JPH0529866A - Grinding method for ferroelectric substance wafer - Google Patents

Grinding method for ferroelectric substance wafer

Info

Publication number
JPH0529866A
JPH0529866A JP3186270A JP18627091A JPH0529866A JP H0529866 A JPH0529866 A JP H0529866A JP 3186270 A JP3186270 A JP 3186270A JP 18627091 A JP18627091 A JP 18627091A JP H0529866 A JPH0529866 A JP H0529866A
Authority
JP
Japan
Prior art keywords
wafer
polishing
side polarization
positive
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3186270A
Other languages
Japanese (ja)
Inventor
Kunihiro Ito
邦宏 伊藤
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3186270A priority Critical patent/JPH0529866A/en
Publication of JPH0529866A publication Critical patent/JPH0529866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To offer the grinding method of a ferroelectric substance where grinding work is accurately executed in short time. CONSTITUTION:A wafer 1 consists of the single crystal of tantalic acid lithium or niobic acid lithium adding Z-axis component in the orientation of a wafer face. In the wafer, grinding speed is different concerning a positive side polarization face + and the negative side polarization face --in spite of relation where the positive side polarization face + and the negative side polarization face -are the surface and back faces of a same thing. The positive polarization faces + have almost same grinding speed with each other and the negative side polarization faces-have almost same grinding speed with each other. The speed of the positive side polarization face f is faster than that of the negative side polarization face. When the plural wafers are simultaneously ground, either of the positive side polarization face + or the negative side polarization face -is arranged so as to simultaneously execute grinding so that grinding work is accurately executed in short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動体通信分野などで
弾性表面波素子の基板となる強誘電体ウェーハの研磨方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a ferroelectric wafer which serves as a substrate for a surface acoustic wave device in the field of mobile communication.

【0002】[0002]

【従来の技術】自動車電話やコードレスホンなどの移動
体通信分野では、弾性表面波素子の基板としてタンタル
酸リチウムあるいはニオブ酸リチウムなどの単結晶から
得た強誘電体ウェーハが用いられている。
2. Description of the Related Art In the field of mobile communication such as automobile phones and cordless phones, a ferroelectric wafer obtained from a single crystal of lithium tantalate or lithium niobate is used as a substrate of a surface acoustic wave device.

【0003】これら弾性表面波素子(SAWデバイス)
に用いられる単結晶の強誘電体ウェーハは、以下のよう
に製造される。先ず単結晶引き上げにより得られた単結
晶体を、単一分域化(ポーリング)と呼ばれる分極操作
を行い、この際Z軸の正極性、負極性が決定される。
尚、ここにいう正極性とはポーリングで印加する直流電
圧の負電極を接続した側、負極性とは同じく正電極を接
続した側である。分極した短結晶体をスライスしてウェ
ーハが得られる。このウェーハの片面を鏡面に研磨加工
し、もう一方の片面を粗面加工して強誘電体ウェーハが
できあがる。
These surface acoustic wave devices (SAW devices)
The single-crystal ferroelectric wafer used for is manufactured as follows. First, the single crystal obtained by pulling the single crystal is subjected to a polarization operation called single domainization (poling), and at this time, the positive polarity and negative polarity of the Z axis are determined.
The positive polarity here means the side connected to the negative electrode of the DC voltage applied by poling, and the negative polarity means the side connected to the positive electrode. A wafer is obtained by slicing the polarized short crystal body. One surface of this wafer is mirror-polished, and the other surface is roughened to form a ferroelectric wafer.

【0004】研磨加工は、研磨上がりの厚さの均一性を
保つとともに作業効率を良くするため、相当数、例えば
数十枚程度が1枚のガラスプレート上に貼りつけてなさ
れる。研磨加工する面は正または負のどちらの分極面で
あっても、弾性表面波素子としてのデバイス特性上、問
題を生じない。そのため、正側分極面または負側分極面
どちらの面を鏡面に加工するかはまったく意識されず、
事実上両者が混ざり合った状態でガラスプレートに貼り
合わされ、一緒に研磨されていた。
The polishing process is performed by sticking a considerable number, for example, several tens of sheets onto one glass plate in order to maintain the uniformity of the thickness after polishing and improve the working efficiency. Whether the surface to be polished is a positive polarization surface or a negative polarization surface does not cause a problem in terms of device characteristics as a surface acoustic wave element. Therefore, it is completely unaware of which surface, the positive-side polarized surface or the negative-side polarized surface, is processed into a mirror surface.
In fact, the two were mixed together and then attached to the glass plate and polished together.

【0005】[0005]

【発明が解決しようとする課題】前記した従来の研磨加
工であると、研磨バッチ毎の研磨速度が大きくばらつく
ことがある。一定の研磨時間であってもウエーハの研磨
量が研磨バッチにより異なるので、研磨の途中で頻繁に
中断してウエーハの厚さを測定する必要があった。この
ように研磨の実時間以外の作業時間が長いため生産性が
悪く、加工コストを押し上げる要因となり、また得られ
たウェーハの厚さのばらつきも大きいという問題があっ
た。
In the conventional polishing process described above, the polishing rate for each polishing batch may vary greatly. Since the polishing amount of the wafer varies depending on the polishing batch even if the polishing time is constant, it was necessary to frequently interrupt the polishing during the polishing to measure the thickness of the wafer. As described above, there is a problem that productivity is poor because the working time other than the actual polishing time is long, which causes an increase in processing cost, and the thickness of the obtained wafer also varies widely.

【0006】本発明はこのような問題点を解決するた
め、短時間で効率よく研磨加工を行ない、精度のよいウ
ェーハを得ることができる強誘電体ウェーハの研磨方法
を提供しようとするものである。
In order to solve such a problem, the present invention intends to provide a method for polishing a ferroelectric wafer, which is capable of efficiently performing a polishing process in a short time and obtaining an accurate wafer. .

【0007】[0007]

【課題を解決するための手段】本発明の発明者は、上記
した従来の強誘電体ウェーハの研磨方法の問題点を解消
するため、強誘電体ウェーハ、なかんずくタンタル酸リ
チウムやニオブ酸リチウムの単結晶からなるウェーハの
研磨速度の研究をした。先ず、これらの単結晶ウエーハ
のZ軸極性と研磨速度とに何らかの関係があることを予
測し、面方位にZ軸成分を含むいくつかのカット面をつ
くり研磨試験をした。その結果、正側分極面と負側分極
面が同一物の表裏という関係にもかかわらず、正側分極
面と負側分極面について研磨速度が異なることを見出し
た。さらに複数の強誘電体ウェーハが同一材料であれ
ば、正側分極面どうしはほとんど同一の研磨速度であ
り、また負側分極面どうしもほとんど同一の研磨速度で
あることを見出した。正側分極面は、負側分極面よりも
研磨速度が速く、材質や研磨条件によっては2倍程度速
いこともある。
In order to solve the above-mentioned problems of the conventional method of polishing a ferroelectric wafer, the inventor of the present invention uses a single layer of a ferroelectric wafer, especially lithium tantalate or lithium niobate. The polishing rate of a crystal wafer was studied. First, it was predicted that there was some relationship between the Z-axis polarity of these single crystal wafers and the polishing rate, and several cut faces containing the Z-axis component in the plane orientation were made and a polishing test was conducted. As a result, it has been found that the polishing rate is different between the positive and negative polarization surfaces, even though the positive and negative polarization surfaces are the same. Further, it has been found that when a plurality of ferroelectric wafers are made of the same material, the positive-polarized surfaces have almost the same polishing rate, and the negative-polarized surfaces have almost the same polishing rate. The positively polarized surface has a higher polishing rate than the negatively polarized surface, and may be about twice as fast depending on the material and polishing conditions.

【0008】このような強誘電体ウェーハの研磨特性に
着目してなされた本発明の構成は、ウエーハ面方位にZ
軸成分を含むタンタル酸リチウムまたはニオブ酸リチウ
ムの単結晶からなるウェーハを複数同時に研磨する方法
において、厚み方向の表裏に分極されている複数のウェ
ーハを正側分極面または負側分極面のいずれか一方に揃
えて同時に研磨することを特徴とする強誘電体ウェーハ
の研磨方法である。
The structure of the present invention made by paying attention to the polishing characteristics of such a ferroelectric wafer has a Z-direction in the wafer plane direction.
In the method of simultaneously polishing a plurality of wafers composed of a single crystal of lithium tantalate or lithium niobate containing an axial component, a plurality of wafers polarized on the front and back in the thickness direction are either positive-polarized surfaces or negative-polarized surfaces. This is a method for polishing a ferroelectric wafer, which is characterized by aligning on one side and polishing simultaneously.

【0009】この研磨方法において正側分極面を研磨す
る方が短時間で研磨できる。
In this polishing method, it is possible to polish the positive polarization surface in a shorter time.

【0010】前記ウェーハはZカット板及び回転Yカッ
ト板である。さらに詳しくは、前記ウェーハが36度回
転Yカットタンタル酸リチウム単結晶または64度回転
Yカットニオブ酸リチウム単結晶である。
The wafer is a Z-cut plate and a rotating Y-cut plate. More specifically, the wafer is a 36 ° rotated Y-cut lithium tantalate single crystal or a 64 ° rotated Y-cut lithium niobate single crystal.

【0011】[0011]

【作用】前記のように複数の強誘電体ウェーハは、正側
分極面どうしはほとんど同一の研磨速度であり、また負
側分極面どうしもほとんど同一の研磨速度であるから、
ウェーハの複数を正側分極面または負側分極面のいずれ
か一方を揃えて同時に研磨することにより研磨面にかか
る荷重が均一となり、各ウエーハは同一速度で研磨され
ていく。
As described above, in a plurality of ferroelectric wafers, the positive-polarized surfaces have almost the same polishing rate, and the negative-polarized surfaces have almost the same polishing rate.
By simultaneously polishing a plurality of wafers by aligning either the positive-side polarized surface or the negative-side polarized surface at the same time, the load applied to the polished surface becomes uniform, and each wafer is polished at the same speed.

【0012】正側分極面を研磨するようにすれば、正側
分極面は負側分極面よりも研磨速度が速いので、より速
い研磨が可能となる。
If the positive-side polarized surface is polished, the positive-side polarized surface has a higher polishing rate than the negative-side polarized surface, so that faster polishing is possible.

【0013】[0013]

【実施例】以下、本発明を適用する強誘電体ウェーハの
研磨方法の実施例を詳細に説明する。
EXAMPLES Examples of a method of polishing a ferroelectric wafer to which the present invention is applied will be described in detail below.

【0014】研磨すべき強誘電体ウェーハの素材は、タ
ンタル酸リチウムまたはニオブ酸リチウムの溶融体から
単結晶引き上げにより得られた太さ3インチの丸棒状単
結晶体を分極してZ軸の正極性、負極性を決定し、これ
をスライスして得られる。尚、丸棒状単結晶体の外周に
大小2箇所のオリエンテ−ションフラットを90度の角
度で研削加工を施しておき、このオリエンテ−ションフ
ラットの位置によりスライスして得られたウェーハ面の
正と負極性面を識別した。次いでこの素材の両面を#20
00の炭化珪素質砥粒でラッピング加工して、厚さを400
μm、平行度を1μmに仕上げた。
The material of the ferroelectric wafer to be polished is a Z-axis positive electrode obtained by polarizing a 3-inch thick rod-shaped single crystal obtained by pulling a single crystal from a melt of lithium tantalate or lithium niobate. It is obtained by slicing the negative polarity and the negative polarity. It should be noted that the orientation of the wafer flat surface obtained by slicing orientation flats at two locations, large and small, on the outer periphery of the round rod-shaped single crystal at an angle of 90 degrees and slicing at the orientation flats The negative polarity surface was identified. Then both sides of this material # 20
Lapping with 00 silicon carbide abrasive grains to a thickness of 400
μm, parallelism was finished to 1 μm.

【0015】このウェーハは以下のような手順で鏡面研
磨された。図1に示すように、ウェーハ1はオリエンテ
ーションフラットaを基準にしてすべて正側分極面+を
上面に揃えて研磨面とし、あるいは、すべて負側分極面
−を上面に揃えて研磨面とし、ガラスプレート2の上に
30枚を1バッチとしてワックスで貼りつけられる。研
磨面を回転式研磨機にかけて研磨し、強誘電体ウェーハ
を得た。研磨クロスとしてポリウレタン含浸ポリエステ
ル不織布を用い、研磨液にはコロイダルシリカを用い、
面圧200g/cm2 の荷重をかけた。
This wafer was mirror-polished by the following procedure. As shown in FIG. 1, the wafer 1 has all the positive-side polarized surfaces + aligned with the upper surface as polishing surfaces, or all the negative-polarized surfaces − aligned with the upper surface as polishing surfaces, based on the orientation flat a. Wax is applied on the plate 2 in batches of 30 sheets. The polishing surface was polished by a rotary polishing machine to obtain a ferroelectric wafer. Polyurethane impregnated polyester non-woven fabric is used as the polishing cloth, colloidal silica is used as the polishing liquid,
A surface pressure of 200 g / cm 2 was applied.

【0016】表1に示す実施例1〜6のサンプルについ
て上記の手順にしたがって実際の研磨を行ない、研磨速
度およびウェーハの平行度を測定してその平均値を算出
した。
The samples of Examples 1 to 6 shown in Table 1 were actually polished according to the above procedure, the polishing rate and the parallelism of the wafer were measured, and the average value thereof was calculated.

【0017】表1の比較例1〜3のサンプルについて
は、30枚のウェーハ1のうち正側分極面+を上面に向
けたものと負側分極面−を上面に向けたものを表に記載
の枚数混在させて同様な研磨を行ない、研磨速度および
ウェーハの平行度を算出した。研磨速度は15μm の肉
厚を研磨するのに要した時間から算出した。ウェーハの
平行度は、研磨の仕上がったウェーハ面内の5点の厚さ
を測定した最大と最小の差である。
Regarding the samples of Comparative Examples 1 to 3 in Table 1, the 30 wafers 1 having the positive polarization surface + facing upward and the negative polarization surface − facing upward are described in the table. The same polishing was performed by mixing the same number of wafers, and the polishing rate and the parallelism of the wafer were calculated. The polishing rate was calculated from the time required to polish a thickness of 15 μm. The parallelism of the wafer is the difference between the maximum and minimum measured thicknesses at 5 points in the polished wafer surface.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上詳細に説明したように、本発明の強
誘電体ウェーハの研磨方法によれば、ウェーハを複数同
時に研磨するときに研磨速度が揃った面が研磨されるの
で、研磨面にかかる荷重が均一になり、肉厚のばらつき
がなく研磨されていきウェーハの加工精度が向上する。
特に研磨面を正の分極面側に統一的に特定すると研磨工
程時間を大幅に短縮できる。また、バッチ間での研磨速
度のバラ付きが小さくなり、研磨取り代の時間管理が容
易となる。また、これによって加工費用のコストダウン
が可能となり生産性の向上も可能になる。
As described in detail above, according to the method for polishing a ferroelectric wafer of the present invention, when polishing a plurality of wafers at the same time, the surface having a uniform polishing rate is polished. The load becomes uniform, and the wafer is polished with no variation in wall thickness, and the processing accuracy of the wafer is improved.
In particular, if the polishing surface is uniformly specified as the positive polarization surface side, the polishing process time can be greatly shortened. Further, variations in polishing rate between batches are reduced, and time control of polishing stock removal is facilitated. In addition, this makes it possible to reduce the processing cost and improve the productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した研磨方法の工程途中を説明す
る図。
FIG. 1 is a diagram for explaining the middle of the steps of a polishing method to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…ウェーハ、2…ガラスプレート。 1 ... Wafer, 2 ... Glass plate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ウエーハ面方位にZ軸成分を含み同軸方
向に分極されたタンタル酸リチウムまたはニオブ酸リチ
ウムの単結晶から切り出されたウェーハを研磨する方法
において、厚み方向の表裏に分極されているウェーハの
分極方向を正側分極面または負側分極面のいずれか一方
の面に揃えて研磨することを特徴とする強誘電体ウェー
ハの研磨方法。
1. A method for polishing a wafer cut out from a single crystal of lithium tantalate or lithium niobate which is polarized in a coaxial direction and includes a Z-axis component in a wafer plane orientation, and is polarized in the thickness direction. A method of polishing a ferroelectric wafer, which comprises polishing the wafer by aligning the polarization direction of the wafer with one of the positive polarization surface and the negative polarization surface.
【請求項2】 前記ウェーハの分極方向を正側分極面に
揃えて研磨することを特徴とする強誘電体ウェーハの研
磨方法。
2. A method of polishing a ferroelectric wafer, which comprises polishing the wafer so that the polarization direction of the wafer is aligned with the positive polarization surface.
【請求項3】 前記ウェーハがZカット板及び回転Yカ
ット板である請求項1に記載の強誘電体ウェーハの研磨
方法。
3. The method for polishing a ferroelectric wafer according to claim 1, wherein the wafer is a Z-cut plate and a rotating Y-cut plate.
【請求項4】 前記ウェーハが36度回転Yカットタン
タル酸リチウム単結晶である請求項1に記載の強誘電体
ウェーハの研磨方法。
4. The method for polishing a ferroelectric wafer according to claim 1, wherein the wafer is a 36 ° rotated Y-cut lithium tantalate single crystal.
【請求項5】 前記ウェーハが64度回転Yカットニオ
ブ酸リチウム単結晶である請求項1に記載の強誘電体ウ
ェーハの研磨方法。
5. The method for polishing a ferroelectric wafer according to claim 1, wherein the wafer is a 64 ° rotated Y-cut lithium niobate single crystal.
JP3186270A 1991-07-25 1991-07-25 Grinding method for ferroelectric substance wafer Pending JPH0529866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186270A JPH0529866A (en) 1991-07-25 1991-07-25 Grinding method for ferroelectric substance wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186270A JPH0529866A (en) 1991-07-25 1991-07-25 Grinding method for ferroelectric substance wafer

Publications (1)

Publication Number Publication Date
JPH0529866A true JPH0529866A (en) 1993-02-05

Family

ID=16185357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186270A Pending JPH0529866A (en) 1991-07-25 1991-07-25 Grinding method for ferroelectric substance wafer

Country Status (1)

Country Link
JP (1) JPH0529866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128268A1 (en) * 2011-03-22 2012-09-27 株式会社村田製作所 Piezoelectric device and manufacturing method for piezoelectric device
US10234334B2 (en) 2013-02-22 2019-03-19 Murata Manufacturing Co., Ltd. Sensor tag and manufacturing method for sensor tag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128268A1 (en) * 2011-03-22 2012-09-27 株式会社村田製作所 Piezoelectric device and manufacturing method for piezoelectric device
JP2015188253A (en) * 2011-03-22 2015-10-29 株式会社村田製作所 piezoelectric device
JP5811173B2 (en) * 2011-03-22 2015-11-11 株式会社村田製作所 Method for manufacturing piezoelectric device
US9537079B2 (en) 2011-03-22 2017-01-03 Murata Manufacturing Co., Ltd. Piezoelectric device
US10234334B2 (en) 2013-02-22 2019-03-19 Murata Manufacturing Co., Ltd. Sensor tag and manufacturing method for sensor tag

Similar Documents

Publication Publication Date Title
KR20140129001A (en) Method for polishing both surfaces of wafer
JPS6296400A (en) Production of wafer
US4530139A (en) Method of contouring crystal plates
US6599760B2 (en) Epitaxial semiconductor wafer manufacturing method
JP3924641B2 (en) Manufacturing method of semiconductor wafer
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
US2705392A (en) Method of manufacture of piezo electric crystals
JPH0529866A (en) Grinding method for ferroelectric substance wafer
JP5871282B2 (en) A method for producing a piezoelectric oxide single crystal wafer.
JP7119706B2 (en) Manufacturing method of piezoelectric oxide single crystal wafer
JP3233052B2 (en) Polishing device for piezoelectric wafer
JP3228161B2 (en) Polishing device for piezoelectric wafer
US4154025A (en) Method for preparing oxide piezoelectric material wafers
JPH11189500A (en) Production of oxide single crystal substrate
JP7472546B2 (en) Method for manufacturing piezoelectric oxide single crystal substrate
JP2013220516A (en) Wafer substrate and method of manufacturing the same
TW392240B (en) Manufacturing method for SOI substrate
JPH02301135A (en) Method for polishing wafer chamfer
JP2018176390A (en) Method of manufacturing piezoelectric monocrystal wafer
JP2628448B2 (en) Mirror polishing method for semiconductor substrate
JPH08323598A (en) Chamfering method of plate and device therefor
JP2002144211A (en) Wire-saw working device
JPH0957584A (en) Working method for wafer
JP2005034926A (en) Polishing method of wafer substrate, and wafer
JPS6021171Y2 (en) lap surface plate