DC current control to a value equal to or less than a steady DC attenuation amount and giving priority to active power control over DC current control.

【0008】本発明のその他の目的は、以下の記載を通
じて明らかにされる。
Other objects of the present invention will be clarified through the following description.

【0009】[0009]

【課題を解決するための手段】本発明は、有効電力制御
と直流電流制御とは等価であり、前者は交流成分、後者
は直流成分を指令として制御できることに着目してなさ
れたものである。
The present invention has been made paying attention to the fact that active power control and DC current control are equivalent, and that the former can be controlled by using an AC component and the latter can be controlled by using a DC component as a command.

【0010】本発明は、電力系統の有効電力制御を行な
う超電導エネルギー貯蔵装置の制御方法において、有効
電力制御の指令値を、超電導エネルギー貯蔵装置に流れ
る直流電流に応じて補正し、有効電力制御と直流電流一
定化制御を併せ行なうことを特徴とする。すなわち、直
流電流制御系は超電導コイルに流れる直流電流Idの直
流成分Id。と所定の制御指令値Idrの差分に基づい
た直流電流制御指令値IR を出力し、この指令値IR
よって有効電力制御指令値PR を補正しながら、有効電
力制御と直流電流制御を外見的には独立、かつ、同時に
実行する。
According to the present invention, in a method of controlling a superconducting energy storage device for controlling active power of a power system, a command value for active power control is corrected according to a direct current flowing through the superconducting energy storage device to perform active power control. It is characterized in that direct current constant control is also performed. That is, the DC current control system controls the DC component Id of the DC current Id flowing through the superconducting coil. Appearance and outputs a DC current control command value I R, based on the difference between the predetermined control command value Idr, while correcting active power control instruction value P R by the command value I R, a DC current control and active power control Independently and simultaneously.

【0011】本発明は、超電導コイルと、超電導コイル
と電力系統間の電力を制御する交直変換器を具備する超
電導エネルギー貯蔵装置において、電力系統安定化の要
求指令に応じて有効電力制御指令値を決定する有効電力
制御手段および無効電力制御指令値を決定する無効電力
制御手段と、超電導コイルを流れる直流電流と所定の指
令値の偏差に応じて前記有効電力制御指令値を補正する
直流電流制御手段を有し、前記無効電力制御指令値およ
び補正された有効電力制御指令値にに基づいて前記交直
変換器を制御する制御手段を設けることを特徴とする。
According to the present invention, in a superconducting energy storage device comprising a superconducting coil and an AC / DC converter for controlling electric power between the superconducting coil and the electric power system, an active power control command value is set in accordance with a request command for stabilizing the electric power system. Active power control means for determining and reactive power control means for determining reactive power control command value, and direct current control means for correcting the active power control command value according to a deviation between a direct current flowing through the superconducting coil and a predetermined command value. And a control means for controlling the AC / DC converter based on the reactive power control command value and the corrected active power control command value.

【0012】さらに本発明は、直流電流制御手段の制御
指令値の範囲を制限するリミッタを設けることを特徴と
する。
Furthermore, the present invention is characterized in that a limiter for limiting the range of the control command value of the direct current control means is provided.

【0013】[0013]

【作用】本発明のSMESによれば、超電導コイルに流
れる直流電流と、SMESに流入(蓄積)または流出
(放出)する有効電力及び無効電力を取込み、上位制御
装置などから与えられる指令値によって、電力系統安定
化制御に要求される有効電力及び無効電力の制御を行な
い、かつ、超電導コイルの直流電流を所定範囲に制御す
ることにより、電力系統から要求される有効電力及び無
効電力の制御に必要な貯蔵エネルギー量を確保すること
ができる。
According to the SMES of the present invention, the direct current flowing through the superconducting coil, the active power and the reactive power flowing into (storing) or flowing out (discharging) the SMES are taken in, and the command value given from the host controller or the like Necessary for controlling active power and reactive power required by the power system by controlling active power and reactive power required for power system stabilization control and controlling the DC current of the superconducting coil within a predetermined range. It is possible to secure a sufficient amount of stored energy.

【0014】直流電流制御系の制御指令値IR は、通
常、SMESの特性等による定常的な直流電流の減少分
を補償する範囲に設定されるが、その範囲は、系統安定
化のために上下限を狭くして有効電力を優先的に制御し
たり、反対に上下限を広げてSMESの充電を早めた
り、SMESの運転モードに応じて変更可能である。
The control command value I R of the DC current control system is usually set in a range that compensates for a steady decrease in DC current due to SMES characteristics and the like, but this range is for stabilizing the system. It is possible to narrow the upper and lower limits to preferentially control the active power, or conversely, to widen the upper and lower limits to accelerate the charging of the SMES, and to change according to the operating mode of the SMES.

【0015】[0015]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、超電導エネルギー貯蔵装置(SME
S)の全体構成を示し、電力系統2からの電力を貯蔵す
る超電導コイル1,GTOのシングル・ブリッジによる
交直交換器3及び変換器用変圧器4からなる主回路と、
交直変換器3の各GTOに印加するゲートパルスを生成
するゲートパルス発生器9,有効電力,無効電力および
直流電流を同時制御する制御装置10からなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a superconducting energy storage device (SME
S) shows the overall configuration, and the main circuit is composed of a superconducting coil 1 for storing electric power from the electric power system 2, a G / O single bridge AC / DC exchanger 3 and a converter transformer 4;
It comprises a gate pulse generator 9 for generating a gate pulse to be applied to each GTO of the AC / DC converter 3, and a controller 10 for simultaneously controlling active power, reactive power and DC current.

【0016】制御装置10は、無効電力制御(以下、Q
制御),有効電力制御(以下、P制御)直流電流制御
(以下、Id制御)の制御指令値生成回路11−1〜11
−3と、これら3つの制御を同時に実行するための通流
比Dと制御遅れ角αを演算するPQI制御回路12を備
えている。Q制御指令値生成回路11−1は、図示しな
い電力系統安定化装置等の上位制御装置から与えられる
無効電力指令値Qrと、無効電力検出器6からの無効電
力検出値Qを取り込み、指令値と検出値を一致させるよ
うな誤差補正機能G1(s)を介してQ制御指令値(QR )
を出力する。P制御指令値(PR )生成回路11−2
は、上位からの有効電力指令値Prと有効電力検出器7
の検出値Pを入力し、誤差補正機能G2(s)を介してP
制御指令値(PR)を出力する。Id制御指令値(IR
生成回路11−3は、有効電力指令による脈流分を含む
直流電流検出器5から取り込んだ直流電流Idから直流
成分(Idの平均値)を抽出するための直流値演算手段1
6を有し、その出力値Id。と上位の直流電流指令値I
r の差分に所定の演算G3(s)を施してId制御指令
値(IR )を出力する。リミッタ17については後述す
る。なお、G4(s)は、交流電圧検出器8の検出値Vac
から交直交換器3の無負荷直流電圧Ed0を比例演算する
回路である。
The control unit 10 controls the reactive power (hereinafter referred to as Q
Control), active power control (hereinafter, P control) DC current control
(Hereinafter, Id control) control command value generation circuits 11-1 to 11
-3, and a PQI control circuit 12 for calculating the flow ratio D and the control delay angle α for simultaneously executing these three controls. The Q control command value generation circuit 11-1 takes in a reactive power command value Qr given from a higher-order control device such as a power system stabilizing device (not shown) and a reactive power detection value Q from the reactive power detector 6, and outputs the command value. And the detected value are matched with each other via the error correction function G1 (s), the Q control command value (Q R )
Is output. P control command value (P R ) generation circuit 11-2
Is the active power command value Pr from the upper level and the active power detector 7
Input the detected value P of P, and input P through the error correction function G2 (s).
The control command value (P R ) is output. Id control command value (I R)
The generation circuit 11-3 is a direct current value calculating means 1 for extracting a direct current component (average value of Id) from the direct current Id taken from the direct current detector 5 including the pulsating current component according to the active power command.
6 and its output value Id. And higher DC current command value I
A predetermined calculation G3 (s) is applied to the difference of d r to output the Id control command value (I R ). The limiter 17 will be described later. G4 (s) is the detection value V ac of the AC voltage detector 8.
Is a circuit for proportionally calculating the unloaded DC voltage E d0 of the AC / DC exchanger 3.

【0017】ここで、本発明の基本原理にかかわるId
制御指令値生成回路11−3の直流値演算手段16につ
いて詳細に説明する。直流値演算手段16は、コイル1
に流れる脈流を含んだ電流Idから直流成分(Id。)
を抽出する機能を持っている。
Here, the Id relating to the basic principle of the present invention.
The DC value calculation means 16 of the control command value generation circuit 11-3 will be described in detail. The direct current value calculating means 16 includes the coil 1
DC component (Id.) From the current Id including the pulsating current flowing in
Has the function of extracting.

【0018】いま、電力系統安定度向上制御によるP制
御指令値が直流分を含んだ正弦波で与えられたとする
と、超電導コイルは理想的なインダクタンスと見なせる
から、直流電流Idは初期値をI。とすると、数式
(1)によって表される。
If the P control command value for power system stability improvement control is given by a sine wave containing a DC component, the superconducting coil can be regarded as an ideal inductance, so that the DC current Id has an initial value of I. Then, it is represented by Formula (1).

【0019】[0019]

【数1】 [Equation 1]

【0020】ここで、上式の第2項は有効電力制御指令
値の交流分によるIdの変化分、第3項は直流分による
Idの減衰分を示す。なお、3項の直流減衰分にはSM
ESの特性による定常的な変化分も含まれる。
Here, the second term of the above equation represents the change of Id due to the AC component of the active power control command value, and the third term represents the attenuation of Id due to the DC component. It should be noted that the direct current attenuation of item 3 is SM
A steady change due to the characteristics of ES is also included.

【0021】ところで、Id制御指令値生成回路11−
3は、直流電流Idの第3項に示されるSMESの特性
による定常的な直流減衰分やP制御指令値の直流分によ
る減衰を補償するためのものであるが、第2項の交流変
化分を含んで補償すると有効電力制御指令値が相殺され
てしまい、P制御が不可能になる。このため、第2項の
交流分によるIdの変化分は取り除く必要がある。
By the way, the Id control command value generation circuit 11-
3 is for compensating for the steady DC attenuation due to the SMES characteristic shown in the third term of the DC current Id and the attenuation due to the DC of the P control command value, but the AC variation of the second term. If it is compensated by including, the active power control command value is canceled and P control becomes impossible. Therefore, it is necessary to remove the change in Id due to the AC component in the second term.

【0022】直流値演算手段16はこのために設けられ
るもので、第2項の交流成分を除去するフイルター機能
であり、交流分の変動周期Tに対し充分長い時定数を有
した一次遅れ回路等によって構成される。直流値演算手
段16の出力Id。は(1)式の第1項と第3項及び第
2項の直流平均値からなる(第2項成分は小さいので無
視できる)。手段16は、二次遅れ回路や積分回路など
同等の機能を有する手段によって代替可能である。な
お、この直流値演算手段16は回路11−3において、
指令値Idr と測定値Idの差分をとった以降に設けて
も同等の機能を発揮できる。
The DC value calculating means 16 is provided for this purpose, has a filter function for removing the AC component of the second term, and has a first-order lag circuit having a time constant sufficiently long with respect to the fluctuation period T of the AC component. Composed by. Output Id of the DC value calculating means 16. Is a DC average value of the first term, the third term and the second term of the equation (1) (the second term component is small and can be ignored). The means 16 can be replaced by means having an equivalent function such as a secondary delay circuit or an integrating circuit. In addition, this DC value calculating means 16 is
Even if it is provided after the difference between the command value Id r and the measured value Id is obtained, the same function can be exhibited.

【0023】図2はPQId制御回路12の詳細な構成
を示したもので、各制御指令値を入力して正規化する無
効電力単位換算回路13,有効電力単位換算回路14及
び直流電流換算回路15と有効電力指令値に直流電流指
令値を加算する加算回路18、さらに、これら換算値を
入力として通流比Dと制御遅れ角αを演算するα−D演
算回路19を備えている。なお、各換算回路の出力側に
設けられているスイッチ22,23及び24は、任意の
組合わせによる機能試験などのために用いられる。
FIG. 2 shows a detailed configuration of the PQId control circuit 12. The reactive power unit conversion circuit 13, the active power unit conversion circuit 14, and the DC current conversion circuit 15 which input and normalize each control command value. And an addition circuit 18 for adding the direct current command value to the active power command value, and an α-D calculation circuit 19 for calculating the flow ratio D and the control delay angle α using these converted values as inputs. The switches 22, 23, and 24 provided on the output side of each conversion circuit are used for a functional test by an arbitrary combination.

【0024】次に、上記のように構成された本実施例S
MESの動作を説明する。GTOサイリスタ・シングル
ブリッジによって構成されている交直変換器3の制御信
号を、通流比Dと制御遅れ角αとすると、SMESに流
入する有効電力P及び無効電力Qは数式(2)と(3)
で表わすことができる。
Next, the present embodiment S constructed as described above.
The operation of the MES will be described. Assuming that the control signal of the AC / DC converter 3 configured by the GTO thyristor / single bridge is the conduction ratio D and the control delay angle α, the active power P and the reactive power Q flowing into the SMES are expressed by equations (2) and (3). )
Can be represented by.

【0025】[0025]

【数2】 [Equation 2]

【0026】[0026]

【数3】 [Equation 3]

【0027】ここで、Ed。は交直変換器3の無負荷直
流電圧である。上式より、通流比Dと制御遅れ角αを制
御することにより、有効電力Pと無効電力Qの同時制御
が可能になることがわかる。なお、これについては、上
記参照例2に詳しい。
Here, Ed. Is a no-load DC voltage of the AC / DC converter 3. From the above equation, it can be seen that the active power P and the reactive power Q can be simultaneously controlled by controlling the flow ratio D and the control delay angle α. Note that this is described in detail in Reference Example 2 above.

【0028】図3は、有効電力P,無効電力QとGTO
サイリスタ変換器3の通流比Dと制御遅れ角αの関係を
示す概念図である。x軸は有効電力P、y軸は無効電力
Qである。この円の面積は、系統の有効電力と無効電力
の最大制御可能範囲を示すもので、その半径は直流電流
に比例する。同図で、SMESに流入(流出)する瞬時
電力を表す径は通流比Dによって、x軸に対する制御遅
れ角をαで示している。なお、y軸にたいし右半分はコ
イルのエネルギー蓄積(流入)モード、左半分はエネル
ギー放出(流出)モードである。
FIG. 3 shows active power P, reactive power Q and GTO.
It is a conceptual diagram which shows the flow ratio D of the thyristor converter 3, and the relationship of control delay angle (alpha). The x-axis is the active power P and the y-axis is the reactive power Q. The area of this circle shows the maximum controllable range of active power and reactive power of the grid, and its radius is proportional to the direct current. In the figure, the diameter representing the instantaneous electric power flowing into (flowing out from) the SMES is represented by the conduction ratio D, and the control delay angle with respect to the x axis is represented by α. The right half of the y-axis is the energy storage (inflow) mode of the coil, and the left half is the energy release (outflow) mode.

【0029】いま、通流比D1 ,制御遅れ角α1 とすれ
ば、SMESに流入する電力は、A点となり、有効電力
1 ,無効電力Q1 となる。ここで、通流比を、D1
固定したまま、制御遅れ角を180°−α1 に制御すれ
ば、SMESに流入する電力はB点、即ち、有効電力−
1 ,無効電力Q1 となりエネルギーの放出状態とな
る。これは、無効電力値は不変とし、有効電力のみを変
更して系統の周波数や電力動揺等を安定化するための制
御である。また、通流比をD2 、制御遅れ角をα2 とす
れば、SMESに流入する電力はC点、即ち、有効電力
1 、無効電力Q2 となり、有効電力値は不変としたま
ま、系統電圧安定化の新たな要求によって無効電力のみ
を変化させることができる。以上のように通流比D、制
御遅れ角αを制御することにより、系統安定化度向上制
御のためのSMESによる有効電力Pと無効電力Qの同
時制御が可能となる。
Now, assuming that the conduction ratio is D 1 and the control delay angle is α 1 , the electric power flowing into the SMES becomes the point A, that is, the active power P 1 and the reactive power Q 1 . Here, if the control delay angle is controlled to 180 ° -α 1 while the flow ratio is fixed at D 1 , the power flowing into the SMES is point B, that is, the active power −
P 1 and reactive power Q 1 are set , and energy is released. This is a control for stabilizing the frequency and power fluctuation of the system by changing only the active power without changing the reactive power value. Further, if the conduction ratio is D 2 and the control delay angle is α 2 , the power flowing into the SMES becomes point C, that is, active power P 1 and reactive power Q 2 , and the active power value remains unchanged. Only the reactive power can be changed by the new demand for grid voltage stabilization. By controlling the flow ratio D and the control delay angle α as described above, it is possible to simultaneously control the active power P and the reactive power Q by SMES for the system stability improvement control.

【0030】次に、PQId制御回路12の動作を説明
する。数式(2),(3)に示される有効電力Pと無効電
力Qは、正規化された単位換算値P0,Q0で示すとそれ
ぞれ数式(4),(5)によって表わされる。
Next, the operation of the PQId control circuit 12 will be described. The active power P and the reactive power Q shown in the equations (2) and (3) are represented by the equations (4) and (5) when represented by the normalized unit conversion values P 0 and Q 0 , respectively.

【0031】[0031]

【数4】 [Equation 4]

【0032】[0032]

【数5】 [Equation 5]

【0033】ここで、無効電力制御指令値QRと有効電
力制御指令値PRは、P=PR,Q=QRとして、図2
の単位換算回路13および14によって換算され、正規
化された無効電力制御指令値Q0 と有効電力制御指令値
0 が求められる。
Here, the reactive power control command value QR and the active power control command value PR are set to P = PR and Q = QR in FIG.
The normalized reactive power control command value Q 0 and active power control command value P 0 are calculated by the unit conversion circuits 13 and 14 of FIG.

【0034】数式(2)〜(5)式より、通流比D及び
制御遅れ角αは次式のように表わされる。
From equations (2) to (5), the flow ratio D and the control delay angle α are expressed by the following equations.

【0035】[0035]

【数6】 [Equation 6]

【0036】[0036]

【数7】 [Equation 7]

【0037】本発明は、直流電流制御指令値を有効電力
制御指令値に加算することを特徴としているが、この有
効電力Pと上記直流成分による電流Id0の関係は数式
(8)によって表わすことができる。
The present invention is characterized in that the direct current control command value is added to the active power control command value. The relationship between the active power P and the current Id 0 due to the direct current component is expressed by a mathematical expression.
It can be represented by (8).

【0038】[0038]

【数8】 [Equation 8]

【0039】ここで、Vdは、超電導コイルの端子電
圧、Lは超電導コイルのインダクタンスである。(8)
式を(4)式に適用すると、
Here, Vd is the terminal voltage of the superconducting coil, and L is the inductance of the superconducting coil. (8)
Applying the equation to equation (4),

【0040】[0040]

【数9】 [Equation 9]

【0041】となる。上式のId0′ は直流電流変化率
であり、これに相当する値が図1の直流電流制御指令値
生成回路11−3に示すように、指令値IdrとId0
差分による制御指令値IR として与えられる。なお、指
令値Idr が変化率として与えられるときは、Id0
演算回路の出力も変化率として得る。両者が電流値で与
えられる場合の必要な換算は、回路11−3のG3(s)
によって行なう。直流電流制御指令値IR は、換算回路
15によって有効電力と等価なPI0 に換算されされ
る。
It becomes Id 0 ′ in the above equation is a DC current change rate, and a value corresponding to this is a control command based on the difference between the command values I d r and I d 0 as shown in the DC current control command value generation circuit 11-3 in FIG. Given as the value I R. When the command value Id r is given as the rate of change, the output of the arithmetic circuit for Id 0 is also obtained as the rate of change. The necessary conversion when both are given by the current value is G3 (s) of the circuit 11-3.
By. The direct current control command value I R is converted by the conversion circuit 15 into PI 0 equivalent to active power.

【0042】ところで、このPI0 は有効電力制御系に
加算されるから、(6),(7)式は、次のように書き換
えることができる。
By the way, since this PI 0 is added to the active power control system, the equations (6) and (7) can be rewritten as follows.

【0043】[0043]

【数10】 [Equation 10]

【0044】[0044]

【数11】 [Equation 11]

【0045】以上のように、直流電流制御指令値IR
有効電力制御指令値PR および無効電力制御指令値QR
がPQId制御回路12に与えられると、換算回路13
〜15によって換算指令値Q0 ,P0 ,PI0 が求めら
れる。このQ0 と加算回路18の出力(P0+PI0)を
入力とし、α−D演算回路19の通流比演算部20と制
御遅れ角演算部21によって(10),(11)式が演算さ
れ、通流比D,制御遅れ角αが求まる。したがって、上
記(10),(11)式の指令値Q0 ,P0 ,PI0を独立の
変数として、交直変換器3の通流比Dと制御遅れ角を、
SMESのあらゆる運転モードにおいて任意に制御でき
る。
As described above, the DC current control command value I R ,
Active power control instruction value P R and reactive power control instruction value Q R
Is given to the PQId control circuit 12, the conversion circuit 13
The conversion command values Q 0 , P 0 , and PI 0 are obtained from ˜15. Using the Q 0 and the output (P 0 + PI 0 ) of the adder circuit 18 as inputs, the equations (10) and (11) are calculated by the conduction ratio calculator 20 and the control delay angle calculator 21 of the α-D calculator 19. Then, the flow ratio D and the control delay angle α are obtained. Therefore, using the command values Q 0 , P 0 , and PI 0 of the equations (10) and (11) as independent variables, the flow ratio D of the AC / DC converter 3 and the control delay angle are
It can be controlled arbitrarily in all operating modes of SMES.

【0046】なお、上記例では、SMESの指令値とし
て直流電流指令値Idr を使用しているが、貯蔵エネル
ギー量Eと、直流電流Idには下式の関係がある。
In the above example, the DC current command value Id r is used as the SMES command value, but the stored energy amount E and the DC current Id have the following relationship.

【0047】[0047]

【数12】 [Equation 12]

【0048】したがって、Idr の代わりに貯蔵エネル
ギー量Eによる指令値としてもよい。
Therefore, the command value based on the stored energy amount E may be used instead of Id r .

【0049】図4は以上のように制御される有効電力と
直流電流の関係を説明するもので、有効電力制御指令値
として正弦波状の指令値を与えた場合の動作を示したも
のである。有効電力制御系に、直流電流制御指令値を加
算しない場合は、交直変換器の損失等により、直流電流
Id(即ち、コイルの蓄積エネルギー)が減少するた
め、有効電力制御の能力が減少し、破線のように有効電
力Pの変化幅が、減少する。
FIG. 4 illustrates the relationship between the active power and the direct current controlled as described above, and shows the operation when a sinusoidal command value is given as the active power control command value. When the direct current control command value is not added to the active power control system, the direct current Id (that is, the energy accumulated in the coil) is reduced due to the loss of the AC / DC converter, and the active power control capability is reduced. The range of change in active power P decreases as indicated by the broken line.

【0050】一方、本実施例のように、直流電流制御指
令値PI0を有効電力制御指令値P0に加算した場合に
は、実線のように直流電流Idを一定に保つことができ
るため、実線のように有効電力の変化幅は一定となる。
ただし、直流電流制御指令値は有効電力制御系に加算さ
れているから、直流電流と有効電力は内面的には独立に
制御することはできない。従って、直流電流を一定に保
つためには、有効電力を電力系統からSMESに供給す
る。図4のPL0 が、直流電流制御指令値による有効電
力制御系への加算分に相当する。ただし、このPL0
通常、超電導コイルや交直変換器等による損失分に相当
するもので、有効電力制御指令値に比較すると非常に小
さいため、実運用上は有効電力制御の障害にはならな
い。
On the other hand, when the DC current control command value PI 0 is added to the active power control command value P 0 as in this embodiment, the DC current Id can be kept constant as shown by the solid line. As shown by the solid line, the range of change in active power is constant.
However, since the DC current control command value is added to the active power control system, the DC current and active power cannot be controlled internally independently. Therefore, in order to keep the direct current constant, active power is supplied to the SMES from the power grid. PL 0 in FIG. 4 corresponds to the addition to the active power control system by the DC current control command value. However, this PL 0 usually corresponds to the loss due to the superconducting coil, the AC / DC converter, etc., and is very small compared to the active power control command value, so that it does not hinder active power control in actual operation.

【0051】このように、本実施例によれば、有効電力
制御,無効電力制御および直流電流制御を、上記(1
0),(11)式の指令値Q0 ,P0 ,PI0 を制御するこ
とによって、SMESのあらゆる運転モード、すなわ
ち、各制御の単独制御、各制御の2つの組合わせおよび
3つの組合わせを、切り換えなしに行なうことができ
る。特に、有効電力と無効電力を同時制御しつつ、有効
電力制御指令値の補正を直流電流制御系で行なうことに
より、系統の安定化制御の一層の向上とその制御可能範
囲の維持を可能にする。
As described above, according to this embodiment, the active power control, the reactive power control, and the direct current control are performed according to the above (1
By controlling the command values Q 0 , P 0 , PI 0 in the equations (0) and (11), all operating modes of the SMES, that is, individual control of each control, two combinations of each control and three combinations of each control are performed. Can be performed without switching. In particular, by simultaneously controlling active power and reactive power and correcting the active power control command value by the DC current control system, it is possible to further improve the stabilization control of the system and maintain its controllable range. ..

【0052】次に、上記した図1のリミッタ17の機能
について説明する。リミッタ17は、入力信号を設定さ
れた上下限値の範囲に制限して出力する周知の手段によ
って構成されている。上下限値の範囲は予め設定または
運転中の他からの指示によって変更可能である。これに
より、入力される直流電流制御指令値IR は、設定され
た上下限値以下に自動調整される。
Next, the function of the limiter 17 shown in FIG. 1 will be described. The limiter 17 is constituted by a well-known means for limiting the input signal within the set upper and lower limit values and outputting it. The range of the upper and lower limit values can be changed in advance or according to an instruction from another person during operation. As a result, the input DC current control command value I R is automatically adjusted below the set upper and lower limit values.

【0053】ところで、系統安定化のための有効電力制
御中に、直流電流制御指令値IR を大きく変更すると、
有効電力制御の機能を低減してしまうことになる。通
常、電力系統の安定化制御のために要求される有効電力
指令値は、周期1秒ていどの正弦波信号であり、この期
間中におけるSMESの定常的な直流電流の減衰分は小
さく、有効電力制御に与える影響はせいぜい数%にすぎ
ない。したがって、リミッタの上下限値を、SMESの
定常的な減衰分等の最大値ていどに設定することで、有
効電力制御の優先制御が確保され、系統安定化の要求に
敏速に対処できる。
By the way, if the DC current control command value I R is changed significantly during active power control for system stabilization,
This reduces the function of active power control. Normally, the active power command value required for stabilization control of the power system is any sine wave signal with a period of 1 second, and the steady DC current attenuation of the SMES during this period is small, and the active power command value is small. The effect on control is only a few percent at best. Therefore, by setting the upper and lower limit values of the limiter to the maximum value such as the steady attenuation of SMES, priority control of active power control is secured, and the demand for system stabilization can be promptly addressed.

【0054】一方、超電導コイルの初期充電時のように
系統安定化と無関係に制御する場合は、リミッタ17の
上下限値を広げて直流電流御指令値PI。を大きくする
と、直流電流の蓄積の速度を高めことができる。また、
系統安定化によるエネルギー放出が頻繁な場合にも、必
要な範囲でIR を大きくして蓄積を早め、系統安定化に
必要な制御範囲のエネルギーを確保することができる。
On the other hand, when controlling the superconducting coil irrespective of system stabilization such as during initial charging, the upper and lower limit values of the limiter 17 are widened to set the direct current control command value PI. By increasing, the speed of DC current accumulation can be increased. Also,
Even when energy is frequently released due to system stabilization, I R can be increased in a required range to accelerate accumulation and energy in a control range required for system stabilization can be secured.

【0055】なお、上記実施例におけるSMESの交直
変換器3は、GTOサイリスタを用いたシングル・ブリ
ッジによっている。しかし、本発明はこの構成に限定さ
れるものではない。すなわち、SIサイリスタのブリッ
ジによる場合でも、有効電力制御系の指令値を補正する
本発明による直流電流制御手段を付加することで実現で
きる。なお、補正された有効電力制御と無効電力制御の
非干渉同時制御は、SIサイリスタによっても上述した
参照例1のように可能である。
The SMES AC / DC converter 3 in the above embodiment is a single bridge using a GTO thyristor. However, the present invention is not limited to this configuration. That is, even in the case of the bridge of the SI thyristor, it can be realized by adding the direct current control means according to the present invention for correcting the command value of the active power control system. Note that the non-interference simultaneous control of the corrected active power control and the reactive power control can be performed by the SI thyristor as in Reference Example 1 described above.

【0056】次に本発明の第2の実施例を図5〜図7に
したがって説明する。本実施例では図1,図2に示した
制御装置10を、ディジタル演算処理する計算機装置に
よって実現したものである。
Next, a second embodiment of the present invention will be described with reference to FIGS. In this embodiment, the control device 10 shown in FIGS. 1 and 2 is realized by a computer device for digital arithmetic processing.

【0057】図5は中央処理装置(CPU)28,パルス
発生手段25,記憶手段26,入力手段27,出力手段
29からなる制御装置10の構成を示している。CPU
28の処理はパルス発生手段25の周期的に発生するパ
ルス信号aによって起動され、記憶手段26に予め記憶
されているプログラムに従って演算処理を行なう。まず
入力手段27を介して、有効電力P,無効電力Q,交流
電圧Vac,直流電流Idを各検出器から、また、有効電
力指令値Pr,無効電力指令値Qr,直流電流指令値I
r を電力系統安定化制御の上位制御装置から取込み、
記憶手段26に予め記憶されているテーブルを索引しな
がら演算処理を行ない、演算結果として得られる通流比
D,制御遅れ角αを出力回路29を介してゲートパルス
発生器9に出力する。
FIG. 5 shows the configuration of the control device 10 including a central processing unit (CPU) 28, pulse generating means 25, storage means 26, input means 27, and output means 29. CPU
The processing of 28 is started by the pulse signal a which is periodically generated by the pulse generating means 25, and the arithmetic processing is performed according to the program stored in the storage means 26 in advance. First, the active power P, the reactive power Q, the AC voltage V ac , and the DC current Id are input from the respective detectors via the input means 27, and the active power command value Pr, the reactive power command value Qr, and the DC current command value I are also included.
Incorporating d r from the upper controller of the power system stabilization control,
A calculation process is performed while indexing a table stored in advance in the storage means 26, and the flow ratio D and the control delay angle α obtained as the calculation result are output to the gate pulse generator 9 via the output circuit 29.

【0058】図6に示すように、パルス発生手段25の
パルス信号aのくり返し周期Tは、CPU28の演算処
理時間τに比べ充分大きく、かつ、上記したSMESの
定常的な減衰を補償できる値にとられる。なお、CPU
28の演算処理は上位制御装置からのイベントによって
起動され、電力系統安定化制御の必要に応じて演算され
るようにしてもよい。
As shown in FIG. 6, the repetition period T of the pulse signal a of the pulse generating means 25 is sufficiently larger than the arithmetic processing time τ of the CPU 28 and is a value capable of compensating for the above-mentioned steady attenuation of SMES. Be taken. In addition, CPU
The arithmetic processing of 28 may be activated by an event from the host controller, and may be calculated as needed for power system stabilization control.

【0059】図7はCPU28で周期T毎に行なわれる
一連の処理フローを示しており、ステップ30のデータ
の取り込みの後、ステップ31〜33において無効電力
制御指令値Q0 ,有効電力制御指令値P0 ,直流電流制
御指令値PI0 の演算を行ない、ステップ34で通流比
D,制御遅れ角αを演算する。
FIG. 7 shows a series of processing flows performed by the CPU 28 in each cycle T. After the data is fetched in step 30, in steps 31 to 33, the reactive power control command value Q 0 and the active power control command value are set. P 0 and the direct current control command value PI 0 are calculated, and in step 34 the flow ratio D and the control delay angle α are calculated.

【0060】本実施例によっても、有効電力と無効電力
を同時制御ながら、直流電流制御指令値による有効電力
制御の補正を行ない、直流電流を所定の範囲に制御する
など、実施例1と同じ機能を達成することができる。
Also in this embodiment, while simultaneously controlling active power and reactive power, active power control is corrected by a direct current control command value, and direct current is controlled within a predetermined range. Can be achieved.

【0061】[0061]

【発明の効果】本発明のエネルギー貯蔵装置によれば、
GTOのシングルブリッジによる交直変換器と、有効電
力制御手段,無効電力制御手段,直流電流制御手段を備
えていて、これら各制御を独自にあるいは組み合わせて
運転できるSMESを提供できる。これによれば、従来
実現の困難な切り換え手段をもつことなく、SMESの
運転モードや系統からの要求に応じ、任意の制御の組合
わせが可能になり、装置構成も簡単になる。
According to the energy storage device of the present invention,
A GTO single bridge AC / DC converter, active power control means, reactive power control means, and DC current control means are provided, and it is possible to provide an SMES capable of operating these respective controls independently or in combination. According to this, it is possible to combine arbitrary controls according to the operation mode of the SMES and the demands of the system without having a switching means which is difficult to realize in the past, and the device configuration becomes simple.

【0062】本発明のエネルギー貯蔵装置の制御方式に
よれば、電力系統安定度向上制御から要求される有効電
力と無効電力の制御期間中でも、超電導コイルの電流を
所定範囲に維持する直流電流制御を同時に実行でき、有
効電力,無効電力制御に必要とする貯蔵エネルギーの確
保ができ、SMESを用いた系統安定化向上制御の実運
用が可能となる。
According to the control system of the energy storage device of the present invention, the direct current control for maintaining the current of the superconducting coil within the predetermined range is performed even during the control period of the active power and the reactive power required by the power system stability improvement control. It can be executed at the same time, the stored energy required for active power and reactive power control can be secured, and the actual operation of system stabilization improvement control using SMES becomes possible.

【0063】本発明のエネルギー貯蔵装置の制御方式に
よれば、直流電流制御系の出力にリミッタを設けている
ので、直流電流制御の有効電力制御に与える影響を小さ
くし、電力系統安定度向上制御から要求される有効電力
制御を優先することが可能となる。さらに、リミッタの
規制値を可変して、直流電流の増減の速度を調整するこ
とができ、SMESの初期起動時、あるいは系統安定化
によるエネルギー放出が頻繁な場合などに最適な制御を
提供することができる。
According to the control system of the energy storage device of the present invention, since the limiter is provided at the output of the DC current control system, the influence of the DC current control on the active power control is reduced, and the power system stability improvement control is performed. It is possible to give priority to active power control required by the. Furthermore, the limit value of the limiter can be varied to adjust the speed of increase or decrease of DC current, and to provide optimum control at the initial startup of SMES or when energy is frequently released due to grid stabilization. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示し、交直変換器にG
TOサイリスタシングルブリッジを採用する場合の超電
導エネルギー貯蔵装置の全体構成図。
FIG. 1 shows a first embodiment of the present invention, in which the AC / DC converter is
The whole block diagram of the superconducting energy storage device when adopting a TO thyristor single bridge.

【図2】図1の制御装置におけるPQId制御回路の構
成を示す機能ブロック図。
FIG. 2 is a functional block diagram showing the configuration of a PQId control circuit in the control device of FIG.

【図3】超電導エネルギー貯蔵装置のPQ制御の動作を
説明する概念図。
FIG. 3 is a conceptual diagram illustrating an operation of PQ control of the superconducting energy storage device.

【図4】本発明による直流制御の作用を説明する動作説
明図。
FIG. 4 is an operation explanatory view for explaining the operation of DC control according to the present invention.

【図5】本発明の第2の実施例で、超電導エネルギー貯
蔵装置の制御装置の構成を示す機能ブロック図。
FIG. 5 is a functional block diagram showing a configuration of a control device of the superconducting energy storage device according to the second embodiment of the present invention.

【図6】図5の制御装置の動作を説明するタイムチャー
ト。
FIG. 6 is a time chart explaining the operation of the control device of FIG.

【図7】図5の制御装置の処理ステップを説明するフロ
ーチャート。
FIG. 7 is a flowchart illustrating processing steps of the control device in FIG.

【符号の説明】[Explanation of symbols]

1…超電導コイル、2…電力系統、3…交直変換器、4
…変換器用変圧器、5…直流電流検出器、6…無効電力
検出器、7…有効電力検出器、8…交流電圧検出器、9
…ゲートパルス発生器、10…制御装置、11−1…無
効電力制御回路、11−2有効効電力制御回路、11−
3直流電流制御回路、12…PQId制御回路、13〜
15…換算値回路、16…直流値演算手段、17…リミ
ッタ、18…加算回路、19…α−D演算回路、20…
通流比演算手段、21…α演算手段、25…パルス発生
手段、26…記憶手段、27…入力手段、28…ディジ
タル演算処理手段(CPU)、29…出力手段。
1 ... Superconducting coil, 2 ... Power system, 3 ... AC / DC converter, 4
... Transformer for transformer, 5 ... DC current detector, 6 ... Reactive power detector, 7 ... Active power detector, 8 ... AC voltage detector, 9
... Gate pulse generator, 10 ... Control device, 11-1 ... Reactive power control circuit, 11-2 Active power control circuit, 11-
3 DC current control circuit, 12 ... PQId control circuit, 13-
15 ... Conversion value circuit, 16 ... DC value computing means, 17 ... Limiter, 18 ... Addition circuit, 19 ... α-D computing circuit, 20 ...
Commutation ratio calculation means, 21 ... α calculation means, 25 ... Pulse generation means, 26 ... Storage means, 27 ... Input means, 28 ... Digital calculation processing means (CPU), 29 ... Output means.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】超電導コイルと、超電導コイルと電力系統
間の電力を制御する交直変換器を具備する超電導エネル
ギー貯蔵装置において、 電力系統安定化の要求指令に応じて有効電力制御指令値
を決定する有効電力制御手段と、超電導コイルを流れる
直流電流と所定の指令値の偏差に応じて前記有効電力制
御指令値を補正する直流電流制御手段を有し、補正され
た有効電力制御指令値に基づいて前記交直変換器を制御
する制御手段を設けることを特徴とする超電導エネルギ
ー貯蔵装置。
1. A superconducting energy storage device comprising a superconducting coil and an AC / DC converter for controlling electric power between the superconducting coil and the electric power system, wherein an active power control command value is determined according to a request command for stabilizing the electric power system. Active power control means, having a direct current control means for correcting the active power control command value according to the deviation of the direct current flowing through the superconducting coil and a predetermined command value, based on the corrected active power control command value A superconducting energy storage device comprising a control means for controlling the AC / DC converter.
【請求項2】超電導コイルと、超電導コイルと電力系統
間の電力を制御する交直変換器を具備する超電導エネル
ギー貯蔵装置において、 電力系統安定化の要求指令に応じて有効電力制御指令値
を決定する有効電力制御手段および無効電力制御指令値
を決定する無効電力制御手段と、超電導コイルを流れる
直流電流と所定の指令値の偏差に応じて前記有効電力制
御指令値を補正する直流電流制御手段を有し、前記無効
電力制御指令値および補正された有効電力制御指令値に
基づいて前記交直変換器を制御する制御手段を設けるこ
とを特徴とする超電導エネルギー貯蔵装置。
2. A superconducting energy storage device comprising a superconducting coil and an AC / DC converter for controlling electric power between the superconducting coil and the electric power system, wherein an active power control command value is determined in accordance with a request command for stabilizing the electric power system. There are active power control means and reactive power control means for determining a reactive power control command value, and direct current control means for correcting the active power control command value according to a deviation between a direct current flowing through the superconducting coil and a predetermined command value. However, the superconducting energy storage device is provided with control means for controlling the AC-DC converter based on the reactive power control command value and the corrected active power control command value.
【請求項3】前記交直変換器は、サイリスタを用いたダ
ブル・ブリッジによって構成されることを特徴とする請
求項1または請求項2記載の超電導エネルギー貯蔵装
置。
3. The superconducting energy storage device according to claim 1, wherein the AC / DC converter is configured by a double bridge using a thyristor.
【請求項4】超電導コイルと、超電導コイルと電力系統
間の電力を制御する交直変換器と、交直変換器の通流比
と制御遅れ角を制御する制御装置を具備する超電導エネ
ルギー貯蔵装置において、 前記制御装置は、電力系統安定化の要求指令に応じて有
効電力制御指令値を決定する有効電力制御手段と、超電
導コイルを流れる直流電流と所定の指令値の偏差に応じ
て前記有効電力制御指令値を補正する補正値を決定する
直流電流制御手段と、補正された有効電力制御指令値に
よって前記通流比と制御遅れ角を演算する演算手段を設
けることを特徴とする超電導エネルギー貯蔵装置。
4. A superconducting energy storage device comprising a superconducting coil, an AC / DC converter for controlling electric power between the superconducting coil and the power system, and a controller for controlling a flow ratio and a control delay angle of the AC / DC converter, The control device, active power control means for determining an active power control command value according to a power system stabilization request command, and the active power control command according to a deviation between a direct current flowing through the superconducting coil and a predetermined command value. A superconducting energy storage device comprising: a direct current control means for determining a correction value for correcting the value; and a calculation means for calculating the flow ratio and the control delay angle based on the corrected active power control command value.
【請求項5】超電導コイルと、超電導コイルと電力系統
間の電力を制御する交直変換器と、交直変換器の通流比
と制御遅れ角を制御する制御装置を具備する超電導エネ
ルギー貯蔵装置において、 前記制御装置は、電力系統安定化の要求指令に応じて有
効電力制御指令値を決定する有効電力制御手段および無
効電力制御指令値を決定する無効電力制御手段と、超電
導コイルを流れる直流電流と所定の指令値の偏差に応じ
て前記有効電力制御指令値を補正する補正値を決定する
直流電流制御手段と、前記無効電力制御指令値および補
正された有効電力制御指令値によって前記通流比と制御
遅れ角を演算する演算手段を設けることを特徴とする超
電導エネルギー貯蔵装置。
5. A superconducting energy storage device comprising a superconducting coil, an AC / DC converter for controlling electric power between the superconducting coil and the power system, and a controller for controlling the flow ratio and the control delay angle of the AC / DC converter. The control device includes an active power control unit that determines an active power control command value and a reactive power control unit that determines a reactive power control command value according to a power system stabilization request command, a DC current flowing through a superconducting coil, and a predetermined value. DC current control means for determining a correction value for correcting the active power control command value according to the deviation of the command value, and the flow ratio and control by the reactive power control command value and the corrected active power control command value. A superconducting energy storage device, characterized in that a calculation means for calculating a delay angle is provided.
【請求項6】前記交直変換器は、自己消弧形サイリスタ
を用いたシングル・ブリッジによって構成されることを
特徴とする請求項4または請求項5記載の超電導エネル
ギー貯蔵装置。
6. The superconducting energy storage device according to claim 4, wherein the AC / DC converter is configured by a single bridge using a self-extinguishing thyristor.
【請求項7】前記直流制御手段は、前記補正値の上限お
よび/または下限を制限するリミッタを有することを特
徴とする請求項1〜請求項6のいずれか一に記載の超電
導エネルギー貯蔵装置。
7. The superconducting energy storage device according to claim 1, wherein the DC control means has a limiter for limiting an upper limit and / or a lower limit of the correction value.
【請求項8】前記リミッタは、超電導エネルギー貯蔵装
置の定常的な直流減衰分を補償するように制限すること
を特徴とする請求項7記載の超電導エネルギー貯蔵装
置。
8. The superconducting energy storage device according to claim 7, wherein the limiter limits the steady-state DC attenuation of the superconducting energy storage device so as to compensate for the steady DC attenuation.
【請求項9】電力系統の有効電力制御を行なう超電導エ
ネルギー貯蔵装置の制御方法において、 前記有効電力制御の指令値を、超電導エネルギー貯蔵装
置に流れる直流電流に応じて補正し、有効電力制御と直
流電流一定化制御を併せ行なうことを特徴とする超電導
エネルギー貯蔵装置の制御方法。
9. A method of controlling a superconducting energy storage device for controlling active power of a power system, comprising: correcting a command value of the active power control in accordance with a direct current flowing through the superconducting energy storage device; A method for controlling a superconducting energy storage device, which is characterized in that current constant control is also performed.
【請求項10】有効電力制御と無効電力制御を同時に処
理して電力系統安定化制御を行なう超電導エネルギー貯
蔵装置の制御方法において、 前記有効電力制御の指令値を、超電導エネルギー貯蔵装
置に流れる直流電流に応じて補正することによって、前
記電力系統安定化制御と直流電流一定化制御を併せ行な
うことを特徴とする超電導エネルギー貯蔵装置の制御方
法。
10. A control method of a superconducting energy storage device for simultaneously processing active power control and reactive power control to perform power system stabilization control, wherein a command value for the active power control is a direct current flowing through the superconducting energy storage device. A method for controlling a superconducting energy storage device, characterized in that the power system stabilization control and the direct current constant control are performed together by making a correction according to the above.
【請求項11】前記直流電流一定化制御は、超電導コイ
ルと電力系統間の電力を制御する交直変換器の通流比と
制御遅れ角を制御することによって行なうことを特徴と
する請求項9または請求項10記載の超電導エネルギー
貯蔵装置の制御方法。
11. The constant DC current control is performed by controlling a conduction ratio and a control delay angle of an AC / DC converter that controls electric power between the superconducting coil and the electric power system. The method for controlling a superconducting energy storage device according to claim 10.
【請求項12】前記有効電力制御の指令値の補正は、超
電導コイルに流れている直流電流の直流成分と所定の直
流電流指令値の偏差に基づいてなされることを特徴とす
る請求項9〜請求項11のいずれか一に記載の超電導エ
ネルギー貯蔵装置の制御方法。
12. The active power control command value is corrected based on a deviation between a DC component of a DC current flowing through the superconducting coil and a predetermined DC current command value. The method for controlling the superconducting energy storage device according to claim 11.
【請求項13】前記所定の直流電流指令値は、超電導エ
ネルギー貯蔵装置の定常的な直流減衰分に応じて設定さ
れることを特徴とする請求項12記載の超電導エネルギ
ー貯蔵装置の制御方法。
13. The method of controlling a superconducting energy storage device according to claim 12, wherein the predetermined DC current command value is set according to a steady DC attenuation of the superconducting energy storage device.
【請求項14】前記所定の直流電流指令値は前記定常的
な直流減衰分より大きな値に設定され、超電導エネルギ
ー貯蔵装置の充電の速度を高めるように制御することを
特徴とする請求項12記載の超電導エネルギー貯蔵装置
の制御方法。
14. The predetermined DC current command value is set to a value larger than the steady DC attenuation amount, and the superconducting energy storage device is controlled so as to increase the charging speed. Method for controlling superconducting energy storage device of the above.
【請求項15】前記所定の直流電流指令値は所定の値以
下に制限され、前記有効電力制御を前記直流電流一定化
制御に優先して制御することを特徴とする請求項12記
載の超電導エネルギー貯蔵装置の制御方法。
15. The superconducting energy according to claim 12, wherein the predetermined direct current command value is limited to a predetermined value or less, and the active power control is controlled prior to the direct current constant control. Storage device control method.
JP4104265A 1992-04-23 1992-04-23 Superconducting energy storage device and control method for superconducting energy storage device Pending JPH05300674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104265A JPH05300674A (en) 1992-04-23 1992-04-23 Superconducting energy storage device and control method for superconducting energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104265A JPH05300674A (en) 1992-04-23 1992-04-23 Superconducting energy storage device and control method for superconducting energy storage device

Publications (1)

Publication Number Publication Date
JPH05300674A true JPH05300674A (en) 1993-11-12

Family

ID=14376100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104265A Pending JPH05300674A (en) 1992-04-23 1992-04-23 Superconducting energy storage device and control method for superconducting energy storage device

Country Status (1)

Country Link
JP (1) JPH05300674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178054A1 (en) * 2012-06-01 2013-12-05 The University Of Hong Kong Input ac voltage control bi-directional power converters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178054A1 (en) * 2012-06-01 2013-12-05 The University Of Hong Kong Input ac voltage control bi-directional power converters

Similar Documents

Publication Publication Date Title
CN100405733C (en) Method and circuit for controlling changing cyclic width lag cyclic current of inventer
JPH05300674A (en) Superconducting energy storage device and control method for superconducting energy storage device
JP2005020870A (en) Controller for power converter
JPS5875472A (en) Switching regulator
JP3261717B2 (en) Inverter control method and control device
JP2006094684A (en) Controller of power converter
JP2916092B2 (en) Control device for voltage-source converter that obtains DC from polyphase AC
JPH07123700A (en) Controlling method for input oscillation of semiconductor power conversion device
JPH11150955A (en) Dc voltage control device
JP3040077B2 (en) Power converter
JPS63302731A (en) Controller for ac/dc converter
JPH07108094B2 (en) Parallel operation control method for constant voltage constant frequency power supply
JP3264706B2 (en) Superconducting power controller
JPH02294270A (en) Dc stabilizing power supply
JPS6130967A (en) Parallel operation device of inverter
JPH0731192A (en) Controller and control method for variable speed drive system
JPH06284737A (en) Control method of link parallel resonance-type power converter
JPH04355667A (en) Power source and particle accelerator using the same
JP3198212B2 (en) Hybrid phase control device and its control device
JPH04308472A (en) Repeated control method for pwm inverter
JPH0775250A (en) Controller for ac-dc converter
JP2001251865A (en) Controller for inverter
JPH09121458A (en) Control method of active filter
JPH05122849A (en) Power supply system
JPH04178197A (en) Ac/dc converter