JPH0529787B2 - - Google Patents

Info

Publication number
JPH0529787B2
JPH0529787B2 JP58012552A JP1255283A JPH0529787B2 JP H0529787 B2 JPH0529787 B2 JP H0529787B2 JP 58012552 A JP58012552 A JP 58012552A JP 1255283 A JP1255283 A JP 1255283A JP H0529787 B2 JPH0529787 B2 JP H0529787B2
Authority
JP
Japan
Prior art keywords
engine
temperature
combustion chamber
glow plug
white smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58012552A
Other languages
Japanese (ja)
Other versions
JPS59138775A (en
Inventor
Kyotaka Matsuno
Hideo Myagi
Masaomi Nagase
Toshihisa Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1255283A priority Critical patent/JPS59138775A/en
Publication of JPS59138775A publication Critical patent/JPS59138775A/en
Publication of JPH0529787B2 publication Critical patent/JPH0529787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はデイーゼルエンジンの白煙発生防止装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a white smoke generation prevention device for a diesel engine.

[従来技術] 従来、デイーゼルエンジンは燃焼室が低温であ
ると着火が悪いため、エンジンの始動直前と直後
において一定時間、例えば10〜20秒間、エンジン
シリンダ又はシリンダヘツドに取り付けたグロー
プラグに通電加熱してエンジン燃焼室の温度を上
げている。
[Prior art] Conventionally, in a diesel engine, ignition is difficult when the combustion chamber is low, so a glow plug attached to the engine cylinder or cylinder head is heated by electricity for a certain period of time, for example, 10 to 20 seconds, just before and after starting the engine. This increases the temperature of the engine combustion chamber.

しかし、始動後の安定したエンジン運転状態に
おいても、吸気圧、吸気温が低い場合に白煙が発
生したり、その他ハツキリした原因がつかめない
未燃焼ガスの白煙が発生する場合があり、燃費の
向上、公害防止上好ましくなかつた。その場合の
対策として一般的にエンジン燃焼室内温度が予め
設定した温度以下になつたときにグロープラグに
通電加熱してエンジン燃焼室の温度を上げること
が知られている。しかし現実問題として、白煙の
発生を完全に防止するためにはエンジン燃焼室内
温度を相当高く保持しなければならない。従つ
て、必ずしも白煙が発生する状態ではないにも拘
らず、エンジン燃焼室の温度が低下したからと言
つてグロープラグを直ちに通電加熱することは白
煙発生防止には有効であるが、グロープラグの消
費電力は極めて大きいので、車両の発電機及びバ
ツテリ容量を相当大きくしなければならない。こ
れでは燃費や車両の生産コストが増大するがかり
か、車両重量が増大して自動車の走行性能が低下
すると言う欠点があつた。
However, even under stable engine operating conditions after starting, white smoke may be generated when the intake pressure and temperature are low, or white smoke from unburned gas may be generated for which the cause cannot be clearly identified, resulting in fuel efficiency. This was not desirable from the viewpoint of improving the water quality and preventing pollution. As a countermeasure in such a case, it is generally known to raise the temperature of the engine combustion chamber by heating the glow plug with electricity when the temperature in the engine combustion chamber falls below a preset temperature. However, as a practical matter, in order to completely prevent the generation of white smoke, the temperature within the combustion chamber of the engine must be maintained considerably high. Therefore, although it is not necessarily the case that white smoke is generated, it is effective to immediately heat the glow plug with electricity just because the temperature of the engine combustion chamber has dropped, which is effective in preventing the generation of white smoke. Since the power consumption of the plug is extremely large, the generator and battery capacity of the vehicle must be considerably large. This not only increases fuel efficiency and vehicle production costs, but also increases the weight of the vehicle and reduces the driving performance of the vehicle.

[発明の目的] 本発明の目的は車両の生産コスト、重量等を実
質的に増大させることなく、グロープラグへの通
電時間を最小限にした状態で白煙の発生をほぼ確
実に防止することができるデイーゼルエンジンの
白煙発生防止装置を提供することによつて、前記
従来の欠点を除去することにある。
[Object of the Invention] The object of the present invention is to almost certainly prevent the generation of white smoke while minimizing the energization time to the glow plug without substantially increasing the production cost, weight, etc. of the vehicle. The object of the present invention is to eliminate the above-mentioned conventional drawbacks by providing a white smoke generation prevention device for a diesel engine that can prevent the generation of white smoke.

[クレーム対応図の説明] 第1図は本発明を明示するための全体構成図で
ある。
[Explanation of Claim Correspondence Diagram] FIG. 1 is an overall configuration diagram for clearly explaining the present invention.

ここにおいてデイーゼルエンジン1の燃焼室2
にはグロープラグ3と温度センサ4とが設けら
れ、デイーゼルエンジン1のクランク軸に連動し
て回転数センサ5が設けられている。上記温度セ
ンサ4が検出した燃焼室内温度に対応した信号及
び回転数センサ5が検出したエンジン回転数に対
応した信号が通電制御手段6に発信されている。
通電制御手段6は、エンジン回転数と、そのエン
ジン回転数におけるグロープラグに通電すべき上
記燃焼室内温度との関係を、エンジン回転数が高
くなるに従つて燃焼室内温度も高くなる関係とし
て予め備えており、上記温度センサ及び回転数セ
ンサからの信号に基づき、上記通電制御手段6が
上記関係を満たす場合にはグロープラグへ通電
し、満たさない場合には通電をカツトする。
Here, the combustion chamber 2 of the diesel engine 1
A glow plug 3 and a temperature sensor 4 are provided, and a rotation speed sensor 5 is provided in conjunction with the crankshaft of the diesel engine 1. A signal corresponding to the combustion chamber temperature detected by the temperature sensor 4 and a signal corresponding to the engine rotation speed detected by the rotation speed sensor 5 are transmitted to the energization control means 6.
The energization control means 6 prepares in advance a relationship between the engine speed and the combustion chamber temperature at which the glow plug should be energized at that engine speed, such that as the engine speed increases, the combustion chamber temperature also increases. Based on the signals from the temperature sensor and rotation speed sensor, the energization control means 6 energizes the glow plug when the above relationship is satisfied, and cuts off the energization when the relationship is not satisfied.

上記燃焼室は通常のシリンダヘツドとピストン
間の燃焼室以外に予燃焼室、渦流室も含む。
In addition to the usual combustion chamber between the cylinder head and the piston, the combustion chamber also includes a pre-combustion chamber and a swirl chamber.

[実施例] 次に、本発明の一実施例の構成を図面によつて
説明する。
[Embodiment] Next, the configuration of an embodiment of the present invention will be described with reference to the drawings.

第2図はデイーゼルエンジンの白煙発生防止装
置及びその周辺の概略構成図を示している。即
ち、11はエンジン、12はシリンダヘツド13
の排気ポート14に連結された排気マニホール
ド、15はシリンダヘツド13の吸気ポート16
に連結された吸気マニホールドであり、該吸気マ
ニホールド15に連結する吸気チユーブ17には
排気マニホールド12途上のタービン18で駆動
されるターボチヤージヤ19が取り付けられてい
る。この他、吸気チユーブ17にはアクセルペダ
ル20と連動して開度が制御されるスロツトルバ
ルブ21と吸気圧センサ22とエアクリーナ23
が取り付けられ、このエアクリーナ23には吸気
温センサ24が取り付けられている。25はスロ
ツトルバルブ21をバイパスするエアバイパス通
路であり、該エアバイパス通路25にはバキユー
ムスイツチングバルブ26を介してダイヤフラム
27で駆動されるバイパス流量制御弁28が取り
付けられ、電子制御コントロールである第3図に
示す如き制御手段29によりその開度が制御され
る。30はシリンダヘツドに取り付けられたイン
ジエクシヨンノズルであり電子式インジエクシヨ
ンポンプ31から圧送される燃料をエンジン11
のエンジン予燃焼室32に噴射する。33はシリ
ンダヘツド13に取り付けられたエンジン予燃焼
室32加熱用のグロープラグであり、エンジン予
燃焼室32の温度は温度センサ34で検出され
る。エンジン11の冷却水温度は水温センサ35
で検出され、スロツトルバルブ21の開度はアク
セルセンサ36で検出される。尚、37はインジ
エクシヨンポンプ31のスピル位置を制御するリ
ニアソレノイド、38はそのスピル位置を検出す
るスピル位置センサ、39はインジエクシヨンポ
ンプ31のタイマ位置を制御するタイミング制御
弁、40はそのタイマ位置を検出するタイマ位置
センサ、41はインジエクシヨンポンプ31の燃
料カツトバルブ(FCV)、42はスタータ作動信
号を発生させるスタータセンサ、43はトルコン
作動信号を発生させるトルコンセンサ、44はエ
アコン作動信号を発生させるエアコンセンサ、4
5は車速に対応した信号を発生させる車速セン
サ、46はクランク軸に連動しエンジン回転数に
対応した信号を発生する回転数センサであり、そ
れぞれ制御手段29に接続されている。
FIG. 2 shows a schematic diagram of a diesel engine white smoke generation prevention device and its surroundings. That is, 11 is the engine, 12 is the cylinder head 13
15 is an exhaust manifold connected to the exhaust port 14 of the cylinder head 13;
The intake manifold 15 is connected to an intake manifold, and an intake tube 17 connected to the intake manifold 15 is attached with a turbocharger 19 driven by a turbine 18 on the way to the exhaust manifold 12. In addition, the intake tube 17 includes a throttle valve 21 whose opening degree is controlled in conjunction with the accelerator pedal 20, an intake pressure sensor 22, and an air cleaner 23.
is attached to the air cleaner 23, and an intake air temperature sensor 24 is attached to the air cleaner 23. Reference numeral 25 denotes an air bypass passage that bypasses the throttle valve 21. A bypass flow control valve 28 is attached to the air bypass passage 25 and is driven by a diaphragm 27 via a vacuum switching valve 26. The opening degree is controlled by a control means 29 as shown in FIG. 30 is an injection nozzle attached to the cylinder head, and the fuel pumped from the electronic injection pump 31 is transferred to the engine 11.
The fuel is injected into the engine pre-combustion chamber 32 of the engine. 33 is a glow plug for heating the engine pre-combustion chamber 32 attached to the cylinder head 13, and the temperature of the engine pre-combustion chamber 32 is detected by a temperature sensor 34. The cooling water temperature of the engine 11 is determined by the water temperature sensor 35.
The opening degree of the throttle valve 21 is detected by the accelerator sensor 36. In addition, 37 is a linear solenoid that controls the spill position of the injection pump 31, 38 is a spill position sensor that detects the spill position, 39 is a timing control valve that controls the timer position of the injection pump 31, and 40 is a linear solenoid for controlling the spill position of the injection pump 31. A timer position sensor detects the timer position, 41 is a fuel cut valve (FCV) of the injection pump 31, 42 is a starter sensor that generates a starter operation signal, 43 is a torque converter sensor that generates a torque converter operation signal, and 44 is an air conditioner operation signal. Air conditioner sensor that generates 4
5 is a vehicle speed sensor that generates a signal corresponding to the vehicle speed, and 46 is a rotational speed sensor that is linked to the crankshaft and generates a signal corresponding to the engine rotational speed, each of which is connected to the control means 29.

制御手段29は例えば、第3図に示すようにマ
イクロコンピユータにより構成され、CPU47
と、演算処理に必要なデタと第4図に示すエンジ
ン回転数と予燃焼室(チヤンバ)温度とで定まる
予め実験的に求めた白煙発生領域のNE−TCマ
ツプのデータが格納される固定メモリのROM4
8と、一時記憶用のRAM49と、キースイツチ
をオフにした後も記憶を保持するバツクアツプ用
のRAM50と、入出力ポート51,52とを備
え、上記各構成はコモンバス53により相互に接
続される。各入出力ポート51,52及びCPU
47にはバツフア回路54〜62、マルチプレク
サ63、A/D変換器64、センサ信号検出回路
65,66、波形整形回路67、駆動回路68〜
71、D/A変換器72、サーボアンプ73、電
源異常検出回路74を適宜介して前記各センサ等
とバツテリ75、フエイル検出回路のアナログ
ECU76とのそれぞれが接続されている。
The control means 29 is constituted by a microcomputer, for example, as shown in FIG.
A fixed map in which the data of the NE-TC map of the white smoke generation area determined experimentally in advance based on the data necessary for calculation processing and the engine speed and pre-combustion chamber temperature shown in Figure 4 is stored. Memory ROM4
8, a RAM 49 for temporary storage, a RAM 50 for backup that retains memory even after the key switch is turned off, and input/output ports 51 and 52, and each of the above components is interconnected by a common bus 53. Each input/output port 51, 52 and CPU
47 includes buffer circuits 54 to 62, multiplexer 63, A/D converter 64, sensor signal detection circuits 65 and 66, waveform shaping circuit 67, and drive circuits 68 to 47.
71, a D/A converter 72, a servo amplifier 73, a power supply abnormality detection circuit 74, and the above-mentioned sensors, etc., a battery 75, and an analog of the fail detection circuit.
Each is connected to the ECU 76.

ここで、燃料の予燃焼室32への供給は、先ず
エンジン回路数に対応したタイミングで必要量の
燃料がインジエクシヨンポンプ31からインジエ
クシヨンノズル30に供給される。一方、CPU
47は回転数センサ46により検出されたエンジ
ン回転数のデータと、吸気温センサ24により検
出された吸気温度と、水温センサ35により検出
された冷却水温等とにより最適燃料量を演算す
る。この最適燃料量と噴射時期とに対応してイン
ジエクシヨンポンプ31のリニアソレノイド37
とタイミング制御弁39が制御されて、エンジン
11に対する燃料噴射量とタイミングとがエンジ
ン11の運転状態に合つた状態に補正される。
Here, fuel is supplied to the pre-combustion chamber 32 by first supplying a required amount of fuel from the injection pump 31 to the injection nozzle 30 at a timing corresponding to the number of engine circuits. On the other hand, CPU
47 calculates the optimum fuel amount based on the engine rotation speed data detected by the rotation speed sensor 46, the intake air temperature detected by the intake air temperature sensor 24, the cooling water temperature detected by the water temperature sensor 35, etc. The linear solenoid 37 of the injection pump 31 corresponds to this optimum fuel amount and injection timing.
The timing control valve 39 is controlled, and the fuel injection amount and timing for the engine 11 are corrected to match the operating state of the engine 11.

上記ROM48中に格納されている白煙発生領
域のNE−TCマツプは、第4図のグラフに示す
点a、b、c、d、e及びfその各々の座標
(NE、TC)が(0、300)、(1000、400)、
(2000、480)、(3000、580)、(4000、800)及び
(8000、800)の各々を結んだ直線以下の領域に定
めることが有効な白煙防止上から好ましい。この
第4図に示す例では、チヤンバ温度TCが800℃を
超える場合には白煙は発生せず、それ以下の温度
の場合は、第4図中のa〜eに示すように、エン
ジン回転数NEが高くなるに従つてチヤンバ温度
TCも高くなる関係として記憶されている。
In the NE-TC map of the white smoke generation area stored in the ROM 48, the coordinates (NE, TC) of points a, b, c, d, e, and f shown in the graph of FIG. 4 are (0 , 300), (1000, 400),
(2000, 480), (3000, 580), (4000, 800), and (8000, 800) are preferably defined in the area below the straight line connecting each of them from the viewpoint of effective white smoke prevention. In the example shown in Fig. 4, if the chamber temperature TC exceeds 800°C, white smoke will not be generated, and if the temperature is lower than that, the engine speed will increase as shown in a to e in Fig. 4. As the number NE increases, the chamber temperature
It is remembered as a relationship where TC also increases.

次に、第5図に示す制御プログラムのフローチ
ヤートに従つてグロープラグ33の通電制御につ
いて説明する。
Next, the energization control of the glow plug 33 will be explained according to the flowchart of the control program shown in FIG.

キースイツチのオンによるメインルーチン処理
の実行に従つて始動前後に拘らずグロープラグ制
御の処理が実行され、ステツプ101でエンジン回
転数NEとエンジン予燃焼室32の温度TCとが
取り込まれ、処理はステツプ102に移行し、この
ステツプ102で第4図に示すNE−TCマツプのデ
ータが読み出されると共に、ステツプ103で両デ
ータが比較され、始動前の零を含むエンジン回転
数NEと予燃焼室(チヤンバ)温度TCとが第4
図に斜線で示す白煙発生領域、即ち、予め実験的
に求めた白煙発生領域内であるかどうかからグロ
ープラグ33に通電すべきか否かが判定され、エ
ンジン回転数NEと予燃焼室(チヤンバ)温度
TCとが第4図斜線の白煙発生領域のとき、
「YES」と判定されて処理はステツプ104に移り、
グロープラグ33が通電され又は通電が保持され
て発熱し、エンジン予燃焼室32が加熱された始
動時においてはエンジン11の始動を容易にし、
白煙を防止する。エンジン始動中においても同様
に処理がなされ、白煙を防止する。
As the main routine process is executed by turning on the key switch, the glow plug control process is executed regardless of whether before or after starting, and at step 101, the engine speed NE and the temperature TC of the engine pre-combustion chamber 32 are taken in, and the process continues from step 101. In step 102, the NE-TC map data shown in FIG. ) temperature TC is the fourth
Whether or not the glow plug 33 should be energized is determined based on whether or not it is within the white smoke generation area indicated by diagonal lines in the figure, that is, the white smoke generation area determined experimentally in advance. chamber) temperature
When TC is in the white smoke generation area indicated by the diagonal line in Figure 4,
If the determination is ``YES'', the process moves to step 104.
At the time of starting when the glow plug 33 is energized or kept energized to generate heat and the engine pre-combustion chamber 32 is heated, the engine 11 is easily started;
Prevent white smoke. The same process is performed during engine startup to prevent white smoke.

このグロープラグ33への通電状態において、
エンジン回転数NEと予燃焼室(チヤンバ)温度
TCとで定まる白煙発生条件が第4図に斜線で示
す白煙発生領域から外れると、処理はステツプ
103にて 「NO」と判定され、ステツプ105に移
り、グロープラグ33への通電はカツトされ、又
はカツト状態が保持される。例えば、本実施例で
は第4図に示すように、エンジン回転数が
5000rpm、6000rpmといつた高回転でも温度が
700℃、600℃という場合は通電するが、逆に回転
数が1000rpm以下でも温度が500℃程度あれば通
電しない等、白煙が発生する領域のみ通電するよ
うに制御することができる。
When the glow plug 33 is energized,
Engine speed NE and pre-combustion chamber temperature
When the white smoke generation conditions determined by TC deviate from the white smoke generation area indicated by diagonal lines in Figure 4, the process proceeds to step 1.
The determination in step 103 is "NO", and the process moves to step 105, where the energization to the glow plug 33 is cut off or the cut state is maintained. For example, in this embodiment, as shown in FIG.
Even at high speeds such as 5000rpm and 6000rpm, the temperature
It can be controlled so that electricity is applied only to areas where white smoke is generated, such as turning on electricity when the temperature is 700°C or 600°C, but not turning it on if the temperature is about 500°C even if the rotation speed is below 1000 rpm.

それ故、グロープラグ33は従来の始動後一定
時間通電するアフターグローと違つて、無駄がな
く必要にして最小限の有効時間のみ通電されると
共に、その後もエンジン運転が第4図に斜線で示
す白煙発生領域に入つた場合には、グロープラグ
33に通電して燃焼状態を良くし、単に冷時間だ
けでなく、吸気圧や吸気温度の低い状態において
も白煙の発生を防止する他、冷時間のエンジン騒
音も防止する。
Therefore, unlike the conventional afterglow, which is energized for a certain period of time after startup, the glow plug 33 is energized only for the necessary and minimum effective time without waste, and the engine continues to operate even after that, as indicated by diagonal lines in Fig. 4. When the engine enters the white smoke generation region, the glow plug 33 is energized to improve the combustion condition and prevent the generation of white smoke not only during cold periods but also when the intake pressure and temperature are low. It also prevents engine noise during cold hours.

[発明の効果] 上述した如く本発明のデイーゼルエンジンの白
煙発生防止装置はデイーゼルエンジンの燃焼室内
を加熱するためのグロープラグと 該燃焼室内の温度を検出し該温度に対応した信
号を発する温度センサと クランク軸と連動してエンジン回転数を検出し
該回転数に対応した信号を発する回転数センサと
エンジン回転数と、そのエンジン回転数における
グロープラグに通電すべき燃焼室内温度との関係
を、エンジン回転数が高くなるに従つて燃焼室内
温度も高くなる関係として予め備えており、上記
温度センサ及び回転数センサからの信号に基づ
き、上記関係を満たす場合にはグロープラグへ通
電し、満たさない場合には通電をカツトする通電
制御手段と を備えたことにより、車両の生産コスト、重量等
を実質的に増大させることなく、グロープラグへ
の通電を最小限にした状態で白煙の発生をほぼ確
実に防止することができ、しかも冷間時のエンジ
ン騒音も防止できる効果がある。
[Effects of the Invention] As described above, the diesel engine white smoke generation prevention device of the present invention includes a glow plug for heating the inside of the combustion chamber of the diesel engine, and a temperature sensor that detects the temperature inside the combustion chamber and issues a signal corresponding to the temperature. Sensor and engine speed sensor that works in conjunction with the crankshaft to detect the engine speed and emit a signal corresponding to the engine speed, and the relationship between the engine speed and the combustion chamber temperature at which the glow plug should be energized at that engine speed. A relationship is established in advance in which the temperature in the combustion chamber increases as the engine speed increases, and based on the signals from the temperature sensor and the rotation speed sensor, if the above relationship is satisfied, the glow plug is energized and the temperature is filled. Equipped with an energization control means that cuts off energization when the glow plug is not energized, it is possible to generate white smoke while minimizing energization to the glow plug without substantially increasing the production cost or weight of the vehicle. It is possible to almost certainly prevent this, and also has the effect of preventing engine noise when it is cold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本
発明の一実施例及びその周辺の概略構成図、第3
図は同実施例のブロツク図、第4図は本実施例の
白煙発生状態に対応したNE−TCマツプ、第5
図はグロープラグ33に対する通電の処理動作を
示すフローチヤートである。 11……デイーゼルエンジン、29……制御手
段、32……エンジン予燃焼室、33……グロー
プラグ、34……温度センサ、46……回転数セ
ンサ。
Fig. 1 is a diagram corresponding to claims of the present invention, Fig. 2 is a schematic diagram of an embodiment of the present invention and its surroundings, and Fig. 3 is a diagram corresponding to the claims of the present invention.
The figure is a block diagram of the same embodiment, Figure 4 is an NE-TC map corresponding to the white smoke generation state of this embodiment, and Figure 5 is a block diagram of the same embodiment.
The figure is a flowchart showing the process of energizing the glow plug 33. DESCRIPTION OF SYMBOLS 11... Diesel engine, 29... Control means, 32... Engine pre-combustion chamber, 33... Glow plug, 34... Temperature sensor, 46... Rotational speed sensor.

Claims (1)

【特許請求の範囲】 1 デイーゼルエンジンの燃焼室内を加熱するた
めのグロープラグと 該燃焼室内の温度を検出し該温度に対応した信
号を発する温度センサと クランク軸と連動してエンジン回転数を検出し
該間点数に対応した信号を発する回転数センサと 上記エンジン回転数と、そのエンジン回転数に
おけるグロープラグに通電すべき上記燃焼室内温
度との関係を、上記エンジン回転数が高くなるに
従つて上記燃焼室内温度も高くなる関係として予
め備えており、上記温度センサ及び回転数センサ
からの信号に基づき、上記関係を満たす場合には
上記グロープラグへ通電し、満たさない場合には
通電をカツトする通電制御手段と を備えたことを特徴とするデイーゼルエンジンの
白煙発生防止装置。
[Scope of Claims] 1. A glow plug for heating the inside of a combustion chamber of a diesel engine; A temperature sensor that detects the temperature inside the combustion chamber and issues a signal corresponding to the temperature; and Detects the engine rotation speed in conjunction with the crankshaft. and a rotation speed sensor that emits a signal corresponding to the number of points between them. The temperature in the combustion chamber is also set to be high, and based on the signals from the temperature sensor and rotation speed sensor, if the above relationship is satisfied, the glow plug is energized, and if not, the glow plug is turned off. What is claimed is: 1. A device for preventing the generation of white smoke in a diesel engine, characterized in that it is equipped with an energization control means.
JP1255283A 1983-01-27 1983-01-27 Preventive device for white smoke generation from diesel engine Granted JPS59138775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255283A JPS59138775A (en) 1983-01-27 1983-01-27 Preventive device for white smoke generation from diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255283A JPS59138775A (en) 1983-01-27 1983-01-27 Preventive device for white smoke generation from diesel engine

Publications (2)

Publication Number Publication Date
JPS59138775A JPS59138775A (en) 1984-08-09
JPH0529787B2 true JPH0529787B2 (en) 1993-05-06

Family

ID=11808493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255283A Granted JPS59138775A (en) 1983-01-27 1983-01-27 Preventive device for white smoke generation from diesel engine

Country Status (1)

Country Link
JP (1) JPS59138775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150067252A (en) * 2012-10-10 2015-06-17 요코하마 고무 가부시키가이샤 Pneumatic tire
US20150375568A1 (en) * 2012-12-28 2015-12-31 The Yokohama Rubber Co., Ltd Pneumatic Tire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256568A (en) * 1984-06-01 1985-12-18 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Temperature controller of glow plug
DE3729638A1 (en) * 1987-09-04 1989-03-16 Bosch Gmbh Robert METHOD FOR CONTROLLING GLOW PLUGS OF A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
DE4041630A1 (en) * 1990-12-22 1992-07-02 Daimler Benz Ag METHOD FOR HEATING THE SUCTION AIR IN INTERNAL COMBUSTION ENGINES BY MEANS OF A FLAME STARTING SYSTEM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566665A (en) * 1978-11-13 1980-05-20 Nissan Motor Co Ltd Idle knock reducing device for diesel engine
JPS5718459A (en) * 1980-07-04 1982-01-30 Nissan Motor Co Ltd Glow plug control device in diesel engine
JPS5742131B2 (en) * 1978-05-04 1982-09-07

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742131U (en) * 1980-08-14 1982-03-08

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742131B2 (en) * 1978-05-04 1982-09-07
JPS5566665A (en) * 1978-11-13 1980-05-20 Nissan Motor Co Ltd Idle knock reducing device for diesel engine
JPS5718459A (en) * 1980-07-04 1982-01-30 Nissan Motor Co Ltd Glow plug control device in diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150067252A (en) * 2012-10-10 2015-06-17 요코하마 고무 가부시키가이샤 Pneumatic tire
US20150375568A1 (en) * 2012-12-28 2015-12-31 The Yokohama Rubber Co., Ltd Pneumatic Tire

Also Published As

Publication number Publication date
JPS59138775A (en) 1984-08-09

Similar Documents

Publication Publication Date Title
CN102016269B (en) Method and device for controlling an internal combustion engine with an automatic engine cut-off and starting system
US20080104943A1 (en) Method and device for operating an internal combustion engine having a catalytic converter
KR100317595B1 (en) Internal injection fuel control device of internal combustion engine
JP2002061529A (en) Fuel supply system of internal combustion engine
JPH0529787B2 (en)
JP2001012286A (en) Fuel injection control device for cylinder fuel injection internal combustion engine
KR100287055B1 (en) Internal injection fuel control system of internal combustion engine
US4925091A (en) Vehicle engine warming and passenger compartment heating device
JP2001107789A (en) Fuel injection control device for cylinder fuel injection engine
JPH0949485A (en) Glow plug control device for engine
JPH0430358Y2 (en)
JPS60159350A (en) Starting controller for diesel engine
JPH0615829B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2008163860A (en) Intake device of fuel injection type engine
JP3236009B2 (en) Engine control device for internal combustion engine
JPH0569992B2 (en)
JPS6397862A (en) Exhaust recirculation controlling method for diesel engine
JPH0473099B2 (en)
JPH0370104B2 (en)
JPH0345232B2 (en)
JP2022119661A (en) Control device of internal combustion engine
JPH037026B2 (en)
KR100559383B1 (en) A fuel injection control method of vehicle
JPH0663466B2 (en) Internal combustion engine speed control device
JP2000120513A (en) Fuel injection control device for in-cylinder direct fuel injection type internal combustion engine