JPH0530051B2 - - Google Patents

Info

Publication number
JPH0530051B2
JPH0530051B2 JP57143210A JP14321082A JPH0530051B2 JP H0530051 B2 JPH0530051 B2 JP H0530051B2 JP 57143210 A JP57143210 A JP 57143210A JP 14321082 A JP14321082 A JP 14321082A JP H0530051 B2 JPH0530051 B2 JP H0530051B2
Authority
JP
Japan
Prior art keywords
gate
film
layer
insulating film
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57143210A
Other languages
Japanese (ja)
Other versions
JPS5933829A (en
Inventor
Shinichi Minami
Juji Tanida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14321082A priority Critical patent/JPS5933829A/en
Publication of JPS5933829A publication Critical patent/JPS5933829A/en
Publication of JPH0530051B2 publication Critical patent/JPH0530051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特にオ
ーバハング構造の発生を防止する、あるいは消滅
させるに好適な半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device suitable for preventing or eliminating overhang structures.

従来の単層Siゲートプロセスにおいては、第1
図aのようにSi基板21上のゲート酸化膜22上
に形成されたゲート23端部にオーバーハング構
造が生じていた。Al配線の断線防止の意味でこ
のオーバーハング構造を消滅させるために、第1
図bに示すように一般的にはグラスフロー26等
が用られてきた。
In the conventional single-layer Si gate process, the first
As shown in Figure a, an overhang structure was formed at the end of the gate 23 formed on the gate oxide film 22 on the Si substrate 21. In order to eliminate this overhang structure in order to prevent disconnection of the Al wiring, the first
As shown in FIG. b, a glass flow 26 or the like has generally been used.

しかしながら、これらの方法は、従来、トラン
ジスタ等を形成した後の工程でしか用いることが
できなかつた。例えば、2層シリコンゲートプロ
セスにおいて、第1層のシリコンゲート形成後第
2層目でもトランジスタを形成しようとすると、
第2層目のゲートを形成前にグラスフロー等は使
えなかつた。なお、24はゲートライト酸化膜、
25はソース・ドレイン領域である。
However, conventionally, these methods could only be used in a process after forming a transistor or the like. For example, in a two-layer silicon gate process, if you try to form a transistor in the second layer after forming the silicon gate in the first layer,
Glass flow etc. could not be used before forming the second layer gate. In addition, 24 is a gate light oxide film,
25 is a source/drain region.

従つて、第2図aに示すように、2層シリコン
ゲートプロセスで、第1層のシリコンゲート33
形成後、第2ゲート酸化膜34を形成、第2層多
結晶シリコン膜36を堆積し、加工する場合、パ
ターン変換差の小さいすなわちサイドエツチング
の少ないマイクロ波プラズマエツチング等で加工
すると、上記第2層多結晶シリコン膜36のう
ち、上記第2ゲート酸化膜34の側部上に形成さ
れた部分は、上記オーバーハング構造のためエツ
チされない。そのため、第2図bのように第1ゲ
ート33端部にエツチング残り36′が生じ、第
2ゲート間短絡等の原因になる。一方、エツチン
グ残りが生じないように、等方性のプラズマエツ
チングで加工すると、第2図cのように、第2ゲ
ート36が細つてしまうという欠点があつた。
Therefore, as shown in FIG. 2a, in the two-layer silicon gate process, the first layer silicon gate 33 is
After the formation, the second gate oxide film 34 is formed and the second layer polycrystalline silicon film 36 is deposited and processed by microwave plasma etching or the like with a small pattern conversion difference, that is, with little side etching. The portions of the layered polycrystalline silicon film 36 formed on the sides of the second gate oxide film 34 are not etched due to the overhang structure. Therefore, as shown in FIG. 2B, an etching residue 36' is left at the end of the first gate 33, which may cause a short circuit between the second gates. On the other hand, when etching is performed using isotropic plasma etching to avoid etching residues, the second gate 36 becomes narrower, as shown in FIG. 2c.

本発明の目的は、オーバーハング構造による欠
陥のない半導体装置の製造方法を提供することに
ある。
An object of the present invention is to provide a method for manufacturing a semiconductor device free from defects due to overhang structures.

このような目的を達成するための本発明の構成
は、多層ゲートの最上層を除く多結晶シリコンあ
るいは高融点金属電極に、加工あるいは加工後の
絶縁膜形成等により生じたあるいは生じる可能性
があるオーバーハング構造を、その上に被覆性の
よい低圧あるいは高温CVD(Chemical Vapour
Deposition)法グラスフロー、SOG(一般にスピ
ン・オン・グラス)等のよう絶縁膜あるいは絶縁
化しうる半導体あるいは導電膜を被着した後、サ
イドエツチングの少ない反応性イオンエツチング
(一般にRIE)等の方法で上記被着した膜を除去
することで消滅させるあるいは発生を防止するこ
とにある。
The structure of the present invention to achieve such an object is produced or may be produced by processing or forming an insulating film after processing on polycrystalline silicon or high-melting point metal electrodes other than the top layer of a multilayer gate. The overhang structure is coated with low-pressure or high-temperature CVD (Chemical Vapor
After depositing an insulating film or a semiconductor or conductive film that can be made into an insulator, such as glass flow or SOG (generally spin-on glass), etching is performed using a method such as reactive ion etching (generally RIE), which causes less side etching. The objective is to eliminate or prevent the occurrence of such defects by removing the deposited film.

以下、本発明の実施例を詳細に述べる。なお、
本発明は、後述する実施例のみに限定されるもの
ではない。
Examples of the present invention will be described in detail below. In addition,
The present invention is not limited to the examples described below.

実施例 1 第3図a〜dは本発明の一実施例としての半導
体装置の製造方法を示した概略工程図である。
Embodiment 1 FIGS. 3a to 3d are schematic process diagrams showing a method of manufacturing a semiconductor device as an embodiment of the present invention.

第3図aに示すように、抵抗率10〜15Ω・cm、
P型(100)のシリコン基板1に分離用酸化膜2
を形成した後、第1ゲート酸化膜3を約50nmの
厚さに形成した。この後、第3図bに示すよう
に、約350nmの燐ドープされた第1層多結晶シリ
コン膜を加工、酸化して第1層MOSトランジス
タのゲート4およびこのゲート4を覆う第1の
SiO2膜5を形成した。この状態で低圧CVD
(Chemical Vapour Deposition)法あるいは高
温CVD法で厚さ約300nmの第2のSiO2膜6を全
面に堆積した。
As shown in Figure 3a, resistivity is 10~15Ω・cm,
Isolation oxide film 2 on P-type (100) silicon substrate 1
After forming, a first gate oxide film 3 was formed to a thickness of about 50 nm. Thereafter, as shown in FIG. 3b, the first layer polycrystalline silicon film doped with phosphorus of approximately 350 nm is processed and oxidized to form a gate 4 of the first layer MOS transistor and a first layer covering the gate 4.
A SiO 2 film 5 was formed. Low pressure CVD in this state
A second SiO 2 film 6 with a thickness of approximately 300 nm was deposited on the entire surface by a chemical vapor deposition (Chemical Vapor Deposition) method or a high temperature CVD method.

これら、CVDに限らずガラスフローおよび
SOGによつても全く同様に適用できた。この後、
第3図cに示すように、H2を10%程度含むCF4
囲気中で上記第2のSiO2膜6をRIEで加工する
と、ゲート端部にのみ上記第2のSiO2膜6が残
る。次いで、第3図dに示すように、この状態で
第2ゲート酸化膜7約35nmの厚さに形成、約
350nmの燐ドレープされた第2層多結晶シリコン
膜をマイクロ波プラズマエツチングで加工して第
2層MOSトランジスタのゲート8を形成した。
この後、シリコン基板1表面に砒素イオンAs +
約10101cm2打ち込んでソース−ドレイン領域9を
形成した後、燐硅酸ガラス膜10を約600nmの厚
さに形成、Al配線11との電気的コンタクトを
とるため、ソース−ドレイン領域9上に孔あけを
行ない、グラスフローを実施した後Al配線11
を設けた。
These are not limited to CVD, but also glass flow and
It could be applied in exactly the same way to SOG. After this,
As shown in FIG . 3c, when the second SiO 2 film 6 is processed by RIE in a CF 4 atmosphere containing about 10% H 2 , the second SiO 2 film 6 remains only at the gate edge. . Next, as shown in FIG. 3d, a second gate oxide film 7 is formed to a thickness of about 35 nm in this state.
A second layer polycrystalline silicon film doped with 350 nm phosphorus was processed by microwave plasma etching to form the gate 8 of the second layer MOS transistor.
Thereafter, approximately 10 10 1 cm 2 of arsenic ions A s + are implanted into the surface of the silicon substrate 1 to form source-drain regions 9, and then a phosphosilicate glass film 10 is formed to a thickness of approximately 600 nm, and Al wiring 11 and In order to make electrical contact with the Al wiring 11, a hole is made on the source-drain region 9 and a glass flow is performed.
has been established.

本実施例によれば、通常第2ゲート酸化膜形成
時に生じる第1層目ゲート端部のオーバーハング
が形成されないので、第1層MOSトランジスタ
のゲート耐圧が向上する、断線・シヨートが生じ
難くなるために、第2層多結晶シリコン膜、Al
配線膜の加工に、パターン変換差の小さいマイク
ロ波プラズマエツチング、RIE(一般に反応性イ
オンエツチング)等が採用できるので第2ゲート
の過剰エツチングが阻止される等の効果がある。
According to this embodiment, an overhang at the end of the first layer gate, which normally occurs when forming the second gate oxide film, is not formed, so the gate breakdown voltage of the first layer MOS transistor is improved, and disconnections and shorts are less likely to occur. Therefore, the second layer polycrystalline silicon film, Al
Microwave plasma etching, RIE (generally reactive ion etching), etc., which have a small difference in pattern conversion, can be used to process the wiring film, so that there are effects such as preventing excessive etching of the second gate.

実施例 2 実施例1で、第1層目のゲート形成後の低圧あ
るいは高温CVD法によるSiO2膜堆積を、R2O5
10モル%程度の燐硅酸ガラスの堆積1000℃程度の
グラスフロー処理とに置き換えて実施した。
Example 2 In Example 1, the SiO 2 film was deposited by low-pressure or high-temperature CVD after the first layer gate was formed, but R 2 O 5
This was carried out by replacing the deposition with glass flow treatment at about 1000°C with deposition of about 10 mol% phosphosilicate glass.

実施例1では、第1層目ゲート端部のオーバー
ハング発生は防止できる。しかし、そこでの傾角
が大きく、その制御に工夫が要る。第2層目ゲー
トあるいはAl膜の加工には、傾角がある程度小
さい方が望ましいからである。本実施例では、実
施例1を改良しより傾角が小さく、またグラスフ
ロー処理の条件により傾角の制御もより容易にな
る。
In the first embodiment, the occurrence of overhang at the end of the first layer gate can be prevented. However, the angle of inclination there is large and requires some ingenuity to control. This is because it is desirable that the inclination angle be small to some extent for processing the second layer gate or Al film. In this example, the inclination angle is smaller as an improvement over the first example, and the inclination angle can be controlled more easily depending on the glass flow processing conditions.

実施例 3 実施例1で、第1層目のゲート形成後の低圧あ
るいは高温CVD法によるSiO2膜堆積を硅酸Si
(OH)4溶液の塗布に置き換えて実施した。
Example 3 In Example 1, the SiO 2 film was deposited using low-pressure or high-temperature CVD after the first layer gate was formed using silicate Si.
(OH) 4 solution was applied instead.

硅酸溶液としては、SiO2に換算して5.9%の硅
酸を含むエチルアルコール溶液を用いて5000rpm
で回転塗布した。硅酸は次の反応式に従い常温で
SiO2に変化して、膜厚は200nm程度となつた。
As the silicic acid solution, an ethyl alcohol solution containing 5.9% silicic acid in terms of SiO 2 was used at 5000 rpm.
It was applied by rotation. Silicic acid is produced at room temperature according to the following reaction formula.
It changed to SiO 2 and the film thickness became about 200 nm.

Si(OH)4→SiO2+2H2O 本実施例によれば、前記実施例2よりも低温で
第1層目ゲート端部のオーバーハング発生を防止
することができる。
Si(OH) 4 →SiO 2 +2H 2 O According to this embodiment, it is possible to prevent the occurrence of overhang at the end of the first layer gate at a lower temperature than in the second embodiment.

以上述べた通り、本発明によれば、多層ゲート
の最上層を除くゲートのオーバーハング構造の発
生を防止できるので、最上層を除くゲートの耐圧
が向上する。第2層目以上のゲート、金属配線の
断線・シヨートが生じ難くなるために、パターン
変換差の小さい加工法を採用できる等の効果があ
る。
As described above, according to the present invention, it is possible to prevent the occurrence of an overhang structure in gates other than the top layer of a multilayer gate, so that the withstand voltage of the gates other than the top layer is improved. Since disconnections and shorts in gates and metal wiring in the second and higher layers are less likely to occur, there are effects such as the ability to employ processing methods with small pattern conversion differences.

また、以上の実施例では、多結晶シリコン膜に
よる交互配線を例示したが、多結晶シリコンのか
わりに、高融点金属、あるいはそれらのシリサイ
ドなども用いても全く同様の効果が得られた。こ
れら、高融点金属、あるいは、それらのシリサイ
ドの形成方法は周知の製法により設ければよいの
で、詳細な説明は省略する。
Further, in the above embodiments, alternate wiring using polycrystalline silicon films was exemplified, but the same effect could be obtained by using high melting point metals or their silicides instead of polycrystalline silicon. Since these high melting point metals or their silicides may be formed by well-known manufacturing methods, detailed explanations will be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは、従来の単層シリコンゲートプ
ロセスを説明するための断面図、第2図a〜d
は、従来の2層シリコンゲートプロセスを説明す
るための断面図、第3図a〜bは、本発明の一実
施例としての半導体装置の製法を説明するための
概略工程断面図である。 1,21,31…シリコン基板、2…分離用酸
化膜、3,22,32…第1ゲート酸化膜、4,
23,33…第1層目ゲート、5,24,35…
第1層目ゲートライト酸化膜、6…CVDSiO2膜、
7,34…第2ゲート酸化膜、8,36…第2層
目ゲート、9,25…ソース−ドレイン層、1
0,26…燐硅酸ガラス、11…Al配線、3
6′…第2層目ゲートの第1層目ゲート端部のエ
ツチング残り。
Figures 1a and b are cross-sectional views for explaining the conventional single-layer silicon gate process, and Figures 2a-d
3A and 3B are cross-sectional views for explaining a conventional two-layer silicon gate process, and FIGS. 3A and 3B are schematic process cross-sectional views for explaining a method for manufacturing a semiconductor device as an embodiment of the present invention. 1, 21, 31...Silicon substrate, 2...Isolation oxide film, 3,22,32...First gate oxide film, 4,
23, 33...first layer gate, 5, 24, 35...
1st layer gate light oxide film, 6...CVDSiO 2 film,
7, 34... Second gate oxide film, 8, 36... Second layer gate, 9, 25... Source-drain layer, 1
0,26...Phosphorsilicate glass, 11...Al wiring, 3
6'... Remains of etching at the end of the first layer gate of the second layer gate.

Claims (1)

【特許請求の範囲】[Claims] 1 所定の形状を有する多結晶シリコン膜の露出
された上面および側部を酸化して、当該多結晶シ
リコン膜の上面および側部を覆う第1の絶縁膜を
形成する工程と、第2の絶縁膜を全面に形成する
工程と、当該第2の絶縁膜を異方性エツチして、
当該第2の絶縁膜のうち、上記多結晶シリコン膜
の側部上に上記第1の絶縁膜を介して形成されて
いる部分を残し、他の領域上に形成されている部
分を除去することにより、上記第1の絶縁膜のオ
ーバーハング構造を消滅させる工程を少なくとも
含むことを特徴とする半導体装置の製造方法。
1 A step of oxidizing the exposed top surface and side portions of a polycrystalline silicon film having a predetermined shape to form a first insulating film covering the top surface and side portions of the polycrystalline silicon film, and a step of forming a second insulating film. A step of forming a film on the entire surface and anisotropic etching of the second insulating film,
Of the second insulating film, a portion formed on the side of the polycrystalline silicon film via the first insulating film is left, and a portion formed on other regions is removed. A method of manufacturing a semiconductor device, comprising at least the step of eliminating the overhang structure of the first insulating film.
JP14321082A 1982-08-20 1982-08-20 Manufacture of semiconductor device Granted JPS5933829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14321082A JPS5933829A (en) 1982-08-20 1982-08-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14321082A JPS5933829A (en) 1982-08-20 1982-08-20 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5933829A JPS5933829A (en) 1984-02-23
JPH0530051B2 true JPH0530051B2 (en) 1993-05-07

Family

ID=15333444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14321082A Granted JPS5933829A (en) 1982-08-20 1982-08-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5933829A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS57199221A (en) * 1981-06-02 1982-12-07 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS57199221A (en) * 1981-06-02 1982-12-07 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5933829A (en) 1984-02-23

Similar Documents

Publication Publication Date Title
KR950000096B1 (en) Formation of insulated contact aperture of semiconductor article
JPH01138734A (en) Semiconductor device with compound conductor layer and manufacture thereof
US6140024A (en) Remote plasma nitridation for contact etch stop
JPH0645466A (en) Structure and method for semiconductor contact via
US5003375A (en) MIS type semiconductor integrated circuit device having a refractory metal gate electrode and refractory metal silicide film covering the gate electrode
JP2001358214A (en) Semiconductor device and its manufacturing method
JPS61116834A (en) Formation of contact on semiconductor substrate
US5804506A (en) Acceleration of etch selectivity for self-aligned contact
JPH05198526A (en) Manufacture of semiconductor device
JPH0530051B2 (en)
JP3897071B2 (en) Manufacturing method of semiconductor device
JP2001110782A (en) Method of manufacturing semiconductor device
JPH0454390B2 (en)
JP2001267418A (en) Semiconductor device and its manufacturing method
TWI635597B (en) Methods for producing integrated circuits having memory cells
JP2000294629A (en) Semiconductor device and manufacture of the same
JP2003100868A (en) Semiconductor device and its manufacturing method
JPH11176959A (en) Manufacture of semiconductor device
JP3303545B2 (en) Semiconductor device manufacturing method
WO1998037583A1 (en) Method for manufacturing semiconductor device
KR100200307B1 (en) Method for forming a contact of a semiconductor device
JPH0318034A (en) Manufacture of semiconductor device
JPS60163466A (en) Manufacture of semiconductor device
JP2001156169A (en) Manufacturing method for semiconductor integrated circuit device
JP2002124514A (en) Semiconductor device and method of manufacturing the same