JPH05299914A - 超伝導高周波共振器およびフィルター - Google Patents

超伝導高周波共振器およびフィルター

Info

Publication number
JPH05299914A
JPH05299914A JP4101440A JP10144092A JPH05299914A JP H05299914 A JPH05299914 A JP H05299914A JP 4101440 A JP4101440 A JP 4101440A JP 10144092 A JP10144092 A JP 10144092A JP H05299914 A JPH05299914 A JP H05299914A
Authority
JP
Japan
Prior art keywords
line
superconducting
frequency
thin film
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4101440A
Other languages
English (en)
Inventor
Kentaro Setsune
謙太郎 瀬恒
Akira Enohara
晃 榎原
Morikazu Sagawa
守一 佐川
Mitsuo Makimoto
三夫 牧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4101440A priority Critical patent/JPH05299914A/ja
Publication of JPH05299914A publication Critical patent/JPH05299914A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

(57)【要約】 【目的】 超伝導薄膜として例えば銅酸化物系材料を用
いて高周波伝送線路を形成し、さらに前記伝送線路の形
状を解放端を有するループ形状の伝送線路とすることに
より、小型の共振器を得る。 【構成】 高周波伝送線路を超伝導薄膜により形成し、
前記高周波伝送線路をループ状のストリップまたはマイ
クロストリップ線路から構成される単一線路により構成
する。例えばMgO基板1上にBi−Sr−Ca−Cu
−O超伝導薄膜2をスパッタ蒸着法、レーザアブレィシ
ョン法、電子ビーム蒸着法、CVD法などで形成する。
熱処理後金属薄膜3を蒸着し、その上にループ状のスト
リップまたはマイクロストリップ線路を形成する。次に
金属薄膜4を蒸着し、高周波回路装置とする。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は超伝導応用技術である超
伝導線路による高周波受動回路装置に関する。さらに詳
しくは、超伝導薄膜を用いた超伝導高周波共振器および
フィルターに関する。
【0002】
【従来の技術】高周波通信の分野では、マイクロ波受信
装置として誘電体基板上に形成されたストリップ線路な
どを用いた伝送線路による、通常マイクロ波ICと呼ば
れる集積化装置が使用され、これらにより共振器や周波
数帯域フィルター等が構成される。この装置は一枚の基
板上に各種の回路要素を組み込むことができ、回路要素
間の電気的整合条件など、信頼性と量産性に優れてい
る。しかしながら狭帯域特性、低損失特性等、高性能が
要求される場合、現在のところ、これらの伝送線路型素
子はその伝送損失の故に、誘電体共振器、誘電体フィル
ター等他の要素技術を使用しなければならない。ところ
がこのような誘電体素子は従来のマイクロ波導波管のよ
うな立体形状のものが一般的であり、半導体素子と集積
化して小型化を計ったり、信頼性をあげて量産化すると
いったことは困難であった。このような高性能高周波受
動部品を従来のマイクロ波ICのような集積化素子によ
り実現するために伝送線路を伝送損失の小さい高温超伝
導体で形成することが検討されている。
【0003】ところで、超伝導体としては、鉛(Pb)
またはニオブ(Nb)等の金属超伝導体、または窒化ニ
オブ(NbN)、ニオブ3ゲルマニウム(Nb3
e)、シェブレル(PbMo6.4 8 )などの金属化合
物、または金属酸化物のBPBO(Ba−Pb−Bi−
O)が知られていた。また、最近では、BKBO(Ba
−K−Bi−O)の金属酸化物も超伝導体であることが
発見された。これらの超伝導体において、その超伝導遷
移温度(Tc)は、合金系では最高でもNb3 Geの2
3.6Kであり、BPBO、BKBO等の金属酸化物で
も30ケルビン程度であり超伝導装置として動作させる
ためには冷却材として高価で、取扱いのむずかしい液体
ヘリウム(沸点4.2K)を用いなくてはならなかっ
た。これに対し、近年発見されたCuを含む酸化物超伝
導体の中にはTcが100Kを越えるものがあり、それ
ら超伝導体は安価で取扱いの容易な小型冷凍機で冷却す
るだけで超伝導状態に遷移する。代表的な物質として Y
-Ba-Cu-O、 Bi-Sr-Ca-Cu-O、Ti-Ba-Ca-Cu-O が知られて
おり、それぞれの超伝導臨界温度はほぼ92K、115
K、125Kのものが得られている。このCuを含む酸
化物超伝導体を用いて超伝導装置を製造すると、冷却材
として液体ヘリウムに変わり、安価な小型冷凍機で動作
可能な超伝導装置が可能となり、応用範囲の拡大がはか
られる。
【0004】
【発明が解決しようとする課題】しかしながら、超伝導
体をマイクロ波回路に応用する場合、確かに高性能を実
現できるが、上述の誘電体素子等により実現できる高性
能要素技術に比較してさらに高性能を実現しようとする
と、伝送線路のパターンが大きなものとなってしまうと
いう問題がある。これは以下の理由による。すなわち、
高温超伝導体を薄膜化する場合には単結晶基板を使用し
なければならず、現在様々な種類の基板が開発されてい
るものの、高周波での動作のために必要な低損失特性を
実現できるものとしてMgO以外に適当な基板が得られ
ていない。しかしこの基板は誘電率が小さく、それ故伝
送波の波長短縮率も小さいので回路装置が大きくなって
しまう。たとえば、周波数帯域フィルターの場合には、
図4のようなパターンが一般的であるが、数GHzでの
一般的な値は数cm程度となってしまう。さらに超伝導
体の利点を発揮できる高性能狭帯域特性を実現しようと
すると、図4の導体線路41と42の間隔を広げ、その
本数を増やさなければならず、それ故益々寸法の増大を
招いてしまう。超伝導素子の場合、冷却の容量は実用的
な観点から非常に重要であり、冷却器の能力に負担がか
かり冷却装置が大型化しないよう、素子体積はなるべく
小さいことが望まれる。このように従来のマイクロ波ス
トリップ線路素子設計法を超伝導体に適応した場合、確
かに超高性能は実現できるが、大面積における冷却温度
の均一性、再現性を考慮すると、誘電体を用いた装置に
対する優位性は小さく、それ故超伝導体を使用する利点
を見いだし得なかった。
【0005】本発明は、前記従来技術の課題を解決する
ため、装置の高性能特性を保持したまま小形化した超伝
導高周波共振器およびフィルターを提供することを目的
とする。
【0006】
【課題を解決するための手段】前記目的を達成するた
め、本発明の超伝導高周波共振器は、基板と、この基板
表面に形成された高周波伝送線路とを少なくとも備えた
高周波線路装置であって、前記高周波伝送線路を超伝導
薄膜により形成し、前記高周波伝送線路をループ状のス
トリップまたはマイクロストリップ線路から構成される
単一線路により構成したことを特徴とする。
【0007】前記構成においては、高周波伝送線路を、
その主成分がA−B−Cu−O[ただし、AはIIa族元
素のうちの少なくとも一種の元素、BはSc,Y,La
およびLa系列元素(原子番号57〜71、但し58、
59、61を除く)のうち少なくとも一種の元素であ
り、かつA元素、B元素及びCu元素の濃度は0.5≦
(A+B)/Cu≦2.5]の複合化合物からなる金属
酸化物超伝導体により形成することが好ましい。
【0008】また前記構成においては、高周波伝送線路
が形成された基板の1表面に対面した他の1表面に、そ
の主成分がA−B−Cu−O[ただし、AはIIa族元素
のうちの少なくとも一種の元素、BはSc,Y,Laお
よびLa系列元素(原子番号57〜71、但し58、5
9、61を除く)のうち少なくとも一種の元素であり、
かつA、B元素及びCu元素の濃度は0.5≦(A+
B)/Cu≦2.5]の複合化合物からなる金属酸化物
超伝導体により形成することが好ましい。
【0009】また前記構成においては、ループ状のスト
リップまたはマイクロストリップ線路から構成される単
一線路の一部を解放し、この単一線路の解放部に、先端
解放の結合線路を結合し、前記結合線路の遇モード、奇
モードインピーダンスの積の平方根が前記単一線路の特
性インピーダンスより小さく構成することが好ましい。
【0010】また前記構成においては、結合線路を平行
結合線路とすることが好ましい。また前記構成において
は、MgO基板表面に主成分がBi−Sr−Ca−Cu
−Oからなる超伝導薄膜を形成し、この超伝導薄膜によ
り、ループ状のストリップまたはマイクロストリップ線
路から構成される単一線路と、この単一線路の一部を解
放して形成した解放部に結合した先端解放の結合線路と
を形成し、基板のもう1つの表面に一様な導電層、また
は超伝導層を形成し、前記結合線路の遇モード、奇モー
ドインピーダンスの積の平方根を前記単一線路の特性イ
ンピーダンスより小さく構成することが好ましい。
【0011】次に本発明のフィルターは、MgO基板
と、この基板表面に形成された高周波伝送線路からなる
高周波線路装置であって、前記高周波伝送線路をBi−
Sr−Ca−Cu−O超伝導薄膜により形成し、前記高
周波伝送線路をループ状のストリップまたはマイクロス
トリップ線路から構成される単一線路により構成し、こ
のループ状のストリップまたはマイクロストリップ線路
から構成される単一線路の一部を解放し、この単一線路
の解放部に先端解放の結合線路を結合し、前記結合線路
の遇モード、奇モードインピーダンスの積の平方根を前
記単一線路の特性インピーダンスより小さく構成されて
いる共振器を複数段有し、共振器間の結合を前記結合線
路部分、または単一線路部分で形成したことを特徴とす
る。
【0012】
【作用】前記した本発明の構成によれば、高周波伝送線
路を超伝導薄膜により形成し、前記高周波伝送線路をル
ープ状のストリップまたはマイクロストリップ線路から
構成される単一線路により形成したので、装置の高性能
特性を保持したまま小形化した超伝導高周波共振器とす
ることができる。またループ形状に形成された単一線路
及び集中定数容量により通常の1波長リング共振器に比
べ、はるかに小型の共振器が実現できる。またこの集中
定数容量のかわりに前記ループ型伝送線路の一部に構成
されたギャップ構造により電界を効率的に集中させ小型
化を図ることができる。さらに伝送損失の少ない超伝導
薄膜を用いることで導体薄膜の膜厚を薄くでき、精密加
工を実現できる半導体プロセスが使用でき、1GHz程
度以上の高周波回路装置の性能を飛躍的に改善すること
が可能となる。
【0013】このようにループ形状の一部に容量結合部
を形成した伝送線路形状を超伝導薄膜線路により形成す
ることにより、超伝導薄膜を形成するための基板として
MgO基板が使用可能となり、高性能化と小型化を相補
的に実現することが可能となる。
【0014】さらに本発明のフィルターの構成によれ
ば、優れた特性を保持したまま、小形化を図ることがで
きる。
【0015】
【実施例】本発明の超伝導高周波回路装置では、結晶性
の基板と、その1表面上に形成した超伝導薄膜により形
成した伝送線路により形成された超伝導高周波回路装置
に於て、例えば前記超伝導薄膜が少なくとも銅酸化物材
料であり、さらに前記伝送線路の形状を解放端を有する
ループ形状の伝送線路とすることが好ましい。
【0016】この様に形成することにより、ループ形状
に形成された単一線路及び集中定数容量により通常の1
波長リング共振器に比べ、はるかに小型の共振器が実現
できる。またこの集中定数容量のかわりに前記ループ型
伝送線路の一部に構成されたギャップ構造により電界を
効率的に集中させ小型化を図ることができる。しかしな
がら、動作周波数が高周波となり、低損失、または超狭
帯域などの高性能を実現するためには、通常の金属薄膜
でこの種の伝送線路を形成した場合の金属薄膜の高周波
に対する電気抵抗が問題となり、所望の高性能を実現す
る事が困難であった。とくにこの種の回路装置では、数
十μmの厚みの銅厚膜を誘電体損失の小さな基板上に形
成したプリント基板を使用して、所望の特性を示すよう
に設計された伝送線路形状を形成するが、通常の場合こ
の形状作成に要求される寸法精度は数百μm以上のもの
である。
【0017】ここで考えるような高性能を実現するため
にはその形状も微細なものになり、数十μm以下の加工
精度が要求される。このために伝送線路薄膜の厚みを薄
くしなければならないが、そうした場合通常の金属によ
り構成された薄膜の電気抵抗が増大し、所望の高性能の
実現は困難であった。そこでこの伝送線路薄膜に超伝導
薄膜を用いることによりこれら問題を解決できる。すな
わち、伝送損失の少ない超伝導薄膜を用いることで導体
薄膜の膜厚を薄くでき、精密加工を実現できる半導体プ
ロセスが使用でき、1GHz程度以上の高周波回路装置
の性能を飛躍的に改善することが可能となる。
【0018】このようにループ形状の一部に容量結合部
を形成した伝送線路形状を超伝導薄膜線路により形成す
ることにより、超伝導薄膜を形成するための基板として
MgO基板が使用可能となり、高性能化と小型化を相補
的に実現することが可能となる。つまり1GHz程度以
上の高周波領域で超伝導薄膜を用いなければループ形状
の伝送線路装置の利点は小さく、また従来の伝送線路設
計法による高周波回路装置ではその形状が大きくなりす
ぎ、薄膜作製の均一性、冷却容量の制約条件から、高性
能は望めなくなる。
【0019】一方、Y−Ba−Cu−O、Bi−Sr−
Ca−Cu−O超伝導材料は超伝導臨界温度も高温であ
り、MgO基板上に信頼性よく薄膜化できるが、上述の
ように装置が小型化されMgO基板が使用可能となる
と、これらの高温超伝導薄膜を使用することが可能にな
る。
【0020】以下に、本発明の超伝導受信変換装置の実
施例について図面を参照しながら説明する。図1におい
て、MgO基板1上にBi−Sr−Ca−Cu−O超伝
導薄膜2をスパッタ蒸着法、レーザアブレィション法、
電子ビーム蒸着法、CVD法などで形成する。この場合
通常高温超伝導体薄膜形成のために使用されるすべての
方法が使用可能である。これらの方法により約100n
m以上の厚みの薄膜を形成する。薄膜形成後、超伝導特
性、特に超伝導臨界電流密度の改善のため、酸素雰囲気
中で熱処理を行なう。この工程は薄膜形成直後に薄膜形
成装置中で引続き行なったり、一旦蒸着装置より取り出
した後、酸素雰囲気中で加熱処理する方法が可能であ
る。熱処理温度は300℃以上900℃以下の範囲が効
果的であることを発明者らは見いだしている。とくにB
i系酸化物超伝導材料をこの目的で使用する場合には、
薄膜形成後酸素を含む雰囲気中で750℃以上875℃
以下の範囲で熱処理することが効果的であることを見い
だした。このBi系超伝導材料は超伝導臨界温度が11
5Kと高温なので、たとえば液体窒素により使用する場
合に、液体窒素温度での超伝導臨界電流値を大きく取る
ことができるという利点を有している。熱処理後Pt,
Ag,Au,Cu、Al等の金属薄膜3を蒸着し、その
上にフォトレジストを塗布して行なう通常のフォトリソ
グラフ技術とイオンミリングなどのエッチング技術を用
いて、所望の特性が得られるように設計されたストリッ
プまたはマイクロストリップ線路を形成する。
【0021】これら高周波線路を形成した後、この線路
を形成した基板表面に対面した基板面にPt,Ag,A
u,Cu、Al等の金属薄膜4を蒸着し、高周波回路装
置とする。
【0022】図2(a)は本発明の第1の実施例の共振
器の平面図を示す図である。この図2に於て、21はル
ープ状に形成された単一線路、22はループ状に形成さ
れた単一線路に接続された集中定数容量である。この構
造の伝送線路共振器は高周波的接地がないこと、ループ
状のため放射損失が少ないことなどリング形共振器の特
徴を損なうことなく小型化が可能である。
【0023】さらにこのループ形状の共振器における集
中定数容量を、ループの解放端に先端解放の結合線路を
結合させることによって平面的に形成し、先端解放の結
合線路の奇、遇モードインピーダンスの積の平方根を単
一線路のインピーダンスに比べ小さくする事により、共
振周波数の再現性と精度向上を図るとともに、周波数調
整が容易で、小型、低コストが実現できる。すなわち、
図2(b)における先端解放の平行結合線路23の結合
部による分布容量24で上述の集中定数容量22を置き
換え、さらに、この平行結合線路23の奇、遇モードイ
ンピーダンスの積の平方根を単一線路21のインピーダ
ンスに比べ小さくすることにより、等価的には対接地間
に容量が付加されたことになるので、同一の共振周波数
を得るには、ループ状に形成された単一線路21の長さ
が短くなり、共振器の一層の小型化が図れる。
【0024】さらに製作精度が良好なフォトエッチング
技術等を用い、単一線路と分布容量を形成する結合線路
とを同時に作製することで、製作の再現性が良好で、共
振周波数のばらつきを小さくできる。また、共振周波数
が所望の周波数からずれた場合でも、ループ状の単一線
路に接続された平行結合線路部分を若干トリミングする
事で簡単に周波数調整が可能である。また集中定数容量
に比べ、平行結合線路部で生じる損失もきわめて小さく
できるので、共振器の無付加Qが大きくなる。
【0025】図3はこのような共振器を複数個形成する
ことによりフィルターとしたものである。図3において
31はループ状に形成された単一線路、33は平行結合
線路、34は分布容量、35は二つの共振器を所定の強
度に結合させる結合部である。このような構成により、
各々の共振器は所定の強度で結合させられ、端子36か
ら入力された信号が、設計された周波数通過特性を持っ
て端子37に出力される。この際、結合部35による結
合度と、各々の共振器に於ける周波数応答特性とをあわ
せて設計することにより、所望のフィルター特性を得る
ことが出来る。基本的にこの結合部35を用いてさらに
複数の同様の共振器を結合させて高性能のフィルターを
構成することが可能となる。端子36と端子37をこの
図のように配置すると基本的には周波数帯域通過フィル
ターが構成できるが、端子の接続位置、共振特性等を設
計することにより、帯域素子フィルターなどの各種フィ
ルター特性に対応可能であることは明かである。この様
に形成することにより、フィルターも一層の小型化が図
れる。
【0026】
【発明の効果】以上説明した通り本発明によれば、超伝
導薄膜による伝送線路を利用した高周波回路装置に於
て、ループ状の伝送線路を用い、このループ状のストリ
ップまたはマイクロストリップ線路から構成される単一
線路の一部を解放し、この単一線路の解放部に、先端解
放の結合線路を結合し、前記結合線路の遇モード、奇モ
ードインピーダンスの積の平方根が前記単一線路の特性
インピーダンスより小さく構成することにより、装置の
高性能を保持したまま小型軽量化を図れ、低価格で容量
の小さい冷却機を使用することが可能になり、装置内の
特性の均一化に対する効果が大きく、冷却による温度安
定性と相まって安定度が向上できる。またこの小型化に
よって半導体素子との集積化が可能になる。またこれら
複数の回路要素を同一基板上に集積することが出来るた
め、それぞれの回路要素間の電気整合を理想的な形で設
計することが可能となる。このため従来高性能特性を阻
害していた各回路要素間での信号の反射、または放射損
失等が著しく改善され、超伝導伝送線路を使用する利点
を十分発揮させることが可能になる。また各要素間の結
合に超伝導伝送線路を使用することが容易となり、さら
なる高性能化が可能となる等、本発明による装置の小型
化の効果は著しいものがあり、その工業的価値は大き
い。
【図面の簡単な説明】
【図1】本発明の一実施例の回路基板の構造図。
【図2】本発明の一実施例の共振器の平面図
【図3】本発明の一実施例のフィルターの平面図
【図4】従来のストリップ線路による5GHz高周波フ
ィルターの構成例を示す平面図
【符号の説明】
1:基体、 2:超伝導薄膜、 3,4:導電薄膜(金属薄膜) 21:ループ状に形成された単一線路 22:ループ状に形成された単一線路に接続された集中
定数容量 23:平行結合線路 24:分布容量 41、42:導体線路
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01P 11/00 ZAA G (72)発明者 牧本 三夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 基板と、この基板表面に形成された高周
    波伝送線路とを少なくとも備えた高周波線路装置であっ
    て、前記高周波伝送線路を超伝導薄膜により形成し、前
    記高周波伝送線路をループ状のストリップまたはマイク
    ロストリップ線路から構成される単一線路により構成し
    たことを特徴とする超伝導高周波共振器。
  2. 【請求項2】 前記高周波伝送線路を、その主成分がA
    −B−Cu−O[ただし、AはIIa族元素のうちの少な
    くとも一種の元素、BはSc,Y,LaおよびLa系列
    元素(原子番号57〜71、但し58、59、61を除
    く)のうち少なくとも一種の元素であり、かつA元素、
    B元素及びCu元素の濃度は0.5≦(A+B)/Cu
    ≦2.5]の複合化合物からなる金属酸化物超伝導体に
    より形成した請求項1に記載の超伝導高周波共振器。
  3. 【請求項3】 前記高周波伝送線路が形成された基板の
    1表面に対面した他の1表面に、その主成分がA−B−
    Cu−O[ただし、AはIIa族元素のうちの少なくとも
    一種の元素、BはSc,Y,LaおよびLa系列元素
    (原子番号57〜71、但し58、59、61を除く)
    のうち少なくとも一種の元素であり、かつA、B元素及
    びCu元素の濃度は0.5≦(A+B)/Cu≦2.
    5]の複合化合物からなる金属酸化物超伝導体により形
    成した請求項1に記載の超伝導高周波共振器。
  4. 【請求項4】 前記ループ状のストリップまたはマイク
    ロストリップ線路から構成される単一線路の一部を解放
    し、この単一線路の解放部に先端解放の結合線路を結合
    し、前記結合線路の遇モード、奇モードインピーダンス
    の積の平方根が前記単一線路の特性インピーダンスより
    小さく構成されている請求項1記載の超伝導高周波共振
    器。
  5. 【請求項5】 前記結合線路を平行結合線路とした請求
    項4記載の超伝導高周波共振器。
  6. 【請求項6】 MgO基板表面に主成分がBi−Sr−
    Ca−Cu−Oからなる超伝導薄膜を形成し、この超伝
    導薄膜により、ループ状のストリップまたはマイクロス
    トリップ線路から構成される単一線路と、この単一線路
    の一部を解放して形成した解放部に結合した先端解放の
    結合線路とを形成し、基板のもう1つの表面に一様な導
    電層、または超伝導層を形成し、前記結合線路の遇モー
    ド、奇モードインピーダンスの積の平方根を前記単一線
    路の特性インピーダンスより小さく構成した請求項1記
    載の超伝導高周波共振器。
  7. 【請求項7】 MgO基板と、この基板表面に形成され
    た高周波伝送線路からなる高周波線路装置であって、前
    記高周波伝送線路をBi−Sr−Ca−Cu−O超伝導
    薄膜により形成し、前記高周波伝送線路をループ状のス
    トリップまたはマイクロストリップ線路から構成される
    単一線路により構成し、このループ状のストリップまた
    はマイクロストリップ線路から構成される単一線路の一
    部を解放し、この単一線路の解放部に先端解放の結合線
    路を結合し、前記結合線路の遇モード、奇モードインピ
    ーダンスの積の平方根を前記単一線路の特性インピーダ
    ンスより小さく構成されている共振器を複数段有し、共
    振器間の結合を前記結合線路部分、または単一線路部分
    で形成したことを特徴とするフィルター。
JP4101440A 1992-04-21 1992-04-21 超伝導高周波共振器およびフィルター Pending JPH05299914A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4101440A JPH05299914A (ja) 1992-04-21 1992-04-21 超伝導高周波共振器およびフィルター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4101440A JPH05299914A (ja) 1992-04-21 1992-04-21 超伝導高周波共振器およびフィルター

Publications (1)

Publication Number Publication Date
JPH05299914A true JPH05299914A (ja) 1993-11-12

Family

ID=14300756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4101440A Pending JPH05299914A (ja) 1992-04-21 1992-04-21 超伝導高周波共振器およびフィルター

Country Status (1)

Country Link
JP (1) JPH05299914A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202533A (ja) * 1993-11-16 1995-08-04 Korea Electron Telecommun 高温超伝導マイクロ波帯域通過フィルタおよびその製造方法
EP0769823A1 (en) * 1994-06-17 1997-04-23 Matsushita Electric Industrial Co., Ltd High-frequency circuit element
US6897745B2 (en) 2002-09-20 2005-05-24 Kabushiki Kaisha Toshiba Resonator and filter
CN100361344C (zh) * 2005-12-23 2008-01-09 清华大学 一种微带线谐振器及其微波滤波器
US7532918B2 (en) * 2002-12-20 2009-05-12 Tsinghua University Superconductive filter having U-type microstrip resonators with longer and shorter parallel sides

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202533A (ja) * 1993-11-16 1995-08-04 Korea Electron Telecommun 高温超伝導マイクロ波帯域通過フィルタおよびその製造方法
EP0769823A1 (en) * 1994-06-17 1997-04-23 Matsushita Electric Industrial Co., Ltd High-frequency circuit element
EP0769823A4 (en) * 1994-06-17 1997-12-17 Matsushita Electric Ind Co Ltd CIRCUIT ELEMENT H.F.
US6016434A (en) * 1994-06-17 2000-01-18 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element in which a resonator and input/ouputs are relatively movable
EP1026773A1 (en) * 1994-06-17 2000-08-09 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element
EP1026772A1 (en) * 1994-06-17 2000-08-09 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element
US6360112B1 (en) 1994-06-17 2002-03-19 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element having a superconductive resonator tuned by another movable resonator
US6360111B1 (en) 1994-06-17 2002-03-19 Matsushita Electric Industrial Co., Ltd. High-frequency circuit element having a superconductive resonator with an electroconductive film about the periphery
US6897745B2 (en) 2002-09-20 2005-05-24 Kabushiki Kaisha Toshiba Resonator and filter
US7532918B2 (en) * 2002-12-20 2009-05-12 Tsinghua University Superconductive filter having U-type microstrip resonators with longer and shorter parallel sides
CN100361344C (zh) * 2005-12-23 2008-01-09 清华大学 一种微带线谐振器及其微波滤波器

Similar Documents

Publication Publication Date Title
JP4021844B2 (ja) 同調可能な強誘電体共振器装置
US6057271A (en) Method of making a superconducting microwave component by off-axis sputtering
US6360112B1 (en) High-frequency circuit element having a superconductive resonator tuned by another movable resonator
Talisa et al. Low-and high-temperature superconducting microwave filters
US6216020B1 (en) Localized electrical fine tuning of passive microwave and radio frequency devices
EP0455527B1 (en) Microstrip line resonator composed of oxide superconductor material
Lyons et al. High-T/sub c/superconductive microwave filters
US5604375A (en) Superconducting active lumped component for microwave device application
EP0567407B1 (en) Microwave component of oxide superconducter material
EP0516145B1 (en) Microwave resonator of compound oxide superconductor material
JP2567517B2 (ja) 超電導マイクロ波部品
JPH05299914A (ja) 超伝導高周波共振器およびフィルター
JPH05335638A (ja) ジョセフソン接合構造体およびその作製方法
JP2596400B2 (ja) 超伝導フィルタ
Talisa et al. Microwave superconducting filters
US6381478B2 (en) Superconductive high-frequency circuit element with smooth contour
WO2001008250A9 (en) Tunable high temperature superconductor resonator and filter
EP0508893A1 (en) Substrate for microwave component
Chung et al. Comparison between high-T/sub c/superconducting microstrip filters and normal conducting counterparts
JPH05160616A (ja) 薄膜共振器
Chung et al. HTS microstrip filters using H-type resonators
Hedges et al. An extracted pole microstrip elliptic function filter using high temperature superconductors
JPH0637514A (ja) 超伝導高周波回路装置
Liu et al. Fundamental of HTS materials and microwave filter design
EP0517560B1 (en) Method of manufacturing a superconducting microwave component substrate