JPH0529657B2 - - Google Patents

Info

Publication number
JPH0529657B2
JPH0529657B2 JP59140137A JP14013784A JPH0529657B2 JP H0529657 B2 JPH0529657 B2 JP H0529657B2 JP 59140137 A JP59140137 A JP 59140137A JP 14013784 A JP14013784 A JP 14013784A JP H0529657 B2 JPH0529657 B2 JP H0529657B2
Authority
JP
Japan
Prior art keywords
parts
weight
gamma ray
units
ray shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59140137A
Other languages
Japanese (ja)
Other versions
JPS6198765A (en
Inventor
Yuzuru Kaneko
Chuki Shimizu
Yoshikazu Hoshino
Yoshifumi Harada
Yoshio Fujita
Hisashi Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP14013784A priority Critical patent/JPS6198765A/en
Publication of JPS6198765A publication Critical patent/JPS6198765A/en
Publication of JPH0529657B2 publication Critical patent/JPH0529657B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はγ線遮蔽能力を有する常温硬化性ポリ
オルガノシロキサン組成物に関する。 [従来の技術] 従来、シリコーンゴムに鉛粉を充填したγ線遮
蔽材は既知である。従来のγ線遮蔽材は、二液性
シリコーンゴム液を配合する際に現場で鉛粉を混
合物に加え、γ線遮蔽を必要とする箇所に流し込
んで使用していた。しかし、鉛粉は有毒であり、
特に解放状態で直接これを取り扱うことは健康上
の問題等から好ましくない。 また、鉛粉は空気中で酸化しやすいので、保存
中に酸化による凝集を起こし、作業性及び硬化物
の物性に悪影響を及ぼす。さらに、従来使用した
シリコーンゴムはシリカ等の充填材を配合しない
と必要な強度が得られないので、このようなシリ
コーンゴム組成物を使用している従来技術による
遮蔽材では、鉛粉の配合量には限界があり、単位
容積当たりの鉛粉の含量は比較的少なく、従つて
必要なγ線遮蔽能力を得るには厚さの厚い遮蔽材
が必要であつた。 [発明が解決しようとする問題点] 上述のように、従来のγ線遮蔽材は鉛粉を建設
現場で直接取り扱うことによる建設現場の鉛汚染
及びそれに伴う健康上の問題等があり、さらに、
単位容積当たりに必要な鉛粉充填量が多いため厚
さの厚いγ線遮蔽材を必要とした。 [問題点を解決するための手段] 上記問題点を解決するために、本発明者は特別
な組み合わせのビニル基含有ポリオルガノシロキ
サンをベースポリマーとするシリコーンゴム組成
物を使用することによつて、シリカ等の充填材を
配合しなくても必要な強度が得られ、これに、鉛
粉を予めシリコーンゴムの成分として密閉容器中
で配合しておくことにより、建設現場のような解
放系で直接鉛粉に接触する機会をなくした。 すなわち本発明は、 (A):一般式 (式中Rは脂肪族不飽和結合を含有しない一価
炭化水素基、R′は一価炭化水素基、nは(A)の
粘度が25℃において100〜50000cStになる数を
示す) で表わされるビニル基で両末端が封鎖されたポ
リオルガノシロキサン100重量部、 (B):(R″)2SiO単位を含み又は含まず、
(R″)3SiO0.5単位とSiO2単位(式中R″は脂肪族
不飽和結合を含有しない一価炭化水素基及びビ
ニル基から選ばれた基を示す)よりなり、ケイ
素原子の2.5〜10モル%はケイ素原子に直結す
るビニル基を有し、(R″)3SiO0.5単位:SiO2
位の比が0.4:1〜1:1であるポリオルガノ
シロキサン共重合体20〜100重量部、 (C):一般式 (式中Rは(A)におけるRと同じ範囲であり、m
は2以上の数であり、aは1.0〜2.0の値を有
し、bは0.1〜1.0の値を有し、(a+b)は1.9
〜3.0であり、一分子について平均少なくとも
2個のケイ素原子に直結する水素原子を有す
る) で表わされ、(A)及び(B)のポリオルガノシロキサ
ンのビニル基1個についてケイ素原子に直結す
る水素原子0.5〜5.0個となるに充分な量のポリ
オルガノ水素シロキサン、 (D):[(A)+(B)+(C)]100重量部に対し、溶融噴霧に
より製造された鉛粉600〜2000重量部、及び (E):実効量の白金触媒 より成ることを特徴とする、γ線遮蔽能力を有す
る硬化性ポリオルガノシロキサン組成物である。 本発明の組成物は(A)及び/又は(B)と(C)と(D)と(E)
とが共存しなければ硬化しないので、それらのい
ずれかを別の包装中に収容しておき、使用直前に
混合すればよい。例えば、第1包装が(D)の全量と
(A)及び(B)の大部分、第2包装が(C)のみ又は(C)の全
量と(A)及び(B)の一部分、第3包装が(E)の全量と(A)
及び(B)の残部から成り、使用時に上記三者の包装
を混合・硬化させることができる。 本発明において、ビニル鎖端ポリオルガノシロ
キサン成分(A)のR及びR′によつて表わされる一
価炭化水素基としてはアルキル基(例えばメチ
ル、エチル、プロピル、ブチル、ヘキシル、オク
チル及びデシル基)、アリール基(例えばフエニ
ル、トリル及びキシリル基)、シクロアルキル基
(例えばシクロヘキシル基及びシクロヘプチル
基)、アラルキル基(例えばベンジル、β−フエ
ニルエチル及びβ−フエニルプロピル基)が例示
され、R′としてはさらにアルケニル基(ビニル
及びアルリル基)が例示に追加される。R及び
R′はそれぞれ1種でも2種以上を併用しても差
し支えなく、また互いに同一でも相異なつていて
もよい。 R及びR′によつて表わされる基の少なくとも
50%はメチル及びフエニルからなる群から選択さ
れ、好ましい特別の組成物においてはR及び
R′によつて表わされる基の全てがメチル基及び
フエニル基である。 nの値は、成分(A)の25℃における粘度が100〜
50000cSt、好ましくは500〜20000cStになる範囲
である。成分(A)の粘度が100cSt未満では充分な物
理特性が得られず、50000cStを越えると未硬化の
状態での取扱が困難になる。 本発明における成分(B)のポリオルガノシロキサ
ン共重合体は、補強性充填剤を含有しなくても組
成物に充分な強度を与えるための成分で、脂肪族
不飽和結合を含有しない一価炭化水素基又はビニ
ル基であることができるR″基を含有し、R″基の
少なくとも前述した割合がビニル基であるポリオ
ルガノシロキサン共重合体として定義しうる。ビ
ニル基でないR″基は成分(A)のR基と同じ範囲の
もの及びその類似の基であり、その好ましい実施
態様では脂肪族不飽和結合を含有しない一価炭素
水素基の全てがメチル基である。ビニル基は
(R″)3SiO0.5基の一部として、または(R″)2SiO基
の一部として存在することができ、あるいはその
両方に存在することもできる。 共重合体成分(B)中の各種のシロキサン単位は、
(R″)3SiO0.5単位:SiO2単位の比が0.4:1ないし
1:1にあるように選択する。(R″)3SiO0.5単位
の比が0.4未満では、成分(B)の安定性が悪くて制
御よく合成することが困難であり、1を越えると
硬化物に良好な機械的強度を与えることができな
い。 (R″)2SiO単位は共重合体中のシロキサン単位
の全数を基準にして0ないし10モル%に等しい量
で存在する。ケイ素結合ビニル基が共重合体中に
位置している場所には無関係に、ケイ素結合ビニ
ル基は共重合体成分(B)のケイ素原子の2.5ないし
10.0モル%で結合しているべきである。 共重合体成分(B)は固体の樹脂状材料であり、多
くの場合はキシレン又はトルエンのごとき溶媒中
の溶液として、かつ一般には30〜75重量%溶液と
して製造されている。組成物の取り扱いを容易に
するため、共重合体成分(B)のこの溶液は通常ビニ
ル鎖端ポリシロキサン成分(A)の一部又は全部中に
溶解し、得られた溶液より溶媒を留去して生成(A)
と共重合体成分(B)の混合物を造る。 成分(B)の量は、成分(A)100重量部に対して20〜
100重量部、好ましくは20〜80重量部である。成
分(B)の量が20重量部未満では補強性充填剤を配合
しないと十分な機械的性質が得られず、機械的性
質を満足する量の補強性充填剤を配合すると本発
明で意図するγ線の遮蔽に必要な鉛の充填が不可
能になる。また、成分(B)の量が100重量部を越え
ると、未硬化の状態の組成物の粘度が高くなつ
て、取り扱いにくい。 本発明における成分(C)のポリオルガノ水素シロ
キサンは、成分(A)及び(B)と反応して網状のポリシ
ロキサンを構成するもので、そのために分子中に
平均少なくとも2個のケイ素結合水素原子をもつ
ものである。このようなポリオルガノ水素シロキ
サンは、シロキサン骨格が鎖状、分岐状、環状の
いずれであつてもよく、ケイ素−水素結合をもつ
シロキサン単位のみからなる重合体でも、これと
トリオルガノシロキシ単位、ジオルガノシロキシ
単位、モノオルガノシロキシ単位およびSiO2
位のうち1種または2種以上との共重合体でもよ
い。Rとしては、成分(A)におけるRと同様なもの
が例示され、1種でも2種以上を併用しても差し
支えないが、合成のしやすさ、比較的低い粘度で
硬化後の良好な物理特性を得ることから、メチル
基およびフエニル基が好ましく、特にメチル基が
好ましい。一分子中に平均少なくとも2個のケイ
素結合水素原子をもつためには、合成の容易さか
ら、mは2以上であることが必要で、好ましくは
4〜1000の範囲である。mが2未満では揮発性が
大きく、1000を越えると合成、取り扱いが困難と
なる。aが1.0未満のものや、bが1.0を越えるも
のは合成が困難である。aが2.0を越えると成分
(C)が必要なケイ素結合水素原子を有しつつ所望の
mをとることができず、bが0.1未満では所望の
ケイ素結合水素原子を与えるためのmの数が大き
くなつて、成分(C)の取り扱いが困難になる。a+
bの和が1.9未満のものは制御よく合成すること
が困難であり、3.0を越えると必要な重合度が得
られない。 成分(C)の量は、成分(A)および(B)に含まれるビニ
ル基1個に対して成分(C)に含まれるケイ素原子に
直接結合した水素原子の量が0.5〜5.0個となるの
に十分な量である。0.5個未満ではゴム状弾性体
が得られず、5.0個を越えると発泡したり、機械
的性質の低下をもたらすからである。 本発明に使用する成分(D)は溶融噴霧によつて製
造された鉛粉である。平均粒径は好ましくは1μ
〜0.5mmで、さらに好ましくは100メツシユ
(147μ)全通のものである。1μ未満の鉛粉は製造
しにくい上に、表面が酸化されやすく、状態が変
化しやすい。0.5mmを越えると混合時の沈降速度
が大きくなり、また硬化後の組成物の強度が低
い。 成分(D)の量は、成分(A)、(B)、(C)の合計量100重
量部に対して600〜2000重量部、好ましくは800〜
1500重量部の範囲である。600重量部未満では十
分なγ線遮蔽効果が得られず、2000重量部を越え
ると成分(A)+(B)+(C)との混練りが困難となり、現
場での注入作業が困難となり、硬化した組成物の
強度が低下する。 本発明に使用する白金触媒成分(E)は、ケイ素−
水素結合とケイ素結合ビニル基との間の反応を行
わせるのに有効な公知の白金触媒の全てを含む。
成分(E)としては白金黒、塩化白金酸、白金−オレ
フイン錯体、白金−ビニルシロキサン錯体、白金
−ホスフイン錯体、白金−ホスフアイト錯体およ
び白金アルコレートが例示される。使用する白金
触媒の種類に関係なく、触媒は通常組成物中のケ
イ素結合ビニル基1モルについて白金10-3ないし
10-6グラム原子となるに十分な量で使用する。 [実施例] 以下、実施例に基づき本発明を説明する。実施
例において、部はすべて重量部を示す。実施例
中、Meはメチル基、Viはビニル基を示す。 実施例 1 25℃における粘度が3000cStの、両末端がビニ
ル基で封鎖されたポリジメチルシロキサン65部
と、60モル%のSiO2単位、37.2モル%の
Me3SiO0.5単位および2.8モル%のMeViSiO単位
からなる共重合体の50%トルエン溶液70部を混合
し徐々に減圧にして100mmHgで80℃まで加熱する
ことによりトルエンを留去して、ビニル基含有ポ
リオルガノシロキサン混合物を得た。この混合物
を密閉式ニーダーに仕込み、溶融噴霧にによつて
得られた平均粒径が200メツシユ(74μ)全通
(平均粒径17μ)の鉛粉1000部を仕込んで、均一
になるまで密閉下に混合した。 これにMe3SiO[Me2SiO]6[MeHSiO]6
SiMe35部および塩化白金酸と2−エチルヘキサ
ノールの加熱生成物を白金原子に換算して50/
100万部添加して混合し、本発明の組成物を得た。
この組成物を脱泡して厚さ130mmの型に注型し、
30℃で24時間放置することにより、本発明による
ゴム状硬化物を得た。この硬化物の比重は5.4で
あつた。 このゴム状硬化物(試料)を第1図に示す測定
装置に置き、厚さ方向に60Coによるγ線を当てて
その透過量を測定した。同様の測定を同一寸法の
コンクリート試料について行い、γ線透過量の比
較を行つたところ、本発明によるゴム状硬化物の
γ線透過量はコンクリート試料の44%であつた。 実施例 2 25℃における粘度が4500cStの両末端がビニル
基で封鎖され、6モル%のジフエニルシロキサン
単位と残余のジメチルシロキシ単位からなるポリ
オルガノシロキサン55部と、52.5モル%のSiO2
位、44.5モル%のMe3SiO単位および3.0モル%の
MeViSiO単位からなる共重合体の50%トルエン
溶液90部を混合し、実施例1と同様の方法で脱溶
して、ビニル基含有ポリオルガノシロキサン混合
物を得た。この混合物を密閉式ニーダーに仕込
み、溶融噴霧によつて得られた平均粒径100メツ
シユ(147μ)全通の鉛粉900部を仕込んで密閉状
態で均一になるまで混合した。 これに
[Industrial Field of Application] The present invention relates to a room temperature curable polyorganosiloxane composition having gamma ray shielding ability. [Prior Art] Conventionally, a gamma ray shielding material in which silicone rubber is filled with lead powder is known. Conventional gamma-ray shielding materials were used by adding lead powder to the mixture on-site when compounding a two-component silicone rubber solution and pouring it into the area where gamma-ray shielding was required. However, lead dust is toxic;
In particular, handling it directly in an open state is undesirable due to health concerns. Furthermore, since lead powder is easily oxidized in the air, it causes agglomeration due to oxidation during storage, which adversely affects workability and physical properties of the cured product. Furthermore, conventionally used silicone rubber cannot obtain the necessary strength unless it is blended with fillers such as silica, so conventional shielding materials using such silicone rubber compositions have a lower amount of lead powder. However, the content of lead powder per unit volume is relatively small, and therefore a thick shielding material is required to obtain the necessary gamma ray shielding ability. [Problems to be Solved by the Invention] As mentioned above, conventional gamma ray shielding materials have the problem of lead contamination at construction sites due to direct handling of lead powder at construction sites and health problems associated with it.
Because a large amount of lead powder was required per unit volume, a thick gamma-ray shielding material was required. [Means for Solving the Problems] In order to solve the above problems, the present inventors have achieved the following by using a silicone rubber composition having a special combination of vinyl group-containing polyorganosiloxanes as a base polymer. The necessary strength can be obtained without adding fillers such as silica, and by adding lead powder as a component of silicone rubber in a sealed container in advance, it can be used directly in open systems such as construction sites. Eliminates the opportunity to come into contact with lead powder. That is, the present invention provides (A): general formula (In the formula, R is a monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, R' is a monovalent hydrocarbon group, and n is a number that makes the viscosity of (A) 100 to 50,000 cSt at 25°C.) 100 parts by weight of polyorganosiloxane with both ends capped with vinyl groups, (B): (R″) 2 containing or not containing SiO units,
(R″) 3 Consists of 0.5 SiO units and 2 SiO units (in the formula, R″ represents a group selected from monovalent hydrocarbon groups and vinyl groups that do not contain an aliphatic unsaturated bond), and consists of 2.5 to 3 SiO units 20 to 100 parts by weight of a polyorganosiloxane copolymer in which 10 mol% has a vinyl group directly bonded to a silicon atom, and the ratio of (R″) 3 SiO 0.5 units:SiO 2 units is 0.4:1 to 1:1. , (C): general formula (In the formula, R is in the same range as R in (A), m
is a number greater than or equal to 2, a has a value of 1.0 to 2.0, b has a value of 0.1 to 1.0, and (a+b) is 1.9
3.0 and has an average of at least two hydrogen atoms directly bonded to silicon atoms per molecule), and each vinyl group of the polyorganosiloxanes (A) and (B) is directly bonded to a silicon atom. 600 to 600 parts of lead powder produced by melt spraying to 100 parts by weight of polyorganohydrogensiloxane (D): [(A) + (B) + (C)] in an amount sufficient to have 0.5 to 5.0 hydrogen atoms. 2000 parts by weight, and (E): an effective amount of a platinum catalyst. The composition of the present invention comprises (A) and/or (B) and (C) and (D) and (E).
Since they will not cure unless they coexist, either of them may be stored in separate packaging and mixed immediately before use. For example, the first package is the total amount of (D)
Most of (A) and (B), the second package is only (C) or the whole amount of (C) and a part of (A) and (B), the third package is the whole amount of (E) and (A)
and the remainder of (B), and the above three packages can be mixed and cured at the time of use. In the present invention, the monovalent hydrocarbon groups represented by R and R' of the vinyl chain-end polyorganosiloxane component (A) include alkyl groups (for example, methyl, ethyl, propyl, butyl, hexyl, octyl, and decyl groups). , aryl groups (e.g. phenyl, tolyl and xylyl groups), cycloalkyl groups (e.g. cyclohexyl and cycloheptyl groups), aralkyl groups (e.g. benzyl, β-phenylethyl and β-phenylpropyl groups), and as R' further includes alkenyl groups (vinyl and allyl groups). R and
R' may be used alone or in combination of two or more, and may be the same or different from each other. At least of the groups represented by R and R'
50% is selected from the group consisting of methyl and phenyl, in a preferred particular composition R and
All of the groups represented by R' are methyl and phenyl groups. The value of n is determined when the viscosity of component (A) at 25℃ is 100~
50,000 cSt, preferably in the range of 500 to 20,000 cSt. If the viscosity of component (A) is less than 100 cSt, sufficient physical properties cannot be obtained, and if it exceeds 50,000 cSt, it becomes difficult to handle in an uncured state. The polyorganosiloxane copolymer as component (B) in the present invention is a component that provides sufficient strength to the composition without containing a reinforcing filler, and is a monovalent carbonized copolymer that does not contain aliphatic unsaturated bonds. It may be defined as a polyorganosiloxane copolymer containing R'' groups which can be hydrogen or vinyl groups, and in which at least the aforementioned proportion of the R'' groups are vinyl groups. R'' groups that are not vinyl groups are of the same scope as the R group of component (A) and similar groups, and in a preferred embodiment thereof, all of the monovalent carbon hydrogen groups that do not contain aliphatic unsaturation are methyl groups. The vinyl group can be present as part of the (R″) 3 SiO 0.5 group, or as part of the (R″) 2 SiO group, or both. Copolymer The various siloxane units in component (B) are
(R″) 3 Select so that the ratio of SiO 0.5 units to SiO 2 units is 0.4:1 or 1:1. (R″) If the ratio of 3 SiO 0.5 units is less than 0.4, component (B) may be unstable. If it exceeds 1, good mechanical strength cannot be imparted to the cured product. (R″) 2 SiO units are present in an amount equal to 0 to 10 mol%, based on the total number of siloxane units in the copolymer. Where silicon-bonded vinyl groups are located in the copolymer, Regardless, the silicon-bonded vinyl group has 2.5 to 2.5 to
It should be bound at 10.0 mol%. Copolymer component (B) is a solid resinous material, often prepared as a solution in a solvent such as xylene or toluene, and generally as a 30-75% by weight solution. To facilitate handling of the composition, this solution of copolymer component (B) is usually dissolved in some or all of the vinyl chain-terminated polysiloxane component (A), and the solvent is distilled off from the resulting solution. Generate (A)
and copolymer component (B). The amount of component (B) is 20 to 100 parts by weight of component (A).
100 parts by weight, preferably 20 to 80 parts by weight. If the amount of component (B) is less than 20 parts by weight, sufficient mechanical properties cannot be obtained unless a reinforcing filler is blended, and it is intended in the present invention to blend a reinforcing filler in an amount that satisfies the mechanical properties. Filling with lead necessary for gamma ray shielding becomes impossible. Furthermore, if the amount of component (B) exceeds 100 parts by weight, the viscosity of the uncured composition increases, making it difficult to handle. The polyorganohydrogensiloxane of component (C) in the present invention reacts with components (A) and (B) to form a network polysiloxane, and therefore has an average of at least two silicon-bonded hydrogen atoms in the molecule. It is something that we have. Such a polyorganohydrogensiloxane may have a chain, branched, or cyclic siloxane skeleton, and may be a polymer consisting only of siloxane units having silicon-hydrogen bonds, or may be a polymer consisting only of siloxane units having silicon-hydrogen bonds, as well as triorganosiloxy units and diorganosiloxane units. It may also be a copolymer with one or more of siloxy units, monoorganosiloxy units, and SiO 2 units. Examples of R include those similar to R in component (A), and one type or a combination of two or more types may be used. Methyl groups and phenyl groups are preferred, with methyl groups being particularly preferred, in view of the properties obtained. In order to have an average of at least two silicon-bonded hydrogen atoms in one molecule, m needs to be 2 or more, preferably in the range of 4 to 1000, for ease of synthesis. If m is less than 2, it will be highly volatile, and if it exceeds 1000, it will be difficult to synthesize and handle. It is difficult to synthesize those with a less than 1.0 and those with b more than 1.0. If a exceeds 2.0, the component
It is not possible to obtain the desired m while (C) has the necessary silicon-bonded hydrogen atoms, and if b is less than 0.1, the number of m required to provide the desired silicon-bonded hydrogen atoms becomes large, and the component (C ) becomes difficult to handle. a+
If the sum of b is less than 1.9, it is difficult to synthesize with good control, and if it exceeds 3.0, the required degree of polymerization cannot be obtained. The amount of component (C) is such that the amount of hydrogen atoms directly bonded to silicon atoms contained in component (C) is 0.5 to 5.0 per vinyl group contained in components (A) and (B). The amount is sufficient. This is because if the number is less than 0.5, a rubber-like elastic body cannot be obtained, and if it exceeds 5.0, foaming may occur or mechanical properties may deteriorate. Component (D) used in the present invention is lead powder produced by melt spraying. Average particle size is preferably 1μ
~0.5mm, more preferably 100 meshes (147μ). Lead powder of less than 1 μm is difficult to manufacture, and its surface is easily oxidized and its state changes easily. If it exceeds 0.5 mm, the sedimentation rate during mixing will increase and the strength of the composition after curing will be low. The amount of component (D) is 600 to 2000 parts by weight, preferably 800 to 2000 parts by weight, based on 100 parts by weight of the total amount of components (A), (B), and (C).
In the range of 1500 parts by weight. If it is less than 600 parts by weight, a sufficient gamma ray shielding effect cannot be obtained, and if it exceeds 2000 parts by weight, it becomes difficult to mix components (A) + (B) + (C), making it difficult to perform injection work on site. , the strength of the cured composition decreases. The platinum catalyst component (E) used in the present invention is silicon-
Includes all known platinum catalysts effective for effecting reactions between hydrogen bonds and silicon-bonded vinyl groups.
Examples of component (E) include platinum black, chloroplatinic acid, platinum-olefin complexes, platinum-vinylsiloxane complexes, platinum-phosphine complexes, platinum-phosphite complexes, and platinum alcoholates. Regardless of the type of platinum catalyst used, the catalyst typically contains between 10 -3 and 10 -3 platinum per mole of silicon-bonded vinyl groups in the composition.
Use in sufficient quantities to make 10 -6 gram atoms. [Examples] The present invention will be described below based on Examples. In the examples, all parts are by weight. In the examples, Me represents a methyl group and Vi represents a vinyl group. Example 1 65 parts of polydimethylsiloxane capped at both ends with vinyl groups and having a viscosity of 3000 cSt at 25°C, 60 mol% SiO 2 units, 37.2 mol%
Mix 70 parts of a 50% toluene solution of a copolymer consisting of 0.5 units of Me 3 SiO and 2.8 mol% MeViSiO units, gradually reduce the pressure and heat to 80°C at 100 mmHg to distill off the toluene and remove the vinyl groups. A polyorganosiloxane containing mixture was obtained. This mixture was placed in a closed kneader, and 1000 parts of lead powder with an average particle size of 200 mesh (74μ) obtained by melt spraying (average particle size 17μ) was charged, and the mixture was kept sealed until uniform. mixed with. To this, Me 3 SiO [Me 2 SiO] 6 [MeHSiO] 6
5 parts of SiMe 3 and the heating product of chloroplatinic acid and 2-ethylhexanol are converted to platinum atoms and are 50/
1 million parts were added and mixed to obtain a composition of the present invention.
This composition was defoamed and cast into a mold with a thickness of 130 mm.
A rubber-like cured product according to the present invention was obtained by standing at 30°C for 24 hours. The specific gravity of this cured product was 5.4. This rubber-like cured product (sample) was placed in the measuring device shown in FIG. 1, and gamma rays from 60 Co were applied in the thickness direction to measure the amount of transmission. Similar measurements were carried out on concrete samples of the same size, and the gamma ray transmission amount was compared, and the gamma ray transmission amount of the rubber-like cured product according to the present invention was 44% of that of the concrete sample. Example 2 55 parts of a polyorganosiloxane having a viscosity of 4500 cSt at 25°C, both ends capped with vinyl groups, and consisting of 6 mol% diphenylsiloxane units and the remaining dimethylsiloxy units, and 52.5 mol% SiO 2 units, 44.5 mol% Me3SiO units and 3.0 mol%
90 parts of a 50% toluene solution of a copolymer consisting of MeViSiO units was mixed and desoluted in the same manner as in Example 1 to obtain a vinyl group-containing polyorganosiloxane mixture. This mixture was placed in a closed kneader, and 900 parts of lead powder with an average particle diameter of 100 mesh (147 μm) obtained by melt spraying was added thereto and mixed in a closed state until uniform. to this

【式】7.5部およ び実施例1で用いたのと同じ白金触媒を白金原子
として30/100万部を混合して本発明の組成物を
得た。これを脱泡して実施例1と同様の型に注型
し、50℃で6時間放置したところ、比重5.1のゴ
ム状硬化物を得た。このゴム状硬化物のγ線透過
量を実施例1と同様の方法で測定したところ、コ
ンクリート試料の47%であつた。 実施例 3 25℃における粘度が2000cStの両末端がビニル
基で封鎖されたポリジメチルシロキサン60部と実
施例1で用いたのと同じ共重合体の50%トルエン
溶液80部を、実施例1と同様にして脱溶してビニ
ル基含有ポリオルガノシロキサン混合物を得た。
これに実施例1で使用したのと同じ鉛粉1100部を
密閉式ニーダー中で混合して、金属缶に密封して
包装試料Aを得た。 次に、25℃における粘度が3500cStの両末端が
ビニル基で封鎖されたポリジメチルシロキサン
100部に、実施例1で用いたのと同じポリメチル
水素シロキサン100部を混合してガラス瓶に密封
し、包装試料Bを得た。 また、上記と同じ両末端がビニル基で封鎖され
たポリジメチルシロキサン100部に、白金−テト
ラメチルテトラビニルシクロテトラシロキサン錯
体を白金原子として500/100万部を混合して別の
ガラス瓶に密封し、包装試料Cを得た。これらの
包装試料A、B、Cをそれぞれの調製後1カ月間
室温で保存した後、重量比でA:B:C=100:
10:10の割合に混合、脱泡して実施例1と同様に
注型し、30℃で24時間放置することにより、比重
5.2のゴム状硬化物を得た。 このゴム状硬化物のγ線透過量を実施例1と同
様の方法で測定したところ、コンクリート試料の
46%であつた。 実施例 4 実施例1で用いたのと同じ両末端がビニル基で
封鎖されたポリジメチルシロキサン70部と、実施
例1で用いたのと同じ分岐状ポリオルガノシロキ
サン共重合体の50%トルエン溶液60部、および実
施例2で用いたのと同じ鉛粉1000部より、実施例
3の包装試料Aと同様にして包装試料Dを得た。 次に、25℃における粘度が10000cStの両末端が
ビニル基で封鎖されたポリジメチルシロキサン
100部に、実施例2で用いたのと同じポリメチル
水素シロキサン100部を混合してガラス瓶中に密
封し、包装試料Eを得た。 また、実施例1で用いたのと同じ両末端がビニ
ル基で封鎖されたポリジメチルシロキサンに白金
−トルフエニルホスフアイト錯体を白金原子とし
て300/100万部を混合して別のガラス瓶に密封
し、包装試料Fを得た。 これらの包装試料D、E、Fをそれぞれの調製
後1カ月間室温で保存した後、重量比でD:E:
F=100:10:10の割合で混合、脱泡して実施例
1と同様に注型し、50℃で6時間放置したとこ
ろ、比重5.0のゴム状硬化物を得た。 このゴム状硬化物のγ線透過量を、実施例1と
同様の方法で測定したところ、コンクリート試料
の48%であつた。 実施例 5 20℃における粘度が6000cStの、両末端がビニ
ル基で封鎖され、5モル%のメチルビニルシロキ
シ単位と残余のジメチルシロキシ単位からなるポ
リオルガノシロキサン63部と55モル%のSiO2
位、41.5モル%のMe3SiO0.5単位および3.5モル%
のMeViSiO0.5単位からなる共重合体の50%トル
エン溶液74部を混合し、実施例1と同様の方法で
脱溶してビニル基含有ポリオルガノシロキサン混
合物を得た。この混合物と実施例1で用いたのと
同じ鉛粉1000部を仕込んで、密閉状態で均一にな
るまで混合した。 これにMe3Si[MeHSiO]11SiMe34.5部および実
施例3で用いたのと同じ白金触媒を白金原子とし
て100/100万部添加混合して本発明の組成物を得
た。これを実施例1と同様の型に注型し、50℃で
6時間放置して比重5.4のゴム状硬化物を得た。 このゴム状硬化物のγ線透過量を実施例1と同
様にして測定したところコンクリート試料の44%
であつた。 [発明の効果] 本発明によれば、開放状態の建設現場で鉛粉に
直接触れないので、鉛の毒性の問題が解決され
る。また、鉛の微粉末は酸化しやすいが、本発明
のようにシリコーンと混合して供給することによ
り保存中の鉛の酸化およびそれに伴う粒子の凝集
を防止できるので、作業性および硬化物の物性を
保つことができる。さらに、鉛の添加量が大幅に
増大するので、従来得られなかつた比重5以上の
高密度遮蔽材が得られ、γ線遮蔽性の優れた遮蔽
材として用いることができる。
A composition of the present invention was obtained by mixing 7.5 parts of the formula and 30/1 million parts of the same platinum catalyst used in Example 1 as platinum atoms. This was defoamed and cast into the same mold as in Example 1, and left at 50°C for 6 hours to obtain a rubber-like cured product with a specific gravity of 5.1. When the gamma ray transmission amount of this rubber-like cured product was measured in the same manner as in Example 1, it was 47% of that of the concrete sample. Example 3 60 parts of polydimethylsiloxane, which has a viscosity of 2000 cSt at 25°C and is capped with vinyl groups at both ends, and 80 parts of a 50% toluene solution of the same copolymer used in Example 1 were mixed as in Example 1. In the same manner, a vinyl group-containing polyorganosiloxane mixture was obtained.
This was mixed with 1100 parts of the same lead powder used in Example 1 in a closed kneader, and the mixture was sealed in a metal can to obtain packaged sample A. Next, polydimethylsiloxane, which has a viscosity of 3500 cSt at 25°C and is capped at both ends with vinyl groups, is used.
100 parts of the same polymethylhydrogensiloxane as used in Example 1 were mixed with 100 parts of the mixture and sealed in a glass bottle to obtain packaged sample B. In addition, 500/1 million parts of platinum-tetramethyltetravinylcyclotetrasiloxane complex with platinum atoms were mixed with 100 parts of polydimethylsiloxane, which has both ends capped with vinyl groups as above, and the mixture was sealed in another glass bottle. , packaging sample C was obtained. After storing these packaged samples A, B, and C at room temperature for one month after each preparation, the weight ratio of A:B:C=100:
Mix at a ratio of 10:10, defoamer, cast in the same manner as in Example 1, and leave at 30°C for 24 hours to determine the specific gravity.
A rubbery cured product of 5.2 was obtained. When the gamma ray transmission amount of this rubber-like cured product was measured in the same manner as in Example 1, it was found that
It was 46%. Example 4 70 parts of the same polydimethylsiloxane end-capped with vinyl groups as used in Example 1 and a 50% toluene solution of the same branched polyorganosiloxane copolymer used in Example 1 Packaging sample D was obtained in the same manner as packaging sample A in Example 3 from 60 parts and 1000 parts of the same lead powder used in Example 2. Next, polydimethylsiloxane, which has a viscosity of 10,000 cSt at 25°C and is blocked at both ends with vinyl groups, is used.
100 parts of the same polymethylhydrogensiloxane as used in Example 2 were mixed with 100 parts of the mixture and sealed in a glass bottle to obtain packaged sample E. In addition, 300/1 million parts of platinum-torphenyl phosphite complex with platinum atoms were mixed with polydimethylsiloxane, which was used in Example 1 and whose ends were blocked with vinyl groups, and the mixture was sealed in another glass bottle. , packaging sample F was obtained. After storing these packaged samples D, E, and F at room temperature for one month after their respective preparation, the weight ratio of D:E:
The mixture was mixed at a ratio of F=100:10:10, defoamed, cast in the same manner as in Example 1, and left at 50°C for 6 hours to obtain a rubber-like cured product with a specific gravity of 5.0. When the gamma ray transmission amount of this rubber-like cured product was measured in the same manner as in Example 1, it was 48% of that of the concrete sample. Example 5 63 parts of a polyorganosiloxane having a viscosity of 6000 cSt at 20°C, capped at both ends with vinyl groups and consisting of 5 mol% methylvinylsiloxy units and the remainder dimethylsiloxy units, and 55 mol% SiO 2 units, 41.5 mol% Me3SiO 0.5 units and 3.5 mol%
74 parts of a 50% toluene solution of a copolymer consisting of 0.5 units of MeViSiO was mixed and desoluted in the same manner as in Example 1 to obtain a vinyl group-containing polyorganosiloxane mixture. This mixture and 1000 parts of the same lead powder used in Example 1 were charged and mixed in a closed state until uniform. 4.5 parts of Me 3 Si [MeHSiO] 11 SiMe 3 and 100/1 million parts of the same platinum catalyst used in Example 3 as platinum atoms were added and mixed to obtain the composition of the present invention. This was cast into the same mold as in Example 1 and left at 50°C for 6 hours to obtain a rubber-like cured product with a specific gravity of 5.4. The amount of γ-ray transmission of this rubber-like cured material was measured in the same manner as in Example 1, and was found to be 44% that of the concrete sample.
It was hot. [Effects of the Invention] According to the present invention, the problem of lead toxicity is solved because there is no direct contact with lead powder at an open construction site. In addition, lead fine powder is easily oxidized, but by supplying it mixed with silicone as in the present invention, lead oxidation and accompanying particle aggregation can be prevented during storage, improving workability and physical properties of cured products. can be kept. Furthermore, since the amount of lead added is significantly increased, a high-density shielding material with a specific gravity of 5 or more, which has not been previously available, can be obtained, and it can be used as a shielding material with excellent gamma ray shielding properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図は遮蔽材のγ線遮蔽効果を測定する装置の概
略断面図である。図中: 1……60Co線源、2……鉛遮蔽壁、3……試
料、4……線量計、5……試料を収容するチエン
バー、イ……線源と線量計の距離(800mm)、ロ…
60Co線源側鉛遮蔽壁の厚さ(150mm)、ハ……チ
エンバーの奥行き(250mm)、ニ……線量計側鉛遮
蔽壁の厚さ(100mm)、ヘ……γ線通路(直径20
mm)、ホ……試料の厚さ(130mm)。
The figure is a schematic cross-sectional view of an apparatus for measuring the γ-ray shielding effect of a shielding material. In the figure: 1... 60 Co radiation source, 2... Lead shielding wall, 3... Sample, 4... Dosimeter, 5... Chamber containing sample, A... Distance between source and dosimeter (800 mm) ),B…
60 Thickness of the lead shielding wall on the Co radiation source side (150 mm), C… Depth of the chamber (250 mm), D… Thickness of the lead shield wall on the dosimeter side (100 mm), F… γ-ray passageway (diameter) 20
mm), E...Thickness of the sample (130mm).

Claims (1)

【特許請求の範囲】 1 (A):一般式 (式中Rは脂肪族不飽和結合を含有しない一価
炭化水素基、R′は一価炭化水素基、nは(A)の
粘度が25℃において100〜50000cStになる数を
示す) で表わされる両末端がビニル基で封鎖されたポ
リオルガノシロキサン100重量部、 (B):(R″)2SiO単位を含みまたは含まず、
(R″)3SiO0.5単位とSiO2単位(式中R″は脂肪族
不飽和結合を含有しない一価炭化水素基及びビ
ニル基から選ばれた基を示す)よりなり、ケイ
素原子の2.5〜10モル%はケイ素原子に直結す
るビニル基を有し、(R″)3SiO0.5単位:SiO2
位の比が0.4:1〜1:1であるポリオルガノ
シロキサン重合体20〜100重量部、 (C):一般式 (式中Rは(A)におけるRと同じ範囲であり、m
は2以上の数であり、aは1.0〜2.0の値を有
し、bは0.1〜1.0の値を有し、(a+b)は1.9
〜3.0であり、一分子について平均少なくとも
2個のケイ素原子に直結する水素原子を有す
る) で表わされ、(A)及び(B)のポリオルガノシロキサ
ンのビニル基1個についてケイ素原子に直結す
る水素原子0.5〜5.0個となるに充分な量のポリ
オルガノ水素シロキサン、 (D) [(A)+(B)+(C)]100重量部に対し、鉛粉600〜
2000重量部、及び (E) 実効量の白金触媒 より成ることを特徴とする、γ線遮蔽能力を有す
る硬化性ポリオルガノシロキサン組成物。 2 第1包装(D)の全量と(A)及び(B)の大部分、第2
包装が(C)のみ又は(C)の全量と(A)及び(B)の一部分、 第3包装が(E)の全量と(A)及び(B)の残部から成る
特許請求の範囲第1項記載のγ線遮蔽能力を有す
る硬化性ポリオルガノシロキサン組成物。 3 R、R′、及びR″の少なくとも50モル%がメ
チル基である特許請求の範囲第1項記載のγ線遮
蔽能力を有する硬化性ポリオルガノシロキサン組
成物。 4 R′及びR″がメチル基及びビニル基から成る
特許請求の範囲第1項記載のγ線遮蔽能力を有す
る硬化性ポリオルガノシロキサン組成物。 5 (A)の粘度が25℃において500〜20000cStであ
る特許請求の範囲第1項記載のγ線遮蔽能力を有
する硬化性ポリオルガノシロキサン組成物。 6 (B)の量が20〜80重量部である特許請求の範囲
第1項記載のγ線遮蔽能力を有する硬化性ポリオ
ルガノシロキサン組成物。 7 mが4〜1000である特許請求の範囲第1項記
載のγ線遮蔽能力を有する硬化性ポリオルガノシ
ロキサン組成物。 8 鉛粉の量が[(A)+(B)+(C)]100重量部当たり
800〜1500重量部である特許請求の範囲第1項記
載のγ線遮蔽能力を有する硬化性ポリオルガノシ
ロキサン組成物。 9 鉛粉の粒径が1μ〜0.5mmである特許請求の範
囲第1項記載のγ線遮蔽能力を有する硬化性ポリ
オルガノシロキサン組成物。
[Claims] 1 (A): General formula (In the formula, R is a monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond, R' is a monovalent hydrocarbon group, and n is a number that makes the viscosity of (A) 100 to 50,000 cSt at 25°C.) 100 parts by weight of polyorganosiloxane with both ends capped with vinyl groups, (B): (R″) 2 containing or not containing SiO units,
(R″) 3 Consists of 0.5 SiO units and 2 SiO units (in the formula, R″ represents a group selected from monovalent hydrocarbon groups and vinyl groups that do not contain an aliphatic unsaturated bond), and consists of 2.5 to 3 SiO units 20 to 100 parts by weight of a polyorganosiloxane polymer in which 10 mol% has a vinyl group directly bonded to a silicon atom, and the ratio of (R″) 3 SiO 0.5 units: SiO 2 units is 0.4:1 to 1:1; (C): General formula (In the formula, R is in the same range as R in (A), m
is a number greater than or equal to 2, a has a value of 1.0 to 2.0, b has a value of 0.1 to 1.0, and (a+b) is 1.9
3.0 and has an average of at least two hydrogen atoms directly bonded to silicon atoms per molecule), and each vinyl group of the polyorganosiloxanes (A) and (B) is directly bonded to a silicon atom. 600 to 600 parts by weight of lead powder per 100 parts by weight of polyorganohydrogensiloxane (D) [(A) + (B) + (C)] sufficient to have 0.5 to 5.0 hydrogen atoms.
A curable polyorganosiloxane composition having gamma ray shielding ability, comprising: 2000 parts by weight, and (E) an effective amount of a platinum catalyst. 2 The entire amount of the first package (D) and most of (A) and (B), the second package
Claim 1 where the package consists of only (C) or the whole amount of (C) and a part of (A) and (B), and the third package consists of the whole amount of (E) and the balance of (A) and (B). A curable polyorganosiloxane composition having gamma ray shielding ability as described in 1. 3. The curable polyorganosiloxane composition having gamma ray shielding ability according to claim 1, wherein at least 50 mol% of R, R', and R'' are methyl groups. 4. R' and R'' are methyl groups. A curable polyorganosiloxane composition having gamma ray-shielding ability according to claim 1, comprising a group and a vinyl group. 5. The curable polyorganosiloxane composition having gamma ray shielding ability according to claim 1, wherein (A) has a viscosity of 500 to 20,000 cSt at 25°C. 6. The curable polyorganosiloxane composition having gamma ray shielding ability according to claim 1, wherein the amount of (B) is 20 to 80 parts by weight. 7. The curable polyorganosiloxane composition having gamma ray shielding ability according to claim 1, wherein m is 4 to 1000. 8 The amount of lead powder is [(A) + (B) + (C)] per 100 parts by weight
The curable polyorganosiloxane composition having gamma ray shielding ability according to claim 1, wherein the amount is 800 to 1500 parts by weight. 9. The curable polyorganosiloxane composition having gamma ray shielding ability according to claim 1, wherein the lead powder has a particle size of 1 μm to 0.5 mm.
JP14013784A 1984-07-06 1984-07-06 Curable polyorganosiloxane composition having gamma ray shielding ability Granted JPS6198765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14013784A JPS6198765A (en) 1984-07-06 1984-07-06 Curable polyorganosiloxane composition having gamma ray shielding ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14013784A JPS6198765A (en) 1984-07-06 1984-07-06 Curable polyorganosiloxane composition having gamma ray shielding ability

Publications (2)

Publication Number Publication Date
JPS6198765A JPS6198765A (en) 1986-05-17
JPH0529657B2 true JPH0529657B2 (en) 1993-05-06

Family

ID=15261739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14013784A Granted JPS6198765A (en) 1984-07-06 1984-07-06 Curable polyorganosiloxane composition having gamma ray shielding ability

Country Status (1)

Country Link
JP (1) JPS6198765A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780515A (en) * 1987-02-05 1988-10-25 Bausch & Lomb Incorporated Continuous-wear lenses having improved physical properties

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313505A (en) * 1976-07-21 1978-02-07 Takeshige Shimonohara Retaining wall by assemblage
JPS5558253A (en) * 1978-10-25 1980-04-30 Toshiba Silicone Co Ltd Organopolysiloxane composition
JPS56166248A (en) * 1980-05-27 1981-12-21 Osaka Soda Co Ltd Chlorinated polyethylene sheet
JPS578249A (en) * 1980-06-20 1982-01-16 Toshiba Silicone Co Ltd Curable composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313505A (en) * 1976-07-21 1978-02-07 Takeshige Shimonohara Retaining wall by assemblage
JPS5558253A (en) * 1978-10-25 1980-04-30 Toshiba Silicone Co Ltd Organopolysiloxane composition
JPS56166248A (en) * 1980-05-27 1981-12-21 Osaka Soda Co Ltd Chlorinated polyethylene sheet
JPS578249A (en) * 1980-06-20 1982-01-16 Toshiba Silicone Co Ltd Curable composition

Also Published As

Publication number Publication date
JPS6198765A (en) 1986-05-17

Similar Documents

Publication Publication Date Title
US3436366A (en) Silicone potting compositions comprising mixtures of organopolysiloxanes containing vinyl groups
CN105008432B (en) Moisturecuring hot melt silicone adhesive composition comprising alkoxy-functional siloxanes reaction resin
CN101198655B (en) Curable organopolysiloxane composition
US7700712B2 (en) Allylsilane containing composition
GB1577511A (en) Self-adhering silicone compositions and preparation thereof
US6284829B1 (en) Silicone elastomer of high thermal conductivity
JPH0641562B2 (en) Curable organopolysiloxane composition
JP3765444B2 (en) Silicone gel composition and silicone gel for sealing and filling electric and electronic parts
JPH07268219A (en) Silicone gel composition for optical filling
JP3485602B2 (en) Elastomer molding composition
EP1045005B1 (en) Silicone gel composition
EP0345645B1 (en) Room temperature-curable organopolysiloxane composition
JPH05112722A (en) Highly damping silicone composition and cured article prepared therefrom
JP2008150439A (en) Thermally-conductive silicone composition and coater using the same
US3957683A (en) Paste-like mixtures containing a cross-linking agent and a condensation catalyst
JP3154208B2 (en) Silicone rubber composition
JPH08269335A (en) Production of one-part type cold curing silicone elastomer composition
TW389777B (en) Curable silicone elastomer composition and method of preparing the same
US3280072A (en) Organopolysiloxane elastomers
JPH05140454A (en) Room temperature-curing organopolysiloxane composition
JPH01165663A (en) Room-temperature-curable composition
JPH09132718A (en) Two-pack type curing liquid silicon composition
JPH0529657B2 (en)
US3607801A (en) Organopolysiloxane compositions
JP4987218B2 (en) Room temperature curable polyorganosiloxane composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees