JPH0529651A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0529651A
JPH0529651A JP3184470A JP18447091A JPH0529651A JP H0529651 A JPH0529651 A JP H0529651A JP 3184470 A JP3184470 A JP 3184470A JP 18447091 A JP18447091 A JP 18447091A JP H0529651 A JPH0529651 A JP H0529651A
Authority
JP
Japan
Prior art keywords
point
band
conduction band
semiconductor device
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3184470A
Other languages
Japanese (ja)
Inventor
Takeshi Uenoyama
雄 上野山
Hidetoshi Kodera
秀俊 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3184470A priority Critical patent/JPH0529651A/en
Publication of JPH0529651A publication Critical patent/JPH0529651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To provide a direct-transition semiconductor, in which the probability of transition by light between the conduction band and valence band is increased, by a zone-folding of energy band. CONSTITUTION:A cubic crystal structure is provided in which its unit cell includes atomic silicon layers and atomic germanium layers stacked in the (111)-plane, and the silicon and germanium layers totals to an even number; a zone-folding of energy band is shown in the figure. In the figure are shown the gamma point in a wave-vector space 11, the L point 12, a conduction band 14, a valence band 15, and a conduction band 16 that contains silicon atoms only. In such a semiconductor, the L point is folded onto the gamma point, so it becomes a direct-transition semiconductor having the gamma point on the bottom of the conduction band. The L point in the wave-vector space, whose symmetry is owing more than 50% to the s-orbit, is folded onto the gamma point. Therefore, it is possible to increase the probability of transition by light between the conduction band and valence band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエネルギーバンドのゾー
ンフォールディングを利用した半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device utilizing zone folding of energy band.

【0002】[0002]

【従来の技術】従来のエネルギーバンドのゾーンフォー
ルディングを利用した半導体装置としては、シリコンお
よびゲルマニウム原子からなり、単位格子内でシリコン
およびゲルマニウム原子層の総数の和が偶数で、結晶方
位の(100)面方向に積層された立方晶系構造で、図
3はエネルギーバンドのゾーンフォールディングがされ
る様子を示すものである。1は波数空間でのガンマ点、
2はエックス点、3はシリコン原子だけの場合のエック
ス点である。4は伝導帯であり、5は価電子帯、6はシ
リコン原子だけの場合の伝導帯を示す。
2. Description of the Related Art A conventional semiconductor device using zone folding of an energy band is composed of silicon and germanium atoms, and the sum of the total number of silicon and germanium atomic layers in a unit cell is even, and the crystal orientation is (100). FIG. 3 shows a state in which energy band zone folding is performed in a cubic system structure stacked in the plane direction. 1 is the gamma point in wave number space,
2 is an X point, and 3 is an X point when only silicon atoms are used. 4 is a conduction band, 5 is a valence band, and 6 is a conduction band in the case of only silicon atoms.

【0003】以上のように構成された半導体装置おいて
は、3のエックス点がガンマ点に折り返されるため、伝
導帯の底がガンマ点になり直接遷移形の半導体となる。
In the semiconductor device configured as described above, since the X point of 3 is folded back to the gamma point, the bottom of the conduction band becomes the gamma point and the semiconductor becomes a direct transition type semiconductor.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、3のエックス点がガンマ点に折り返され
るものの、元のエックス点3での対称性が50%以上も
P軌道からの寄与があるため、ガンマ点での伝導帯価電
子帯間の光よる遷移確率が非常に小さくなると言う問題
点がある。
However, in the above-mentioned structure, although the X point of 3 is folded back to the gamma point, the symmetry at the original X point 3 is 50% or more.
Since there is a contribution from the P orbital, there is a problem that the transition probability due to light between the conduction band valence bands at the gamma point becomes very small.

【0005】本発明は、かかる点に鑑み、エネルギーバ
ンドのゾーンフォールディングを利用し、かつガンマ点
での伝導帯価電子帯間の光よる遷移確率が大きい半導体
装置を提供することを目的とする。
In view of the above points, an object of the present invention is to provide a semiconductor device which utilizes the zone folding of the energy band and has a large probability of light transition between conduction band valence bands at the gamma point.

【0006】[0006]

【課題を解決するための手段】少なくともシリコン原子
層を含み、単位格子内で他の原子層と前記シリコン原子
層の総数の和が偶数で、結晶方位の(111)面方向に
積層された立方晶系構造の半導体装置を構成する。
A cubic structure including at least a silicon atomic layer, wherein the sum of the total number of other atomic layers and the silicon atomic layer in the unit lattice is even, and stacked in the (111) plane direction of the crystal orientation. A semiconductor device having a crystal structure is formed.

【0007】[0007]

【作用】本発明は前記した構成により、波数空間で対称
性が50%以上もS軌道からの寄与があるエル点がガン
マ点に折り返されるため、ガンマ点での伝導帯価電子帯
間の光よる遷移確率が大きくなる。
According to the present invention, due to the above-described structure, the L-point, which has a contribution from the S orbit with a symmetry of 50% or more in the wave number space, is folded back to the gamma point. Therefore, the transition probability is increased.

【0008】[0008]

【実施例】図1は本発明の第1の実施例における半導体
装置のエネルギーバンド図で、単位格子内でシリコンお
よびゲルマニウム原子層の総数の和が偶数で、結晶方位
の(111)面方向に積層された立方晶系構造で、エネ
ルギーバンドのゾーンフォールディングがされる様子を
示すものである。11は波数空間でのガンマ点、12は
エル点、13はシリコン原子だけの場合のエル点であ
る。14は伝導帯であり、15は価電子帯、16はシリ
コン原子だけの場合の伝導帯を示す。
FIG. 1 is an energy band diagram of a semiconductor device according to a first embodiment of the present invention, in which the sum of the total number of silicon and germanium atomic layers in the unit cell is even and the crystal orientation is in the (111) plane direction. This is a stacked cubic structure, showing how the energy band is zone-folded. 11 is a gamma point in the wave number space, 12 is an El point, and 13 is an El point in the case of only silicon atoms. 14 is a conduction band, 15 is a valence band, and 16 is a conduction band in the case of only silicon atoms.

【0009】以上のように構成された半導体装置おいて
は、13のエル点がガンマ点に折り返されるため、伝導
帯の底がガンマ点になり直接遷移形の半導体となり、か
つ波数空間で対称性が50%以上もS軌道からの寄与が
あるエル点がガンマ点に折り返されるため、ガンマ点で
の伝導帯価電子帯間の光よる遷移確率が大きくなる。
In the semiconductor device configured as described above, since the 13 L-point is folded back to the gamma point, the bottom of the conduction band becomes the gamma point, and the semiconductor becomes a direct transition type, and is symmetric in the wave number space. Since the L-point, which has a contribution from the S orbit of more than 50%, is folded back to the gamma point, the transition probability due to light between the conduction band valence bands at the gamma point increases.

【0010】図2は本発明の第2の実施例における半導
体装置のエネルギーバンド図で、単位格子内でアルミニ
ウム、ガリウムおよび燐原子層の総数の和が偶数で、結
晶方位の(111)面方向に積層された立方晶系構造
で、エネルギーバンドのゾーンフォールディングがされ
る様子を示すものである。21は波数空間でのガンマ
点、22はエル点、23はアルミニウムと燐原子だけの
場合のエル点である。24は伝導帯であり、25は価電
子帯、26はアルミニウムと燐原子だけの場合の伝導帯
を示す。
FIG. 2 is an energy band diagram of a semiconductor device according to a second embodiment of the present invention. The sum of the total number of aluminum, gallium and phosphorus atomic layers in the unit cell is even, and the crystal orientation is in the (111) plane direction. It shows a state in which the energy band is folded in a cubic system structure stacked in. 21 is a gamma point in the wave number space, 22 is an El point, and 23 is an El point in the case of only aluminum and phosphorus atoms. 24 is a conduction band, 25 is a valence band, and 26 is a conduction band in the case of only aluminum and phosphorus atoms.

【0011】以上のように構成された半導体装置おいて
は、23のエル点がガンマ点に折り返されるため、伝導
帯の底がガンマ点になり直接遷移形の半導体となり、か
つ波数空間で対称性が50%以上もS軌道からの寄与が
あるエル点がガンマ点に折り返されるため、ガンマ点で
の伝導帯価電子帯間の光よる遷移確率が大きくなる。
In the semiconductor device configured as described above, since the L-point of 23 is folded back to the gamma point, the bottom of the conduction band becomes the gamma point, and the semiconductor becomes a direct transition type, and is symmetric in the wave number space. Since the L-point, which has a contribution from the S orbit of more than 50%, is folded back to the gamma point, the transition probability due to light between the conduction band valence bands at the gamma point increases.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
エネルギーバンドのゾーンフォールディングをすること
により、直接遷移形の半導体とせしめ、かつガンマ点で
の伝導帯価電子帯間の光よる遷移確率が大きくすること
ができ、その実用効果は大きい。
As described above, according to the present invention,
By carrying out energy band zone folding, it is possible to make the semiconductor a direct transition type and to increase the probability of transition due to light between conduction band valence bands at the gamma point, which has a large practical effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における一実施例の半導体装置のエネル
ギーバンド図
FIG. 1 is an energy band diagram of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の他の実施例の半導体装置のエネルギー
バンド図
FIG. 2 is an energy band diagram of a semiconductor device according to another embodiment of the present invention.

【図3】従来の半導体装置のエネルギーバンド図実施令
の半導体装置の図
FIG. 3 is an energy band diagram of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

11、21 ガンマ点 14、24 伝導帯 15、25 価電子帯 16、26 伝導帯 12、22 エル点 13、23 エル点 11, 21 gamma point 14, 24 conduction band 15, 25 valence band 16, 26 conduction band 12, 22 el points 13, 23 el point

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくともゲルマニウム原子層を含み、単
位格子内で他の原子層と前記ゲルマニウム原子層の総数
の和が偶数で、結晶方位の(111)面方向に積層され
た立方晶系構造の半導体装置。
1. A cubic system structure including at least a germanium atomic layer, wherein the sum of the total number of other atomic layers and the germanium atomic layer in the unit cell is an even number, and stacked in the (111) plane direction of the crystal orientation. Semiconductor device.
【請求項2】少なくともシリコン原子層を含み、単位格
子内で他の原子層と前記シリコン原子層の総数の和が偶
数で、結晶方位の(111)面方向に積層された立方晶
系構造の半導体装置。
2. A cubic system structure including at least a silicon atomic layer, wherein the sum of the total number of other atomic layers and the silicon atomic layer in the unit cell is an even number, and stacked in the (111) plane direction of the crystal orientation. Semiconductor device.
【請求項3】少なくとも3種のIII族およびV族の原子層
からなり、単位格子内でIII族およびV族の原子層の総数
の和が偶数で、結晶方位の(111)面方向に積層され
た立方晶系構造の半導体装置。
3. Laminating in the (111) plane direction of the crystal orientation, which is composed of at least three kinds of group III and group V atomic layers and has an even sum of the total number of group III and group V atomic layers in the unit cell. Cubic structure semiconductor device.
JP3184470A 1991-07-24 1991-07-24 Semiconductor device Pending JPH0529651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184470A JPH0529651A (en) 1991-07-24 1991-07-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184470A JPH0529651A (en) 1991-07-24 1991-07-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0529651A true JPH0529651A (en) 1993-02-05

Family

ID=16153725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184470A Pending JPH0529651A (en) 1991-07-24 1991-07-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0529651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436333B2 (en) * 2006-04-25 2013-05-07 Hitachi, Ltd. Silicon light emitting diode, silicon optical transistor, silicon laser and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436333B2 (en) * 2006-04-25 2013-05-07 Hitachi, Ltd. Silicon light emitting diode, silicon optical transistor, silicon laser and its manufacturing method

Similar Documents

Publication Publication Date Title
Hornstra Dislocations in the diamond lattice
EP0848432A2 (en) High efficieny tandem solar cells and operating method
JPS59175166A (en) Amorphous photoelectric conversion element
Sahai et al. Heterojunction solar cell calculations
JP6312161B2 (en) Scalable voltage source
Takahashi et al. Investigation of p-type emitter layer materials for heterojunction barium disilicide thin film solar cells
US4720642A (en) Femto Diode and applications
JPH0529651A (en) Semiconductor device
JPS6167968A (en) Gaas solar cell element
US3615936A (en) Semiconductor device and method of making the same
US4594261A (en) Method for producing thin film semiconductor device
JPH05243594A (en) Solar cell
JPS5984478A (en) Solar battery module
US20190109250A1 (en) Photovoltaic cell form ultra-small iot device with multi-level voltage output
Nicholls Primary and subsidiary Condon loci of molecular spectra
JPS62130553A (en) Semiconductor integrated circuit device
JPS6384063A (en) Laminated semiconductor integrated circuit device
JPH03289603A (en) Spectral element
JPS59182581A (en) Photo detecting semiconductor element
JPH01196863A (en) Semiconductor device
JPS6233482A (en) Avalanche photodiode
JP3138288B2 (en) Semiconductor device
JPH02202051A (en) Semiconductor device
JPH01270363A (en) Semiconductor photodetector
JP2006041452A5 (en)