JPS59182581A - Photo detecting semiconductor element - Google Patents

Photo detecting semiconductor element

Info

Publication number
JPS59182581A
JPS59182581A JP58057555A JP5755583A JPS59182581A JP S59182581 A JPS59182581 A JP S59182581A JP 58057555 A JP58057555 A JP 58057555A JP 5755583 A JP5755583 A JP 5755583A JP S59182581 A JPS59182581 A JP S59182581A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
base layer
band width
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58057555A
Other languages
Japanese (ja)
Other versions
JPH0148663B2 (en
Inventor
Akio Sasaki
昭夫 佐々木
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58057555A priority Critical patent/JPS59182581A/en
Publication of JPS59182581A publication Critical patent/JPS59182581A/en
Publication of JPH0148663B2 publication Critical patent/JPH0148663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Abstract

PURPOSE:To perform wave length selective photo detection to a high sensitivity by a method wherein a photo absorption layer made of semiconductor having a forbidden band width narrower than that of the semiconductor constituting an emitter layer and wider than that of the semiconductor constituting a base layer is added to a hetero junction photo transistor. CONSTITUTION:When the light to be detected is incident from the side of the photo absorption layer 5, the light of a wave length shorter than that lambdag of the absorption end of said layer 5 is absorbed to said layer 5 and therefore not absorbed to either one of the emitter layer 4 and the base layer 3. On the other hand, when the wave length of the incident light is between the lambdag of the absorption layer 5 and the lambdag of the base layer 3, said light is absorbed to said layer 3 after penetration through the absorption layer 5 and the emitter layer 4. Thereby, the absorption in the base layer generates only with respect to the wave length lambdag of the photo absorption layer and that lambdag of the base layer, causing to show sensitivity, and accordingly a high emitter injection efficiency can be obtained regardless of the degree of wave length selectivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、波長選択性、すなわち特定の波長領域でのみ
感度を有する性質をもった、新規な光検出半導体素子の
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a novel photodetecting semiconductor element having wavelength selectivity, that is, having sensitivity only in a specific wavelength region.

従来例の構成と一セの問題点 近年、光通信や光情報処理の分野の発展にともない、小
型で高感度の光検出素子に苅する要求が強まっている。
Conventional Structures and Problems In recent years, with the development of the fields of optical communication and optical information processing, there has been an increasing demand for small, highly sensitive photodetecting elements.

特に、波長の異なる光を同゛時にイE送する波長多重光
通信システムにおいては、急峻な波長選択性をもった光
検出素子が強く望まれている。その他、リモート・セン
シング等の分野においても、特定の波長領域の光を選択
的に検出、すZr子が望まれている。
In particular, in wavelength division multiplexing optical communication systems that simultaneously transmit light of different wavelengths, a photodetector element with steep wavelength selectivity is strongly desired. In addition, in fields such as remote sensing, there is a desire for a Zr element that selectively detects light in a specific wavelength range.

従来、小型、高感度の光検出素子として、各種のホトダ
イオードやホトトランジスタが用いられてきた。しかし
これらの素子は、用いられる半導体月相の光吸収特性で
定まる、かなり広い波長範囲で感度を有するという性質
をもっている。そのため、前述のような波長選択性を得
るためには、光検出素子の前に、プリズムや回折格子を
用いた分光器や干渉フィルり等の分光装置を配置する必
要があシ、装置が複雑かつ大形になったり、分光器ハウ
゛による光損失のだめ、実質的な感度が低下するなどの
欠点があった。“ ここで、従来用いられてきだ代表的な光検出素子の構造
と動作原理について説明する。
Conventionally, various photodiodes and phototransistors have been used as small, highly sensitive photodetecting elements. However, these elements have a property of being sensitive over a fairly wide wavelength range determined by the light absorption characteristics of the semiconductor moon phase used. Therefore, in order to obtain the aforementioned wavelength selectivity, it is necessary to place a spectroscopic device such as a spectrometer using a prism or a diffraction grating or an interference filter in front of the photodetector, which makes the device complicated. Moreover, it has disadvantages such as being large in size, causing light loss due to the spectrometer housing, and reducing the actual sensitivity. "Here, we will explain the structure and operating principle of a typical photodetector element that has been used in the past.

第1図は、特に高感度の光検出素子として知られる、異
種接合ホトトランジスタの構造を模式的に示したlfr
面図である。また第2図は第1図に対応する」二面図で
ある。これらの図において、1は半導体基板、2はコレ
クタ層、3はベース層、4はエミツタ層、11,12は
電極である。通常のトランジスタと同様、ベース層と草
の他の層の導電型は写いに異なっている。なお、素子は
いわゆるメサ・エンチングによシ、台地状に形成されて
いる。半導体はその材料に固有の禁制帯幅を持っている
が、この場合、エミツタ層4とベース層3の半導体付和
に異なるものを用い、エミツタ層4の禁制帯幅がベース
層3の禁制帯幅よりも充分に広くなるように構成されて
いる。ここで、検出すべき光は、エミツタ層4の側から
入射させる。入射光のうち、エミツタ層4を透過し、ベ
ース層3で吸収された光は、ベース層3中に電荷を発生
させ、ベース電位を低下させる。その結果、通常のトラ
ンジスタ作用によりコレクタ電流が増加し、高感度の光
検出素子として動作することになる。
Figure 1 schematically shows the structure of a heterojunction phototransistor, which is known as a particularly highly sensitive photodetector element.
It is a front view. Further, FIG. 2 is a two-sided view corresponding to FIG. 1. In these figures, 1 is a semiconductor substrate, 2 is a collector layer, 3 is a base layer, 4 is an emitter layer, and 11 and 12 are electrodes. As in a normal transistor, the conductivity types of the base layer and other layers of the substrate are quite different. Note that the element is formed into a plateau shape by so-called mesa enching. Semiconductors have a forbidden band width specific to their materials, but in this case, the emitter layer 4 and the base layer 3 have different semiconductor attachments, so that the forbidden band width of the emitter layer 4 is equal to the forbidden band of the base layer 3. It is configured to be sufficiently wider than the width. Here, the light to be detected is made to enter from the emitter layer 4 side. Of the incident light, the light that passes through the emitter layer 4 and is absorbed by the base layer 3 generates charges in the base layer 3 and lowers the base potential. As a result, the collector current increases due to normal transistor action, and the device operates as a highly sensitive photodetecting element.

なおこの際、コレクタ層2とエミツタ層4の間には、コ
レクタ接合を逆バイアスする方向の直流電圧が、電極1
1と12を介して印加されていることはいうまでもない
。ところで、トランジスタの増幅率をきめる主要な要素
として、エミッタ注入効率がある。上述めように、エミ
ツタ層4の°禁制帯幅が、ベース層3の禁制帯幅よシも
充分に大きい場合には、このエミッタ注入効率が大きく
なり、高い増幅率すなわち高い感度が得られる。
At this time, between the collector layer 2 and the emitter layer 4, a DC voltage in a direction that reverse biases the collector junction is applied to the electrode 1.
Needless to say, the voltage is applied via 1 and 12. By the way, emitter injection efficiency is a major factor that determines the amplification factor of a transistor. As mentioned above, if the forbidden band width of the emitter layer 4 is sufficiently larger than the forbidden band width of the base layer 3, the emitter injection efficiency becomes large, and a high amplification factor, that is, high sensitivity can be obtained.

さて、この従来例の素子における感度の波長依存性は以
下のようになる。一般に半導体は、その禁制帯幅をEq
(jf’位は電子ボルト)とすると、はぼλq=124
/Eqで与えられる 吸収端波長λq(単位はμm)よ
りも短い波長の光を吸収する性質を持っている。しだが
ってこの例の素子の場合、エミツタ層4のλqよりも短
い波長の光は、エミツタ層で吸収され、ベース層3には
達しない。
Now, the wavelength dependence of sensitivity in this conventional element is as follows. Generally, the forbidden band width of a semiconductor is Eq
(Jf' position is electron volt), then λq=124
It has the property of absorbing light with a wavelength shorter than the absorption edge wavelength λq (unit: μm) given by /Eq. Therefore, in the device of this example, light having a wavelength shorter than λq of the emitter layer 4 is absorbed by the emitter layer and does not reach the base layer 3.

またベーヌ)@3のλqよりも長い波長の光は、−エミ
ッタ層、ベース層のいずれでも吸収されない(エミンタ
ノ曽のEqは、ベース層のE(J よりも大きいので、
工、ミッタ層のλqはベース層のλqよりも短波長側に
ある。)。しかるに、エミツタ層4のλqとベース層3
のλqの間の波長の光は、エミツタ層4を透過した後、
ベース層3で吸収される。
Also, light with a wavelength longer than λq of Bene) @3 is not absorbed by either the emitter layer or the base layer (Eq of Emintano is larger than E(J of the base layer, so
λq of the transmitter layer is on the shorter wavelength side than λq of the base layer. ). However, λq of emitter layer 4 and base layer 3
After the light with a wavelength between λq passes through the emitter layer 4,
It is absorbed by the base layer 3.

すなわちこの素子は、上記波長領域の光に対して感度を
示すことになる。
That is, this element exhibits sensitivity to light in the above wavelength range.

このような素子において、急1唆な波長選択性を得るた
めには、エミツタ層とベース層のλqを接近、すなわち
Eqを接近させればよいと考えられる。ところかその場
合、前述のエミッタ注入効率が低下し、トランジスタの
増幅率が減少、感度が低下してし丑う。
In such an element, in order to obtain a significant wavelength selectivity, it is considered that the λq of the emitter layer and the base layer should be made close to each other, that is, the Eq of the emitter layer and the base layer should be made close to each other. However, in that case, the emitter injection efficiency described above decreases, the amplification factor of the transistor decreases, and the sensitivity decreases.

ところで発明者らは、半導体光吸収層を備えた新規な構
造によシ、高感度でかつ急峻な波長選択1律を有する光
検出素子か得られることを見出した。
By the way, the inventors have discovered that a photodetector element having high sensitivity and steep wavelength selection can be obtained by using a novel structure including a semiconductor light absorption layer.

発明の目的 本発明は、前述のような従来の問題に鑑み、分光装置を
併用することなく単体で、任意の波長選択性、特に、急
峻な波長選択性を示し、かつ高感度の光検出半導体素子
を提供することを目的としている。
Purpose of the Invention In view of the conventional problems as described above, the present invention provides a photodetecting semiconductor that exhibits arbitrary wavelength selectivity, particularly steep wavelength selectivity, and is highly sensitive, without using a spectroscopic device in conjunction with the present invention. The purpose is to provide devices.

発明の構成 本発明は、従来の異種接合ホトトランジスタにエミツタ
層を構成する半導体の禁制帯幅よシも狭く、かつベース
層を構成する半導体の禁制帯幅よりも広い禁制帯幅をも
つ半導体からなる光吸収層を付加することによシ、高感
度の波畏遣択性光検出半導体素子を実覗するものである
Structure of the Invention The present invention is based on a conventional heterojunction phototransistor that uses a semiconductor having a forbidden band width narrower than that of a semiconductor constituting an emitter layer and wider than that of a semiconductor constituting a base layer. By adding a light absorption layer, a highly sensitive wave-selective photodetection semiconductor device can be realized.

実施例の説明 本発明の具体的な実施例を、図[n]を用いで説明する
。各実施例の素子構造を示す図において、従来例および
各実茄例に共通する構成要素には同じ符号を何している
DESCRIPTION OF EMBODIMENTS A specific embodiment of the present invention will be described using FIG. [n]. In the diagrams showing the element structure of each embodiment, the same reference numerals are used to refer to the same components in the conventional example and the actual examples.

第3図は本発明の第1の丈施例における光検出半導体素
子の構造を模式的に示す断面図である。
FIG. 3 is a sectional view schematically showing the structure of a photodetecting semiconductor element in a first embodiment of the present invention.

なお」二面図は従来例の上平図である第2図と同様であ
るので省略する。第3図において、1は半導体基板、2
けコレクタ層、3はベース層、4けエミツタ層、5は光
吸収層、11.12は電1i1iiである。ベース層3
党導電型とその他の層および基板の4?L石すが互いに
異なっている点は従来例と同じである。まだ、エミツタ
層の禁制帯幅がベース層の禁制帯幅よりも広くなってい
ることも従来例と同じである。
Note that the two-view diagram is the same as that of FIG. 2, which is a top plan view of the conventional example, and will therefore be omitted. In FIG. 3, 1 is a semiconductor substrate, 2
3 is a base layer, 4 is an emitter layer, 5 is a light absorption layer, and 11.12 is an electric conductor. base layer 3
4. Part conductivity type and other layers and substrates? The difference between the L stones is the same as in the conventional example. However, the forbidden band width of the emitter layer is wider than that of the base layer, which is the same as in the conventional example.

本実施例においては、光吸収M5はエミツタ層4の禁制
帯幅よりも狭く、かつベース層3の禁制帯幅よりも広い
禁制帯幅を有する半導体からなっている。その結果、本
実施例における感度の波長依存性は以下のようになる。
In this embodiment, the light absorption M5 is made of a semiconductor having a forbidden band width narrower than the forbidden band width of the emitter layer 4 and wider than the forbidden band width of the base layer 3. As a result, the wavelength dependence of sensitivity in this example is as follows.

本実施例においても検出すべき光は素子上面すなわち光
吸収層5の側から入射させるが、このとき光吸収層5の
吸収端板長λq (λqの定義は従来例の構成とその問
題点の項で説明したとおりである)よりも短い波長の光
は光吸収層5で吸収され、エミツタ層4およびベース層
3には達しない。またベース層3のλqよりも長い波長
の光は、光吸収度5、エミツタ層4、ベース層3のいず
れでも吸収されない。これは光吸収層及びエミツタ層の
禁制帯幅Eqがベース層のEgよりも広く、したかって
光吸収層およびエミツタ層のλqがベース層のλqより
′も短い波長側にあるためである。
In this embodiment as well, the light to be detected is incident from the top surface of the element, that is, from the side of the light absorption layer 5. At this time, the absorption end plate length λq of the light absorption layer 5 (the definition of λq is based on the structure of the conventional example and its problems). (as explained in Section 4) is absorbed by the light absorption layer 5 and does not reach the emitter layer 4 and the base layer 3. Further, light having a wavelength longer than λq of the base layer 3 is not absorbed by any of the light absorbance 5, the emitter layer 4, and the base layer 3. This is because the forbidden band width Eq of the light absorption layer and the emitter layer is wider than the Eg of the base layer, and therefore λq of the light absorption layer and the emitter layer is on the shorter wavelength side than λq of the base layer.

一方、入射光の波長が光吸収層5のλqとべ一ヌ層3の
λqとの間にある場合には、入射光は光吸収層6とエミ
ツタ層4を透過した後ベース層3で吸収される゛。これ
は光吸収層のECIがエミツタ層のEgよりも小さく、
かつベース層のEqよ′りも大きいため、エミツタ層の
λqは光吸収層のλqよりも短波長側に、また光吸収層
のλcr=−はベース層のλqよりも短波長側にあるこ
とによるものである。
On the other hand, when the wavelength of the incident light is between λq of the light absorption layer 5 and λq of the base layer 3, the incident light is absorbed by the base layer 3 after passing through the light absorption layer 6 and the emitter layer 4. Ru゛. This is because the ECI of the light absorption layer is smaller than the Eg of the emitter layer.
And since it is larger than Eq of the base layer, λq of the emitter layer is on the shorter wavelength side than λq of the light absorption layer, and λcr=- of the light absorption layer is on the shorter wavelength side than λq of the base layer. This is due to

以」二かられかるように、本実姉例の素子は、光吸収1
曽のλqとベース層のλqの間の波長の光に対してのみ
ベース層での吸収が生じ、感度を示すことになる。すな
わち、光吸収層とベース層の禁制帯幅Eqによシ、感度
波長領域を作意に設定することができる。特に、光吸収
層とベース層のEgを接近させれば、感度波長領域が狭
い、すなわち急峻な波長選択性を持つ光検出素子を実功
することができる。そして本実施例の場合、エミツタ層
のEgはベーヌ簿のxgよりも充分に大きいだめ、波長
選択性の程度(に関係なく高いエミッタ注入効率が得ら
れ、大きな増幅率すなわち高い1・8度が得られる。
As will be seen from Section 2, the element of this example has a light absorption of 1
The base layer absorbs only light having a wavelength between λq of the light and λq of the base layer, and exhibits sensitivity. That is, the sensitive wavelength range can be arbitrarily set depending on the forbidden band width Eq of the light absorption layer and the base layer. In particular, if the Eg of the light absorption layer and the base layer are made close to each other, a photodetection element with a narrow sensitivity wavelength range, that is, steep wavelength selectivity can be realized. In the case of this example, since Eg of the emitter layer is sufficiently larger than xg of the Beine book, a high emitter injection efficiency can be obtained regardless of the degree of wavelength selectivity, and a large amplification factor, that is, a high 1.8 degrees. can get.

第4図は本実施例の光検出半導体素子における感度の波
長依存性の一例(実線)を比較例のそれ(破線)と対比
して示して°いる。感度は単位入射−光量に列するコレ
クタ電流の大きさで示しである。
FIG. 4 shows an example of the wavelength dependence of sensitivity (solid line) in the photodetector semiconductor element of this example in comparison with that of the comparative example (broken line). Sensitivity is expressed by the magnitude of collector current that corresponds to unit incident light amount.

この場合、ベーヌ層、エミッタ層、光吸収層のEqはそ
れぞれo、99電子ボルト、1.35電子ボルト、1・
01電子ボ/Lt )となっている。これらを吸収端波
長λqに換算すると、それぞれ約1.25μm10.9
2μm、1.23μmとなる。なお各層の厚さは、コレ
クタ層が3μm、ベース層が1μm1工ミソク層が2μ
mとなっている。第4図かられかるように、本素子の感
度−波長曲線(実線)の半値幅は約0.05μmときわ
めて小さくなっており、急峻な波長選択性が得られてい
る。また最大感度は約40QA/Wときわめて大きくな
っている。比較例の素子の構造は、光吸収層を備えてい
ない点を除いて、上記実施例と同一である。この場合素
子は、第4図の破線で示す特性から、0・9〜1.25
μmの広い波長範囲で感度を示していることがわかる。
In this case, the Eqs of the Bene layer, emitter layer, and light absorption layer are o, 99 eV, 1.35 eV, and 1.
01 electronic volume/Lt). When these are converted to absorption edge wavelength λq, each is approximately 1.25 μm10.9
2 μm and 1.23 μm. The thickness of each layer is 3 μm for the collector layer, 1 μm for the base layer, and 2 μm for the base layer.
m. As can be seen from FIG. 4, the half-width of the sensitivity-wavelength curve (solid line) of this device is extremely small, about 0.05 μm, and steep wavelength selectivity is obtained. Furthermore, the maximum sensitivity is extremely high at approximately 40 QA/W. The structure of the device of the comparative example is the same as that of the above example except that it does not include a light absorption layer. In this case, the device has a characteristic of 0.9 to 1.25 as shown by the broken line in FIG.
It can be seen that sensitivity is exhibited over a wide wavelength range of μm.

ところで、原理的には急峻な波長選択性を得るだめには
、前述のように光吸収層とベース層のEqが接近してい
る程よいと考えられる。ところが、このECIの差が小
さすぎると逆に波長選択性が低下し、また感度も減少す
ることを発明者らは見出゛した。第5図は、第4図にそ
の特性を示した素子と同様の素子で光吸収層のEqのみ
を0.995電子ボルトに変更し、光吸収層とベース層
のEq O差をよシ小さくした場合の特性である。この
場合半値幅は約0.07μmと逆に大きくなって波長選
択性が低下しており、また感度もかなり減少しているこ
とがわかる。これは光吸収j曽とべ一ヌ層の厚さが有限
であるため、これらの層の光吸収ヌベクト/しく波長依
存性)が理想的なものでなく、吸収端波長λqのイτ1
近か徐々に変化する特性を示すためと考えられる。すな
わちこのため、光吸収層とベース層のEqCλq)がき
わめて近い場合には、両者のλqの間のe長においても
光吸収層による吸収がある程度存在し、またこの波長領
域におけるベース層の光吸lメが不充分になるという状
態が生じてこの波長領域における感度が低下し、その結
果相対的に半価幅が大きくなると考えられる。この点を
詳細に検討した結果、急峻な波長選択性を得るためには
、上述のxgの差をベース層のEqの1〜3.チとする
のが適当であることが判明した。
By the way, in principle, in order to obtain steep wavelength selectivity, it is considered that the closer the Eqs of the light absorption layer and the base layer are, the better, as described above. However, the inventors have discovered that if the difference in ECI is too small, the wavelength selectivity and sensitivity will be reduced. Figure 5 shows an element similar to the element whose characteristics are shown in Figure 4, but only the Eq of the light absorption layer is changed to 0.995 eV, and the Eq O difference between the light absorption layer and the base layer is made much smaller. This is the characteristic when In this case, it can be seen that the half-width is conversely large to about 0.07 μm, and the wavelength selectivity is reduced, and the sensitivity is also considerably reduced. This is because the thickness of the light absorption layers is finite, so the light absorption vector (wavelength dependence) of these layers is not ideal, and the absorption edge wavelength λq is τ1.
This is thought to be because it exhibits characteristics that change gradually over time. In other words, if the EqCλq) of the light absorption layer and the base layer are very close, there will be some absorption by the light absorption layer even in the e length between the two λq, and the light absorption of the base layer in this wavelength region will be It is thought that a situation occurs in which the wavelength becomes insufficient and the sensitivity in this wavelength range decreases, resulting in a relatively large width at half maximum. As a result of a detailed study of this point, we found that in order to obtain steep wavelength selectivity, the above-mentioned difference in xg should be adjusted to 1 to 3. It turned out that it was appropriate to set it as

さて以上の説明では、第3図におけるコレクタ層2のE
gについては触れなかった。本実施例においてコレクタ
層のEqは素子の動作に本質的な影響を与えないと考え
られる。しかしながら、コレクタ層のEqをベース層の
Eqと一致させた場合、特に感度が高くなることが実験
的に判明した。これはベース層によって吸収しきれなか
った光がコレクタ層において吸収されて電荷を発生し、
この電荷の一部がベーク・コレクタ接合に存在する電位
勾配によりベース層へ注入される結果、ベース層におけ
る光吸収と同様にコレクタ電流の増加に寄与するため、
と考えられる。したがってコレクタj曽のEgは、ベー
ス層のxgと一部させることが望ましい。
Now, in the above explanation, E of the collector layer 2 in FIG.
I didn't mention g. In this example, Eq of the collector layer is considered to have no essential effect on the operation of the device. However, it has been experimentally found that when the Eq of the collector layer is made equal to the Eq of the base layer, the sensitivity becomes particularly high. This is because the light that was not absorbed by the base layer is absorbed in the collector layer and generates charges.
A portion of this charge is injected into the base layer due to the potential gradient existing at the bake-collector junction, contributing to an increase in collector current as well as light absorption in the base layer.
it is conceivable that. Therefore, it is desirable that the Eg of the collector j is a part of the xg of the base layer.

なお、本実施例では半導体基板1とコレクタ層2を区分
されたものとしだが、半導体基板がコレクタ層を兼ねる
構造としてもよく、素子の動作には影響がない。
In this embodiment, the semiconductor substrate 1 and the collector layer 2 are separated, but a structure in which the semiconductor substrate also serves as the collector layer may be used without affecting the operation of the device.

また本実施例では半導体基板1とコレクタ層2を連続さ
せているが、これらの間に両者と同一の導電型の導電型
の半導体からなるバッファ層を設けてもよく、素子の動
作には関係がない。
Further, in this embodiment, the semiconductor substrate 1 and the collector layer 2 are continuous, but a buffer layer made of a semiconductor of the same conductivity type as both may be provided between them, which has no effect on the operation of the element. There is no.

なお、本実施例の説明中、各層の厚さの例を示したが、
これらは必すしもこの値に限定されない。
In addition, during the explanation of this example, examples of the thickness of each layer were shown, but
These values are not necessarily limited to these values.

コレクタ層、エミッタ層、光吸収層については、1〜1
0μm程度、ベース層については0.1〜2μm程度が
適当である。
For the collector layer, emitter layer, and light absorption layer, 1 to 1
Appropriately, the thickness is about 0 μm, and for the base layer, about 0.1 to 2 μm.

第6図は本発明の第2の実施例における光検出半導体素
子の構造を模式的に示す断面図である。
FIG. 6 is a sectional view schematically showing the structure of a photodetecting semiconductor element in a second embodiment of the present invention.

本実施例では半導体基板1の上に光吸収層6、エミツタ
層4、ベース層3、コレクタFit 27>1110 
次積層されておシ、第1の実施例とは順序が逆転してい
る。この場合、検出すべき光は半導体基板1の側から入
射させる。このだめ、基板側の電極11は入射光を遮ら
ないよう周辺部に設けである。また、半導体基板1の禁
制帯幅は光吸収層6の禁制帯幅に等しいかまたはよシ広
くしである。その他の構成要素に関しては第1の実施例
と全く同様である。本素子の動作は第1の実施例の場合
と全く同様であシ、その特性についてもなんら相違は々
い。
In this embodiment, a light absorption layer 6, an emitter layer 4, a base layer 3, a collector Fit 27>1110 are formed on the semiconductor substrate 1.
The stacking order is reversed from that of the first embodiment. In this case, the light to be detected is made to enter from the semiconductor substrate 1 side. To avoid this, the electrode 11 on the substrate side is provided at the periphery so as not to block the incident light. Further, the forbidden band width of the semiconductor substrate 1 is equal to or wider than the forbidden band width of the light absorption layer 6. The other components are completely the same as in the first embodiment. The operation of this element is exactly the same as that of the first embodiment, and there is no difference in its characteristics.

第7図は本発明の第3の実施例における光検出半導体素
子の構造を模式的に示す断面図である。
FIG. 7 is a sectional view schematically showing the structure of a photodetecting semiconductor element in a third embodiment of the present invention.

本実施例では半導体基板1の上に光吸収層5、コレクタ
層2、ベース層3、エミッタIw 4 カ順次積層され
てい不。すなわち、光吸収層5がコレクタ層2の側に設
けられている点が第1及び第2の実施例と異なっている
。本実施例の場合、検出すべき光は半導体基板1の側か
ら入射させるので、基板側の型棒11は第2の実施例′
と同様、周辺部に設けである。また本実施例では入射光
が光吸収層5の他、半導体基板1とコレクタ層2を通し
てべ一ヌ層3に達するだめ、この基板とコレクタ層の禁
制帯幅は光吸収層の禁制帯幅と等しいか、又はよシ大き
くして素子本来の動作を妨げないようにしである。その
他の構成要素に関しては第1の実施例と全く同様であり
、その動作及び特性も同様であ°る。
In this embodiment, a light absorption layer 5, a collector layer 2, a base layer 3, and an emitter Iw 4 are laminated in this order on a semiconductor substrate 1. That is, this embodiment differs from the first and second embodiments in that the light absorption layer 5 is provided on the collector layer 2 side. In the case of this embodiment, since the light to be detected is incident from the semiconductor substrate 1 side, the mold rod 11 on the substrate side is the same as that of the second embodiment'.
Similarly, it is provided on the periphery. Furthermore, in this embodiment, the incident light must pass through the semiconductor substrate 1 and the collector layer 2 in addition to the light absorption layer 5 to reach the base layer 3, so the forbidden band width of the substrate and the collector layer is equal to the forbidden band width of the light absorption layer. It is made equal or larger so as not to interfere with the original operation of the element. The other components are exactly the same as those in the first embodiment, and their operation and characteristics are also the same.

第8図は本発明の第4.の実施例における光検出半導体
素子の構造を模式的に示す断面図である。
FIG. 8 shows the fourth embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing the structure of a photodetecting semiconductor element in Example.

本実施例では半導体基板1の上に、エミツタ層4、ベー
ス層3、コレクタ層2、光吸収層5が順次積層されてお
シ、第3の実施例における各層の順序を逆転した構造と
なっている。本実施例の場合、検出すべき光は素子上面
すなわち吸収層5の側から入射させる。コレクタ層2の
禁制帯幅は、第3の実施例の場合と同様、光吸収層6の
禁制帯lidと等しいかまたはih広くしである。その
曲の構成要素に関しては第1の実施例と全く同様であり
、その動作および特性も同様である。
In this embodiment, an emitter layer 4, a base layer 3, a collector layer 2, and a light absorption layer 5 are sequentially laminated on a semiconductor substrate 1, and the structure has a structure in which the order of each layer is reversed in the third embodiment. ing. In the case of this embodiment, the light to be detected is incident from the top surface of the element, that is, from the absorption layer 5 side. The forbidden band width of the collector layer 2 is equal to or ih wider than the forbidden band lid of the light absorption layer 6, as in the case of the third embodiment. The components of the song are exactly the same as those in the first embodiment, and the operation and characteristics are also the same.

なお、上述の第3および第4の実施例において、コレク
タ層12と光吸収層5を一つの層で兼ねることも可能で
あシ、その場合も素子の動作、特性にはなんら影響が゛
ない。
Note that in the third and fourth embodiments described above, it is also possible to use one layer as both the collector layer 12 and the light absorption layer 5, and in that case, there is no effect on the operation and characteristics of the element. .

次に、以上の実施例において用いられる半導体材料につ
いて述べる。本発明による光検出半導体素子を作製する
場合、禁制帯幅の異なる半導体層を順次積層する必要が
ある。このような場合、各層の結晶性を良好にするだめ
、基板および各層の結晶の、格子定数を高い精度で一致
させることが不可決である。このような条件を満たし、
かつその特袢が本発明の光検出半導体素子に好適な半導
体材料として、ガリウム・アルミニウム・砒素系半導体
及びインジウム・ガリウム・砒素・燐系半導体があるこ
とを発明者らは見出した。
Next, the semiconductor materials used in the above embodiments will be described. When manufacturing a photodetecting semiconductor device according to the present invention, it is necessary to sequentially stack semiconductor layers having different forbidden band widths. In such a case, in order to improve the crystallinity of each layer, it is essential to match the lattice constants of the substrate and the crystals of each layer with high precision. If these conditions are met,
The inventors have discovered that gallium-aluminum-arsenic semiconductors and indium-gallium-arsenic-phosphorus semiconductors are semiconductor materials whose characteristics are suitable for the photodetecting semiconductor element of the present invention.

前者(d カリウム砒素(Ga As )とアルミニウ
ム砒素(AI As 、)の混合物であり、アルミニウ
ム砒素の含有比をXとして、Ga 、−z AIX A
S (0≦x ≦1)と表わされる。この系の結晶は、
Xの植゛に関係、なく格子定数がほぼ一定であシ、一方
禁制帯幅はX=○の場合の1.43電子ボルトから、 
X=1の場合の2.16電子ボルトまで大幅に変化する
ので、本発明の素子にきわめて好適である。
The former (d) is a mixture of potassium arsenide (GaAs) and aluminum arsenide (AIAs,), where the content ratio of aluminum arsenic is X, Ga, -z AIX A
It is expressed as S (0≦x≦1). This system of crystals is
Regardless of the planting of X, the lattice constant is almost constant, while the forbidden band width is from 1.43 eV when
It changes significantly to 2.16 electron volts for X=1, which is very suitable for the device of the present invention.

また後者はインジウム燐(InP)、 インジウム砒素
(InAs)、ガリウム燐(Ga、P)、ガリウム砒素
(Ga As )の混合物であシ、ガリウムのインジウ
ムに刻する含有比をx1砒素の燐に対する含有比をyと
して、In 1−x GaXAsyP + −y (0
”;= X +y≦1)と表わされる。この系の結晶は
、Xとyの値を適当に選ぶことにより、格子定数を一定
に保ったまま禁制帯幅を大幅に変化させることができる
。−例を挙けると、Xとyの値をほぼ、y=22Xなる
関係を満たすように選ぶと、その格子定数はx==o+
  ’!二〇の場合すなわちインジウム燐の格子定数に
つねに一致する。またこのとき禁制帯幅は、x=o、7
=Qの場合の1・36電子7+(ルトからx==0.4
7.7 = 1の場合の0.75電子ボルトマで大幅に
変化し、本発明の素子に極めて好適である。
The latter is a mixture of indium phosphorus (InP), indium arsenide (InAs), gallium phosphorus (Ga, P), and gallium arsenide (GaAs), and the content ratio of gallium to indium is x1 to the content of arsenic to phosphorus. In 1-x GaXAsyP + -y (0
";= -For example, if the values of X and y are chosen to approximately satisfy the relationship y=22X, then the lattice constant is
'! In the case of 20, it always matches the lattice constant of indium phosphorus. Also, at this time, the forbidden band width is x=o, 7
= 1·36 electrons 7+ (from root x==0.4
0.75 electron volts for the case 7.7 = 1 changes significantly, which is very suitable for the device of the present invention.

力お、これらの半導体結晶は、各種の工ビタギシャル成
長法により容易に形成することができる。
Furthermore, these semiconductor crystals can be easily formed by various mechanical growth methods.

発明の効果 以上のように本発明は従来の異種接合ホト1−ランジヌ
タに、エミツタ層を構成する半導体の禁制帯幅よりも狭
く、かつベース層を構成する半導体の禁制帯幅よシも広
い禁制帯幅を持つ半導体からなる光吸収層を付加するこ
とにより、任意の波長領域に対する波長選択性、特に、
急峻な波長選択性を示す高感度の光検出半導体素子を実
現しだものであり、分光装置を併用することなく特定め
波長領域の光を検出する簡便な手段を提供するという従
来に力い効果を持つものである。
Effects of the Invention As described above, the present invention provides a conventional heterojunction photovoltaic transistor with a forbidden band width narrower than the forbidden band width of the semiconductor constituting the emitter layer and wider than the forbidden band width of the semiconductor constituting the base layer. By adding a light absorption layer made of a semiconductor with a bandwidth, wavelength selectivity for any wavelength range, especially,
It has realized a highly sensitive photodetecting semiconductor element that exhibits steep wavelength selectivity, and has a powerful effect on conventional methods by providing a simple means of detecting light in a specific wavelength range without using a spectroscopic device. It is something that has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光検出半導体素子(異種接合ホトトラン
シヌタ)の構造を示す断面図、第2図は第1図に対応す
る上面図、第3図は本発明の第1の実施例の光検出半導
体素子の構造を示す断面図、第4図は本発明の実施例の
光検出半導体素子にお+−)、、る感度の波長依仔性の
一例を比較例のそれと対比させて示す特性曲線図、第5
図は本発明の実施例の光検出半導体素子における感度の
波長依存性の仙の例を示す特性曲線図、第6図、第7図
おルひ第8図は本発明のそれぞれ第2.第3.第4の実
施例の光検出半導体素子の構造を示す断面図である。 1・・・・・・半導体基板、2・・・・・・コレクタ層
、3・・・・ベー゛ス層、4・・・・・エミツタ層、5
・・・・・・光吸収層、11.12・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名餐何
 J
FIG. 1 is a sectional view showing the structure of a conventional photodetection semiconductor device (heterojunction phototransinuta), FIG. 2 is a top view corresponding to FIG. 1, and FIG. 3 is a photodetection device according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view showing the structure of a semiconductor device, and FIG. 4 is a characteristic curve showing an example of the wavelength dependence of the sensitivity of the photodetecting semiconductor device of the example of the present invention in comparison with that of a comparative example. Figure, 5th
The figure is a characteristic curve diagram showing an example of the wavelength dependence of sensitivity in a photodetecting semiconductor device according to an embodiment of the present invention. Third. FIG. 7 is a cross-sectional view showing the structure of a photodetecting semiconductor element according to a fourth example. DESCRIPTION OF SYMBOLS 1...Semiconductor substrate, 2...Collector layer, 3...Base layer, 4...Emitter layer, 5
......Light absorption layer, 11.12... Electrode. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (9)

【特許請求の範囲】[Claims] (1)  コレクタ層とべ一ヌ層と前記ベース層を構成
する半導体の禁制帯幅よりも広い禁制帯幅を有する半導
体からなるエミツタ層とを順次連接した構造を有する異
種接合トランジスタを備え、前記エミツタ層を構成する
半導体の禁制帯幅よりも狭くかつ前記ベース層を構成す
る半導体の禁制帯幅よシも広い禁制帯幅を有する半導体
からなる光吸収層を、前記異種接合トランジスタのエミ
ツタ層側に設けたことを特徴とする光検出半導体素子。
(1) A heterojunction transistor having a structure in which a collector layer, a base layer, and an emitter layer made of a semiconductor having a forbidden band width wider than the forbidden band width of the semiconductor constituting the base layer are sequentially connected, A light absorption layer made of a semiconductor having a forbidden band width narrower than the forbidden band width of the semiconductor constituting the layer and wider than the forbidden band width of the semiconductor constituting the base layer is provided on the emitter layer side of the heterojunction transistor. A photodetecting semiconductor element characterized in that it is provided.
(2)ベース層を構成する半導焚と光吸収層を(71を
成する半導体の禁制帯幅の差を、前記ベース層を構成す
る半導体の禁制帯幅の1チないし3%としたことを特徴
とする特許請求の範囲第1項に記載の光検出半導体素子
(2) The difference in the forbidden band width of the semiconductor forming the base layer and the light absorption layer (71) is set to 1 inch to 3% of the forbidden band width of the semiconductor forming the base layer. A photodetecting semiconductor device according to claim 1, characterized in that:
(3)ベース層とコレクタ層を同一の禁制帯幅を有する
半導体で構成したことを特徴とする特許請求の範囲第1
項または第2項に記載の光検出半、磨体素子。
(3) Claim 1, characterized in that the base layer and the collector layer are made of semiconductors having the same forbidden band width.
2. The photodetector element according to item 2 or item 2.
(4)  コレクタ層、ベーヌ層、エミッタ層、光吸収
層のそれぞれが、ガリウム砒素、アルミニウム砒素、ガ
リウム・アルミニウム砒素のうちいずれかを主成分とす
る半導体よシなることを特徴とする特許請求の範囲第1
項から第3項までのいずれかに記載の光検出半導体素子
(4) The collector layer, the Vane layer, the emitter layer, and the light absorption layer are each made of a semiconductor whose main component is gallium arsenide, aluminum arsenide, or gallium/aluminum arsenide. Range 1
3. The photodetecting semiconductor device according to any one of items 1 to 3.
(5)  コレクタ層、ベース層、エミッタ層、 光’
H収層のそれぞれが、インジウム燐、インジウム砒素、
ガリウム燐、ガリウム砒素、またはこれらさ・ のうち少なくとも2つを混合した混合物を主成分とする
半導体からなることを特徴とする特許請求の範囲第1項
から第3項までのいすわかに記載の光検出半導体素子。
(5) Collector layer, base layer, emitter layer, light'
Each of the H-layers contains indium phosphorus, indium arsenide,
Claims 1 to 3 are characterized in that the semiconductor is made of a semiconductor whose main component is gallium phosphorus, gallium arsenide, or a mixture of at least two of these. Photodetector semiconductor element.
(6)  コレクタ層とベース層表前記ベース層を構成
する半導体の禁制帯幅よりも広い禁制帯幅を有する半導
体からなるエミツタ層とを順次連接した構造を有する異
積接合トランジスタを備え、前記1コレクタ層を構成す
る半導体の禁制帯幅を。 前記ベース層を構成する半導体の禁制帯幅よシも広くし
、前記コレクタ層を構成する半導体の禁制帯幅と等しい
かまたけよシ狭くかつ前記ベース層を構成する半導体の
禁制帯幅よすも広い禁制帯幅を有する半導体からなる光
吸収層を前記異種接合トランジスタのコレクタ層側に設
ケたことを特徴とする光検出半導体素子。
(6) A heterojunction transistor having a structure in which a collector layer, a base layer, and an emitter layer made of a semiconductor having a forbidden band width wider than the forbidden band width of the semiconductor constituting the base layer are successively connected, The forbidden band width of the semiconductor that makes up the collector layer. The forbidden band width of the semiconductor constituting the base layer is also made wider, and the forbidden band width of the semiconductor constituting the base layer is made equal to or narrower than the forbidden band width of the semiconductor constituting the collector layer. 1. A photodetecting semiconductor device, characterized in that a light absorption layer made of a semiconductor having a wide bandgap is provided on the collector layer side of the heterojunction transistor.
(7)ベース層を構成する半導体と光吸収層を構成する
半導体の禁制帯幅の差を、前記ベース層を構成する半導
体の禁制帯幅の1%ないし3%としたことを特徴とする
特許請求の範囲第6項に記載の光検出半導体素子。
(7) A patent characterized in that the difference in forbidden band width between the semiconductor constituting the base layer and the semiconductor constituting the light absorption layer is 1% to 3% of the forbidden band width of the semiconductor constituting the base layer. A photodetecting semiconductor device according to claim 6.
(8)  コレクタ層、ベース層、エミッタ層、  光
吸収層のそれぞれガリウム砒素、アルミニウム砒素。 ガリウム・アルミニウム砒素のうちいずれかを主成分と
する半導体よりなることを特徴とする特許請求の範囲第
6項まだは第7項に記載の光検出半導体素子。
(8) Gallium arsenide and aluminum arsenide for the collector layer, base layer, emitter layer, and light absorption layer, respectively. The photodetecting semiconductor device according to claim 6 or 7, characterized in that it is made of a semiconductor whose main component is either gallium or aluminum arsenide.
(9)  コレクタ層、ベース層、エミッタ層、光tf
fl収層l上層ぞれが、インジウム燐、インジウム砒素
、ガリウム燐、ガリウム砒素、またはこれらのうち少な
くとも二つを混合した混合物を主成台とする半導体から
なることを特徴とする特許請求の範囲第6項または第7
項に記載の光検出半導体素子。
(9) Collector layer, base layer, emitter layer, optical TF
Claims characterized in that each of the upper layers of the fl collection layer is made of a semiconductor mainly composed of indium phosphide, indium arsenide, gallium phosphide, gallium arsenide, or a mixture of at least two of these. Section 6 or Section 7
The photodetecting semiconductor device described in 2.
JP58057555A 1983-03-31 1983-03-31 Photo detecting semiconductor element Granted JPS59182581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057555A JPS59182581A (en) 1983-03-31 1983-03-31 Photo detecting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057555A JPS59182581A (en) 1983-03-31 1983-03-31 Photo detecting semiconductor element

Publications (2)

Publication Number Publication Date
JPS59182581A true JPS59182581A (en) 1984-10-17
JPH0148663B2 JPH0148663B2 (en) 1989-10-20

Family

ID=13059054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057555A Granted JPS59182581A (en) 1983-03-31 1983-03-31 Photo detecting semiconductor element

Country Status (1)

Country Link
JP (1) JPS59182581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268369A (en) * 1990-03-16 1991-11-29 Sharp Corp Color sensor
US6399967B1 (en) * 1999-07-06 2002-06-04 Matsushita Electric Industrial Co., Ltd. Device for selectively detecting light by wavelengths

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268369A (en) * 1990-03-16 1991-11-29 Sharp Corp Color sensor
US6399967B1 (en) * 1999-07-06 2002-06-04 Matsushita Electric Industrial Co., Ltd. Device for selectively detecting light by wavelengths
US6627516B2 (en) 1999-07-06 2003-09-30 Matsushita Electric Industrial Co., Ltd. Method of fabricating a light receiving device

Also Published As

Publication number Publication date
JPH0148663B2 (en) 1989-10-20

Similar Documents

Publication Publication Date Title
Durmaz et al. Terahertz intersubband photodetectors based on semi-polar GaN/AlGaN heterostructures
US6326654B1 (en) Hybrid ultraviolet detector
JPH10326906A (en) Photodetection element and image-pickup element
JPH0821727B2 (en) Avalanche photodiode
JP2004104085A (en) Avalanche phototransistor
JPH0243777A (en) Quantum well radiation detecor
Lopez et al. Photocurrent spectra of Ge GaAs heterojunctions
JPS59182581A (en) Photo detecting semiconductor element
Guo et al. Very long wave infrared quantum cascade detector with a twin-well absorption region
Kharel et al. Band structure and absorption properties of (Ga, In)/(P, As, N) symmetric and asymmetric quantum wells and super-lattice structures: Towards lattice-matched III-V/Si tandem
JP2730472B2 (en) Semiconductor light receiving element
JPS62216378A (en) Photodetector
JPS59232471A (en) Photoelectric conversion element
JPH0567802A (en) Semiconductor photo detector
Pham et al. High-responsivity intersubband infrared photodetector using InGaAsP/InP superlattice
Lai et al. Photovoltaic operation up to 270 K of a strain-compensated AlAs∕ In0. 84Ga0. 16As∕ AlAs∕ InAlAs quantum well infrared photodetector
Li et al. Growth of p-type GaAs∕ AlGaAs (111) quantum well infrared photodetector using solid source molecular-beam epitaxy
JPH06188449A (en) Msm type photodetector
JPS63314422A (en) Infrared sensor
JPS6130085A (en) Photoconductivity detecting element
JP2995744B2 (en) Photo detector
JPH02238677A (en) Photodetector,long wave light detector,and electron filter
JP2825930B2 (en) Semiconductor light receiving element
Capasso et al. New high gain staircase photoconductors and observation of sawtooth-to-stalrcase transition in compositionally graded heterostructures
Osbourn Strained-layer superlattice detectors and detector concepts