JPH0529997B2 - - Google Patents

Info

Publication number
JPH0529997B2
JPH0529997B2 JP26670285A JP26670285A JPH0529997B2 JP H0529997 B2 JPH0529997 B2 JP H0529997B2 JP 26670285 A JP26670285 A JP 26670285A JP 26670285 A JP26670285 A JP 26670285A JP H0529997 B2 JPH0529997 B2 JP H0529997B2
Authority
JP
Japan
Prior art keywords
diffusion layer
power supply
contact
fet
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26670285A
Other languages
Japanese (ja)
Other versions
JPS62124700A (en
Inventor
Koichi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60266702A priority Critical patent/JPS62124700A/en
Publication of JPS62124700A publication Critical patent/JPS62124700A/en
Publication of JPH0529997B2 publication Critical patent/JPH0529997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、CMOSEPROMの電源切換回路に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power supply switching circuit for CMOS EPROM.

〔従来の技術〕 第4図は従来用いられているこの種の電源切換
回路の回路図で、1,2,3,4はPチヤネル
FET、5,6はnチヤネルFETである。FET1
のソースは電源(Vpp)につながり、ゲートは
FET3のドレインとFET5のドレインとの接点
Aにつながり、ドレインは出力端子(Vpp/Vcc
につながつている。FET2のソースは電源
(Vcc)につながり、ゲートはFET4のドレイン
とFET6のドレインとの接点Bにつながり、ド
レインは出力端子(Vpp/Vcc)につながつてい
る。FET3のソースは電源(Vpp)につながり、
ゲートは接点Bにつながり、ドレインは接点Aに
つながつている。
[Prior art] Figure 4 is a circuit diagram of this type of power switching circuit that has been used conventionally, and 1, 2, 3, and 4 are P channels.
FETs 5 and 6 are n-channel FETs. FET1
The source of is connected to the power supply (V pp ), and the gate is
Connected to contact A between the drain of FET3 and the drain of FET5, and the drain is the output terminal (V pp /V cc )
connected to. The source of FET2 is connected to the power supply ( Vcc ), the gate is connected to contact B between the drain of FET4 and the drain of FET6, and the drain is connected to the output terminal ( Vpp / Vcc ). The source of FET3 is connected to the power supply (V pp ),
The gate is connected to contact B, and the drain is connected to contact A.

FET4のソースは電源(Vpp)につながり、ゲ
ートは接点Aにつながり、ドレインは接点Bにつ
ながつている。FET5のドレインは接点Aにつ
ながり、ゲートには切換信号(PGM)が入力さ
れ、ソースは電源(Vss)につながつている。
FET6のドレインは接点Bにつながり、ゲート
には切換信号(PGM)を反転したものが入力さ
れ、ソースは電源(Vss)につながつている。
FET1,2,3,4の基条は電源(Vpp)につな
がつている。FET5,6の基板は電源(Vss)に
つながつている。第5図にFET1およびFET2
の断面図を示す。
The source of FET4 is connected to the power supply ( Vpp ), the gate is connected to contact A, and the drain is connected to contact B. The drain of FET5 is connected to contact A, the switching signal (PGM) is input to the gate, and the source is connected to the power supply ( Vss ).
The drain of FET6 is connected to contact B, the inverted switching signal (PGM) is input to the gate, and the source is connected to the power supply (V ss ).
The bases of FETs 1, 2, 3, and 4 are connected to the power supply ( Vpp ). The substrates of FETs 5 and 6 are connected to a power supply (V ss ). Figure 5 shows FET1 and FET2.
A cross-sectional view is shown.

次に動作について説明する。Vpp<Vccの場合
は第5図からわかるように、電源(Vcc)から
FET2のソースおよび基板を通して電源(Vpp
へ短絡してしまうので、Vpp<Vccでは使用でき
ない。Vpp≧Vccの場合は、FET2のソースと基
板とは逆バイアスになるので短絡しない。この場
合に、切換信号(PGM)が“H”であればFET
5は導通し、接点Aは“L”となり、FET1は
導通する。一方、FET6のゲートには切換信号
(PGM)を反転した“L”が入つているので非導
通となり、FET4のゲートは接点Aとつながり
“L”となつているのでFET4は導通し、接点B
は“H”となつてFET2は非導通となる。した
がつて、出力端子(Vpp/Vcc)には電源電圧Vpp
が出力される。これに対し、切換信号(PGM)
が“L”になると上記のまつたく逆となり、接点
Aは“H”、接点Bは“L”となるのでFET1は
非導通、FET2は導通し、出力端子(Vpp/Vcc
には電源電圧Vccが出力される。
Next, the operation will be explained. If V pp <V cc , as shown in Figure 5, the power supply (V cc )
Power supply (V pp ) through the source of FET2 and the board.
It cannot be used when V pp < V cc because it will short-circuit to. If V pp ≧ V cc , the source of FET2 and the substrate will be reverse biased, so there will be no short circuit. In this case, if the switching signal (PGM) is “H”, the FET
5 is conductive, contact A becomes "L", and FET1 is conductive. On the other hand, since the gate of FET6 receives "L" which is the inversion of the switching signal (PGM), it becomes non-conductive, and the gate of FET4 connects to contact A and becomes "L", so FET4 conducts and contact B
becomes "H" and FET2 becomes non-conductive. Therefore, the power supply voltage V pp is applied to the output terminal (V pp /V cc ).
is output. In contrast, the switching signal (PGM)
When becomes "L", the above is completely reversed, contact A becomes "H" and contact B becomes "L", so FET1 is non-conducting, FET2 is conducting, and the output terminal (V pp /V cc )
The power supply voltage Vcc is output.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電源切換回路は以上のように構成されて
いるので、Vpp<Vccでは使用できない欠点があ
つた。
Since the conventional power supply switching circuit is configured as described above, it has a drawback that it cannot be used when V pp <V cc .

この発明は上記のような問題点を解消するため
になされたもので、VppとVccの大小関係に関係
なく使用できるCMOSEPROMの電源切換回路を
提供することにある。
The present invention has been made to solve the above-mentioned problems, and its object is to provide a CMOSEPROM power supply switching circuit that can be used regardless of the magnitude relationship between V pp and V cc .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電源切換回路は、第1導電型の
半導体基板21上に設けられた第2導電型の第1
の拡散層22と第2の拡散層22と、その第1の
拡散層上に設けられ、第1の電源(Vpp)が供給
される第1導電型の第3の拡散層23と、第2の
拡散層上に設けられ、第2の電源(Vcc)が供給
される第1導電型の第4の拡散層23と、第1の
拡散層22と第2の拡散層22にそれぞれ設けら
れ、互いに切り換え出力端子に接続されている第
1導電型の第5の拡散層24と第6の拡散層24
と、第3の拡散層23と第5の拡散層24の間に
絶縁層25を介して設けられ、第1の制御信号A
が印加する第1の制御電極26と、第4の拡散層
24と第6の拡散層23の間に絶縁層25を介し
て設けられ、第2の制御信号Bが印加する第2の
制御電極26とを有し、第1の制御信号Aと第2
の制御信号Bを出力する制御信号発生手段が、第
1の電源(Vpp)か第2の電源(Vcc)の電圧の
高い電源により動作するようにしたものである。
The power supply switching circuit according to the present invention includes a first semiconductor substrate 21 of a second conductivity type provided on a semiconductor substrate 21 of a first conductivity type.
a third diffusion layer 23 of the first conductivity type provided on the first diffusion layer and supplied with the first power supply (V pp ); A fourth diffusion layer 23 of the first conductivity type provided on the second diffusion layer 2 and supplied with the second power supply (V cc ), and a fourth diffusion layer 23 provided on the first diffusion layer 22 and the second diffusion layer 22 respectively. A fifth diffusion layer 24 and a sixth diffusion layer 24 of the first conductivity type are connected to each other and connected to the switching output terminal.
is provided between the third diffusion layer 23 and the fifth diffusion layer 24 with an insulating layer 25 interposed therebetween, and the first control signal A
A first control electrode 26 to which B is applied, and a second control electrode provided via an insulating layer 25 between the fourth diffusion layer 24 and the sixth diffusion layer 23 and to which a second control signal B is applied. 26, the first control signal A and the second control signal A
The control signal generating means for outputting the control signal B is operated by the first power supply (V pp ) or the second power supply (V cc ) having a high voltage.

〔作用〕[Effect]

この発明の電源切換回路は、第2の電源(Vcc
より第1の電源(Vpp)の方が高電圧の場合は、
第1の電源(Vpp)が第1の制御信号Aとなり電
源切換用FET11を動作させ、第1の電源
(Vpp)を供給する。
The power supply switching circuit of the present invention has a second power supply (V cc ).
If the first power supply (V pp ) has a higher voltage than
The first power supply ( Vpp ) becomes the first control signal A, operates the power supply switching FET 11, and supplies the first power supply ( Vpp ).

一方、第1の電源(Vpp)より第2の電源
(Vcc)の方が高電圧の場合は、第2の電源(Vcc
が第2の制御信号Bとなり電源切換用FET12
を動作させ、第2の電源(Vcc)を供給する。
On the other hand, if the second power supply (V cc ) has a higher voltage than the first power supply (V pp ), the second power supply (V cc )
becomes the second control signal B and the power supply switching FET12
The second power source (V cc ) is supplied.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。第1図において、11,12,13,14は
PチヤネルFET、15,16はnチヤネルFET、
17,18はダイオードである。FET11のソ
ースは電源(Vpp)につながり、ゲートはFET1
3のドレインとFET15のドレインとの接点A
につながり、ドレインは出力端子(Vpp/Vcc
につながつている。FET12のソースは電源
(Vcc)につながり、ゲートはFET14のドレイ
ンとFET16のドレインとの接点Bにつながり、
ドレインは出力端子(Vpp/Vcc)につながつて
いる。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, 11, 12, 13, 14 are P channel FETs, 15, 16 are N channel FETs,
17 and 18 are diodes. The source of FET11 is connected to the power supply (V pp ), and the gate is connected to FET1
Contact point A between the drain of 3 and the drain of FET15
The drain is connected to the output terminal (V pp /V cc )
connected to. The source of FET12 is connected to the power supply (V cc ), the gate is connected to contact B between the drain of FET14 and the drain of FET16,
The drain is connected to the output terminal ( Vpp / Vcc ).

ダイオード17のアノードは電源(Vpp)につ
ながり、カソードはFET13のソースとFET1
4のソースとの接点Cにつながり、ダイオード1
8のアノードは電源(Vcc)につながり、カソー
ドは接点Cにつながつている。
The anode of diode 17 is connected to the power supply (V pp ), and the cathode is connected to the source of FET 13 and FET 1.
Connected to contact C with the source of 4, diode 1
The anode of 8 is connected to the power supply (V cc ), and the cathode is connected to contact C.

FET13のソースは接点Cにつながり、ゲー
トは接点Bにつながり、ドレインは接点Aにつな
がつている。FET14のソースは接点Cにつな
がり、ゲートは接点Aにつながり、ドレインは接
点Bにつながつている。FET15のドレインは
接点Aにつながり、ゲート12は切換信号
(PGM)が入力され、ソースは電源(Vss)につ
ながつている。
The source of FET 13 is connected to contact C, the gate is connected to contact B, and the drain is connected to contact A. The source of the FET 14 is connected to contact C, the gate is connected to contact A, and the drain is connected to contact B. The drain of the FET 15 is connected to the contact A, the gate 12 receives the switching signal (PGM), and the source is connected to the power supply (V ss ).

FET16のドレインは接点Bにつながり、ゲ
ートには切換信号(PGM)を反転したものが入
力され、ソースは電源(Vss)につながつている。
FET11,12の基板はどこにもつながつてい
ない。FET13,14の基板は接点Cにつなが
り、FET15,16の基板は電源(Vss)につな
がつている。
The drain of the FET 16 is connected to contact B, the inverted switching signal (PGM) is input to the gate, and the source is connected to the power supply (V ss ).
The boards of FET11 and 12 are not connected anywhere. The substrates of FETs 13 and 14 are connected to contact C, and the substrates of FETs 15 and 16 are connected to a power supply (V ss ).

第2図はFET1,2の断面図である。P-半導
体基板21上にN-拡散層22を形成し、各N-
散層22上にそれぞれ2個のP+拡散層23,2
4を形成してソースおよびドレインとしている。
両P+拡散層23,24の間にはそれぞれ絶縁層
25を介して制御電極26を設けてある。
FIG. 2 is a cross-sectional view of FETs 1 and 2. An N - diffusion layer 22 is formed on a P - semiconductor substrate 21, and two P + diffusion layers 23, 2 are formed on each N - diffusion layer 22.
4 is formed to serve as a source and a drain.
A control electrode 26 is provided between both the P + diffusion layers 23 and 24 with an insulating layer 25 interposed therebetween.

上記構成において、まず、Vpp≧Vccの場合、
第2図より明らかなように、FET11のドレイ
ンと基板間のPn接合は逆バイアスとなるので、
電源Vppと電源Vccとが短絡することはない。こ
の場合切換信号(PGM)が“H”であれば、
FET15は導通し、接点Aは“L”となり、
FET11は導通する。一方、FET16のゲート
には切換信号(PGM)の反転信号である“L”
が入つているので、FET16は非導通となる。
FET14のゲートは、接点Aにつながり“L”
となつているので、FET14は導通し、接点B
は“H”となつてFET12は非導通となる。こ
れにより、出力端子(Vpp/Vcc)には電源電圧
Vppが出力される。これに対し、切換信号
(PGM)が“L”になると、上記のまつたく逆と
なり、接点Aは“H”、接点Bは“L”となるの
でFET11は非導通、FET12は導通し、出力
端子(Vpp/Vcc)には電源電圧Vccが出力される。
In the above configuration, first, if V pp ≧ V cc ,
As is clear from Figure 2, the Pn junction between the drain of FET 11 and the substrate is reverse biased, so
Power supply V pp and power supply V cc are never short-circuited. In this case, if the switching signal (PGM) is “H”,
FET15 conducts, contact A becomes “L”,
FET11 becomes conductive. On the other hand, the gate of FET16 has "L" which is the inverted signal of the switching signal (PGM).
is inserted, so FET 16 becomes non-conductive.
The gate of FET14 is connected to contact A and is “L”
Therefore, FET14 is conductive and contact B
becomes "H" and the FET 12 becomes non-conductive. As a result, the power supply voltage is applied to the output terminal (V pp /V cc ).
V pp is output. On the other hand, when the switching signal (PGM) becomes "L", the above is exactly reversed, contact A becomes "H" and contact B becomes "L", so FET11 is non-conducting, FET12 is conducting, and the output Power supply voltage V cc is output to the terminal (V pp /V cc ).

次に、Vpp<Vccの場合は、第2図よりわかる
ように、FET12のドレインと基板間のPn接合
は逆バイアスとなるので電源Vccと電源Vppが短
絡することはない。この場合、切換信号(PGM)
が“H”であれば、FET15は導通し接点Aは
“L”となつてFET11は導通する。一方、FET
16のゲートには切換信号(PGM)の反転信号
である“L”が入つているので、FET16は非
導通となる。FET14のゲートは接点Aにつな
がり“L”となつているので、FET14は導通
し、接点Bは“H”となり、FET12は非導通
となる。この結果出力端子(Vpp/Vcc)には電
源電圧Vppが出力される。これに対し、切換信号
(PGM)が“L”になると上記のまつたく逆とな
り、接点Aは“H”、接点Bは“L”となるので
FET11は非導通、FET12は導通し、出力端
子(Vpp/Vcc)には電源電圧Vccが出力される。
Next, when V pp <V cc , as can be seen from FIG. 2, the Pn junction between the drain of the FET 12 and the substrate becomes reverse biased, so that the power supply V cc and the power supply V pp are not short-circuited. In this case, the switching signal (PGM)
If is "H", the FET 15 is conductive, the contact A is "L", and the FET 11 is conductive. On the other hand, FET
Since "L", which is an inverted signal of the switching signal (PGM), is input to the gate of FET 16, FET 16 becomes non-conductive. Since the gate of FET 14 is connected to contact A and is at "L", FET 14 is conductive, contact B is at "H", and FET 12 is non-conductive. As a result, the power supply voltage Vpp is output to the output terminal ( Vpp / Vcc ). On the other hand, when the switching signal (PGM) becomes "L", the above is exactly the opposite, and contact A becomes "H" and contact B becomes "L".
The FET 11 is non-conductive, the FET 12 is conductive, and the power supply voltage V cc is output to the output terminal (V pp /V cc ).

なお、上記実施例では、電源切換のための
FET11,12としてPチヤネルFETを使用し
ているが、第3図のように構成すればnチヤネル
FETを使用することもできる。すなわち、第3
図において、31〜34はNチヤネルFET、3
5,36はPチヤネルFETである。電源切換用
NチヤネルFET31,32は第2図において各
部の導電形を逆にすることにより形成される。
In addition, in the above embodiment, the
P-channel FETs are used as FETs 11 and 12, but if configured as shown in Figure 3, N-channel FETs are used.
FETs can also be used. That is, the third
In the figure, 31 to 34 are N-channel FETs, 3
5 and 36 are P channel FETs. The power supply switching N-channel FETs 31 and 32 are formed by reversing the conductivity type of each part in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、電源切換用
FETの基板電位をソースまたはドレインを通し
て与える構成としたので、両電源電圧の大小関係
にかかわらず、電源間が短絡するようなことはな
くなり、電源電圧の大小関係に制限を設ける必要
がなくなつた。
As described above, according to the present invention,
Since the substrate potential of the FET is applied through the source or drain, there will be no short circuit between the power supplies regardless of the magnitude relationship between the two power supply voltages, and there is no need to place restrictions on the magnitude relationship of the power supply voltages. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2
図はその電源切換用FETの構成を示す断面図、
第3図は本発明の他の実施例を示す回路図、第4
図は従来例を示す回路図、第5図はその電源切換
用FETの構成を示す断面図である。 11,12……PチヤネルFET、31,32
……NチヤネルFET、21……P-基板、22…
…N-拡散層、23,24……P+拡散層、25…
…絶縁層、26……制御電極。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
The figure is a cross-sectional view showing the configuration of the power switching FET,
FIG. 3 is a circuit diagram showing another embodiment of the present invention;
The figure is a circuit diagram showing a conventional example, and FIG. 5 is a sectional view showing the configuration of the power supply switching FET. 11, 12...P channel FET, 31, 32
...N-channel FET, 21...P - board, 22...
...N - diffusion layer, 23, 24...P + diffusion layer, 25...
...Insulating layer, 26...Control electrode.

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基板上に設けられた第2
導電型の第1の拡散層と第2の拡散層と、 前記第1の拡散層上に設けられ第1の電源が供
給される第1導電型の第3の拡散層と、 前記第2の拡散層上に設けられ第2の電源が供
給される第1導電型の第4の拡散層と、 前記第1の拡散層と第2の拡散層にそれぞれ設
けられ、互いに切り換え出力端子に接続されてい
る第1導電型の第5の拡散層と第6の拡散層と、 前記第3の拡散層と第5の拡散層の間に絶縁層
を介して設けられ、第1の制御信号が印加する第
1の制御電極と、 前記第4の拡散層と第6の拡散層の間に絶縁層
を介して設けられ、第2の制御信号が印加する第
2の制御電極とを有し、 前記第1の制御信号と第2の制御信号を出力す
る制御信号発生手段が、前記第1の電源か第2の
電源の電圧の高い電源により動作することを特徴
とする電源切換回路。
[Claims] 1. A second semiconductor substrate provided on a semiconductor substrate of a first conductivity type.
a first diffusion layer and a second diffusion layer of conductivity type; a third diffusion layer of first conductivity type provided on the first diffusion layer and supplied with a first power source; and a third diffusion layer of the first conductivity type. a fourth diffusion layer of the first conductivity type provided on the diffusion layer and supplied with a second power source; and a fourth diffusion layer of the first conductivity type provided on the first diffusion layer and the second diffusion layer, each of which is connected to a switching output terminal. a fifth diffusion layer and a sixth diffusion layer of a first conductivity type, and an insulating layer is provided between the third diffusion layer and the fifth diffusion layer, and a first control signal is applied. a second control electrode provided between the fourth diffusion layer and the sixth diffusion layer with an insulating layer interposed therebetween, and to which a second control signal is applied; A power supply switching circuit characterized in that the control signal generating means for outputting the first control signal and the second control signal is operated by a power supply having a high voltage of the first power supply or the second power supply.
JP60266702A 1985-11-25 1985-11-25 Power source switching circuit Granted JPS62124700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266702A JPS62124700A (en) 1985-11-25 1985-11-25 Power source switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266702A JPS62124700A (en) 1985-11-25 1985-11-25 Power source switching circuit

Publications (2)

Publication Number Publication Date
JPS62124700A JPS62124700A (en) 1987-06-05
JPH0529997B2 true JPH0529997B2 (en) 1993-05-06

Family

ID=17434494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266702A Granted JPS62124700A (en) 1985-11-25 1985-11-25 Power source switching circuit

Country Status (1)

Country Link
JP (1) JPS62124700A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1232973B (en) * 1987-12-01 1992-03-11 Sgs Microelettronica Spa VOLTAGE POWER SWITCHING DEVICE FOR NON-VOLATILE MEMORIES IN MOS TECHNOLOGY
JP2733796B2 (en) * 1990-02-13 1998-03-30 セイコーインスツルメンツ株式会社 Switch circuit
JP2672740B2 (en) * 1991-10-07 1997-11-05 三菱電機株式会社 Microcomputer
JP2001156619A (en) * 1999-11-25 2001-06-08 Texas Instr Japan Ltd Semiconductor circuit
DE10006517A1 (en) * 2000-02-15 2001-08-23 Infineon Technologies Ag Circuit arrangement for discharging a capacitance charged to a high voltage to a low voltage controlled by means of a control unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114396A (en) * 1981-12-26 1983-07-07 Toshiba Corp Nonvolatile memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114396A (en) * 1981-12-26 1983-07-07 Toshiba Corp Nonvolatile memory

Also Published As

Publication number Publication date
JPS62124700A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
JP2733796B2 (en) Switch circuit
KR930003557B1 (en) Transmission gate
US4473757A (en) Circuit means for converting a bipolar input to a unipolar output
US3916430A (en) System for eliminating substrate bias effect in field effect transistor circuits
US4029973A (en) Voltage booster circuit using level shifter composed of two complementary MIS circuits
KR900004108A (en) Monolithic Bidirectional Switch with Power MOS Transistor
JPS6159911A (en) Changeover switch circuit
KR900004039A (en) Composite MOS transistors and their applications as freewheel diodes
US6759728B1 (en) Boost capacitor layout
US4453090A (en) MOS Field-effect capacitor
JPS5915216B2 (en) voltage level shifter
US4811191A (en) CMOS rectifier circuit
JPH0481892B2 (en)
US7482860B2 (en) MOS switching circuit
US4677317A (en) High voltage signal output circuit provided with low voltage drive signal processing stages
US4352092A (en) Digital to analog converter
US6127857A (en) Output buffer or voltage hold for analog of multilevel processing
US20060028262A1 (en) Backgate pull-up for PMOS pass-gates
JPH0529997B2 (en)
JPH10502786A (en) MOS circuit device for switching high voltage on semiconductor chip
JPH0571145B2 (en)
US5914515A (en) Semiconductor device
US5939899A (en) MOSFET substrate current logic
JPH11284500A (en) Logic circuit
JPH0666670B2 (en) Complementary MOS analog switch

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term