JPH0529579B2 - - Google Patents

Info

Publication number
JPH0529579B2
JPH0529579B2 JP63012841A JP1284188A JPH0529579B2 JP H0529579 B2 JPH0529579 B2 JP H0529579B2 JP 63012841 A JP63012841 A JP 63012841A JP 1284188 A JP1284188 A JP 1284188A JP H0529579 B2 JPH0529579 B2 JP H0529579B2
Authority
JP
Japan
Prior art keywords
positioning
directions
loading platform
center
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63012841A
Other languages
Japanese (ja)
Other versions
JPH01186459A (en
Inventor
Kazuhiko Kishimoto
Takeyuki Suzuki
Shiro Inoe
Masahiro Ren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP1284188A priority Critical patent/JPH01186459A/en
Priority to US07/289,400 priority patent/US5023534A/en
Publication of JPH01186459A publication Critical patent/JPH01186459A/en
Publication of JPH0529579B2 publication Critical patent/JPH0529579B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、搬送車両の停止位置の位置決め方法
に関し、更に詳述すれば物品を載置する載荷台に
位置決め装置を設け、これにより搬送車両の停止
位置を位置決めする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for positioning the stop position of a conveyance vehicle. The present invention relates to a method for locating a stop position of a vehicle.

〔従来技術〕[Prior art]

搬送車両、特に無人搬送車両はフアクトリオー
トメーシヨンにおける中核をなす装置として、こ
こ数年大きな発展を遂げてきた。
Transport vehicles, especially unmanned guided vehicles, have made great progress in recent years as core equipment in factory automation.

従来の無人搬送車両は搬送する物品を載置する
ための載荷台をその上面に有し、前記物品を各工
程に設けられたステーシヨンまで搬送する。そし
てステーシヨンに設けられた移載装置により、前
記物品は無人搬送車両から各ステーシヨンに自動
的に移載される。
A conventional automatic guided vehicle has a loading platform on its upper surface for placing an article to be transported, and transports the article to a station provided at each process. Then, the article is automatically transferred from the automatic guided vehicle to each station by a transfer device provided at the station.

一方無人搬送車両の停止精度は進行方向及びそ
れと交差する方向に対して±10mm程度、また垂直
軸回りの回転方向に対して±1゜程度となつてお
り、前記移載装置と載荷台との相対停止位置精度
は無人搬送車両の停止精度に依存しているので、
前記停止精度と同様の値となつていた。前記停止
精度の誤差に伴い、前記移載装置と載荷台との相
対停止位置と、正規の相対停止位置との間にずれ
が生じているので、例えば半導体製造工場等で自
動的に物品を移載する場合、前記ずれを解消する
構造を移載装置もしくは搬送車両に設ける、又は
無人搬送車両の停止精度を向上させる必要があつ
た。
On the other hand, the stopping accuracy of an unmanned guided vehicle is about ±10 mm in the direction of movement and the direction crossing it, and about ±1° in the rotation direction around the vertical axis, and the Since the relative stopping position accuracy depends on the stopping accuracy of the unmanned guided vehicle,
The value was similar to the above-mentioned stopping accuracy. Due to the error in the stopping accuracy, there is a discrepancy between the relative stopping position of the transfer device and the loading platform and the normal relative stopping position. When loading, it is necessary to provide the transfer device or the transport vehicle with a structure that eliminates the above-mentioned deviation, or to improve the stopping accuracy of the automatic transport vehicle.

公知の停止精度を向上させる方法として、無人
搬送車両に油圧ジヤツキを複数設け、そのロツド
部に円錐状の雌穴を形成し、各ステーシヨンの床
面の正規の停止位置には前記雌穴に係合する形状
の円錐状の雄部を有する複数の位置決め突起を前
記油圧ジヤツキの取りつけ位置に対応して設け、
無人搬送車両がステーシヨンで停止すると、前記
油圧ジヤツキを進出させ、夫々の位置決め突起に
外嵌し位置決めする方法がある。これにより無人
搬送車両は床面から持ち上げられ、正規の停止位
置に位置決めされる。
As a known method for improving stopping accuracy, a plurality of hydraulic jacks are installed on an unmanned guided vehicle, a conical female hole is formed in the rod portion of the jack, and a hole is connected to the female hole at the regular stopping position on the floor of each station. A plurality of positioning protrusions each having a conical male portion having a matching shape are provided corresponding to the mounting position of the hydraulic jack,
When the automatic guided vehicle stops at a station, there is a method in which the hydraulic jacks are advanced and fitted onto respective positioning protrusions for positioning. As a result, the automatic guided vehicle is lifted from the floor and positioned at its normal stopping position.

〔発明の解決しようとする課題〕[Problem to be solved by the invention]

しかしながら前記方法においては、位置決め突
起が走行の障害となり、また油圧源等の付加設備
が多数必要となり価格の上昇、構造の複雑化を招
く。更に前記方法は雌穴と雄部との接触により位
置決めしているので、雌穴及び雄部の摩耗により
位置決めの精度が劣化し、摩耗粉により塵埃が発
生し、例えば半導体製造工場のように位置決め精
度及び清浄度の規定された環境では使用できなか
つた。
However, in the above method, the positioning protrusion becomes an obstacle to traveling, and a large number of additional equipment such as a hydraulic power source is required, which increases the price and complicates the structure. Furthermore, since the above method performs positioning by contact between the female hole and the male part, the positioning accuracy deteriorates due to wear of the female hole and the male part, and dust is generated due to abrasion particles. It could not be used in environments with specified accuracy and cleanliness.

また移載装置は各ステーシヨン毎に設けられて
いるので、移載装置に前記ずれをを解消する構造
を設けると、該構造が多数必要となりシステム全
体の価格上昇を招く。
Further, since a transfer device is provided for each station, if the transfer device is provided with a structure to eliminate the above-mentioned deviation, a large number of such structures will be required, leading to an increase in the price of the entire system.

本発明は斯かる事情に鑑みなされたものであ
り、水平面内の2方向及び垂直軸回りの回転方向
の3方向の位置決め手段を載荷台に設け、前記ず
れを検出し、それを解消するための位置決め補正
値を算出し、算出した位置決め補正値に基づき、
載荷台を位置決めすることにより載荷台と移載装
置との相対停止位置の位置決めを、簡単な構造
で、非接触で、安価に、高精度にできる搬送車両
の位置決め方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides positioning means in three directions, two directions in a horizontal plane and a rotational direction around a vertical axis, on the loading platform, and detects and eliminates the above-mentioned deviation. Calculate the positioning correction value, and based on the calculated positioning correction value,
The purpose of the present invention is to provide a method for positioning a conveyance vehicle that allows positioning of the loading platform to position the relative stop position between the loading platform and the transfer device with a simple structure, non-contact, inexpensively, and with high accuracy. do.

〔課題を解決するたの手段〕[Means to solve the problem]

本発明に係る搬送車両の位置決め方法は、物品
を載置する載荷台を有し、自動走行すると共に位
置決め標識を目標として停止する搬送車両の位置
決め方法において、水平面内での2方向及び垂直
軸回りの回転方向の3方向の載荷台の位置決め手
段と、前記位置決め標識を検出する視覚センサと
を前記搬送車両に設け、前記視覚センサの検出結
果により、搬送車両と前記位置決め標識との間の
前記3方向へのずれ量を算出し、該ずれ量に基づ
き、前記載荷台における前記ずれ量を減少させる
べき、前記3方向の移動量たる位置決め補正値を
算出し、該位置決め補正値に基づき、前記3方向
の位置決め手段を駆動して載荷台を移動すること
を特徴とする。
A method for positioning a transport vehicle according to the present invention is a method for positioning a transport vehicle that has a loading platform on which articles are placed, travels automatically, and stops at a positioning mark, in two directions in a horizontal plane and around a vertical axis. The transportation vehicle is provided with means for positioning the loading platform in three directions of the rotation direction of the vehicle, and a visual sensor for detecting the positioning mark, and the positioning means for positioning the loading platform in three directions of the rotation direction of the vehicle and a visual sensor for detecting the positioning mark are provided in the transport vehicle, and the positioning means for positioning the loading platform in three directions between the transport vehicle and the positioning mark are provided in the transport vehicle. The displacement amount in the three directions is calculated, and based on the displacement amount, a positioning correction value, which is the amount of movement in the three directions that should reduce the displacement amount in the loading platform, is calculated. The present invention is characterized in that the loading platform is moved by driving the directional positioning means.

〔作用〕[Effect]

本発明においては、3方向の位置決め手段を設
け、視覚センサによる検出結果から位置決め標識
と搬送車両の停止位置とのずれ量を検出し、それ
に基づき3方向の位置決め補正値を算出してずれ
量を減少させ、位置決めしている。
In the present invention, positioning means in three directions is provided, and the amount of deviation between the positioning mark and the stop position of the conveyance vehicle is detected from the detection result by the visual sensor, and based on this, positioning correction values in the three directions are calculated to calculate the amount of deviation. Decreasing and positioning.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき詳
述する。
Hereinafter, the present invention will be explained in detail based on drawings showing embodiments thereof.

第1図は本発明に係る搬送車両の左側面図であ
り、該搬送車両は白抜矢符で示す方向をその進行
方向としている。
FIG. 1 is a left side view of a conveyance vehicle according to the present invention, and the direction of travel of the conveyance vehicle is the direction indicated by a white arrow.

図において1は前記搬送車両の左右一対の駆動
輪2(右駆動輪は図示せず)及び前後左右に4個
設けられた補助輪3,3(右補助輪は図示せず)
に支持された機体である。駆動輪2は機体1中央
部に左右適宜離隔して取付けられ、図示しない駆
動モータが各別に同軸的に直結されており、その
駆動モータの各別の駆動により機体1を操舵し、
同時駆動により機体1を前後進させる。また補助
輪3,3は機体1の垂直軸回りに回動自在に機体
1の前後左右に適宜離隔して取付けられている。
In the figure, reference numeral 1 indicates a pair of left and right drive wheels 2 (the right drive wheel is not shown) and four auxiliary wheels 3, 3 provided on the front, rear, left and right sides of the conveyance vehicle (the right auxiliary wheel is not shown).
The aircraft was supported by The drive wheels 2 are attached to the center of the fuselage 1 at an appropriate distance from the left and right, and each drive motor (not shown) is coaxially and directly connected to each drive motor.
The aircraft 1 is moved forward and backward by simultaneous driving. Further, the auxiliary wheels 3, 3 are rotatably mounted around the vertical axis of the fuselage body 1 at appropriate distances in the front, rear, left and right directions of the fuselage body 1.

機体1の上部には搬送する物品を載置するため
の載荷台4が機体1とその中心を同一となし設け
られ、該載荷台4は機体1の中央部に設けられた
機体1の進行方向、進行方向と直交すると方向及
び機体1の垂直軸回りの回転方向の3方向の各位
置決めを行う各方向の位置決め手段5x,5y,
5θにより、機体1に対して前記3方向に移動及
び回動自在に取付けられている。また前記各方向
の位置決め手段5x,5y,5θは3方向の駆動
部6x,6y,6θにより前記3方向に各別に駆
動可能となつている。
A loading platform 4 for placing articles to be transported is provided on the upper part of the aircraft body 1, with its center being the same as that of the aircraft body 1, and the loading platform 4 is provided at the center of the aircraft body 1 in the traveling direction of the aircraft body 1. , positioning means 5x, 5y in each direction for positioning in each of three directions: a direction perpendicular to the traveling direction and a direction of rotation around the vertical axis of the aircraft body 1;
5θ, it is attached to the body 1 so as to be movable and rotatable in the three directions. Further, the positioning means 5x, 5y, and 5θ in each direction can be driven in the three directions separately by driving portions 6x, 6y, and 6θ in three directions.

一方機体1中央前後部には機体1の停止位置を
検出する工業用TVカメラを用いてなる視覚セン
サ7A,7Bが機体1の中心から夫々距離Lを隔て
て下向きに取付けられており、各工程の停止位置
を示し、床面9上に前記視覚センサ7A,7Bと同
間隔に白地の正方形の中心に黒地の円を描いた2
個の位置決め標識8,8を前記視覚センサ7A
Bが撮像することにより機体1の停止位置を検
出する。また撮像された前記位置決め標識8,8
の位置より前記各駆動部6x,6y,6θに駆動
信号を与える位置決め制御装置9が機体1内部に
設けられている。
On the other hand, visual sensors 7 A and 7 B using industrial TV cameras for detecting the stopping position of the aircraft 1 are installed at the front and rear of the center of the aircraft 1, facing downward at a distance L from the center of the aircraft 1, respectively. A black circle is drawn at the center of a white square on the floor 9 at the same interval as the visual sensors 7 A and 7 B to indicate the stopping position of each process.
The positioning marks 8, 8 are connected to the visual sensor 7A ,
7 B detects the stopping position of the aircraft 1 by taking an image. In addition, the imaged positioning marks 8, 8
A positioning control device 9 is provided inside the fuselage 1 for applying a drive signal to each of the drive units 6x, 6y, and 6θ from the position.

第2図は載荷台の駆動部を備えた各位置決め手
段を示す一部破断側面図であり、各位置決め手段
5x,5y,5θは機体1の中央部前後に取付け
られ、倒立L形の縦部材中央に矩形平板を固着し
た形状でその長手方向を機体1の進行方向と直交
する方向とした2個のブラケツト12,12上に
その基台57を締結し取付けられている。
FIG. 2 is a partially cutaway side view showing each positioning means equipped with a drive unit of the loading platform, and each positioning means 5x, 5y, 5θ is attached to the front and back of the central part of the fuselage 1, and is an inverted L-shaped vertical member. The base 57 is fastened to two brackets 12, 12, each having a rectangular flat plate fixed to the center, the longitudinal direction of which is perpendicular to the traveling direction of the fuselage 1.

基台57は載荷台の左右方向長より稍短い辺を
有する正方形平板状をなし、その中央部の上側に
円筒状のボス部を有し、該ボス部に旋回軸受52
θを内設し、基台57の後部中央の下側には旋回
用のステツピングモータを用いてなる駆動モータ
66θをその出力軸を上に向けて取付けている。
駆動モータ66θの先端には、たわみ継手61θ
を介して前記出力軸に対して所定の偏芯量を有す
る偏芯軸62θが連結されており、該偏芯軸62
θの上端部に偏芯カムである2個の玉軸受63
θ,63θを外嵌している。また基台57の後部
中央の上側には下部に取付フランジを有し、円筒
状の軸受箱64θが前記駆動モータ66θと同軸
的に取付けられ、前記偏芯軸62θは前記軸受箱
64θの上端に内嵌された2個の玉軸受65θ,
65θにより軸支されており、前記偏芯軸62θ
の偏芯量により後述する回動台50θが旋回軸受
52θ回りに回動する。
The base 57 has a square flat plate shape with sides slightly shorter than the horizontal length of the loading platform, and has a cylindrical boss part above the center part, and a swing bearing 52 is attached to the boss part.
A drive motor 66θ using a stepping motor for turning is attached to the lower center of the rear part of the base 57 with its output shaft facing upward.
A flexible joint 61θ is attached to the tip of the drive motor 66θ.
An eccentric shaft 62θ having a predetermined eccentricity is connected to the output shaft through
Two ball bearings 63, which are eccentric cams, are installed at the upper end of θ.
θ, 63θ are fitted externally. Further, the base 57 has a lower mounting flange at the upper center of the rear part thereof, and a cylindrical bearing box 64θ is mounted coaxially with the drive motor 66θ, and the eccentric shaft 62θ is attached to the upper end of the bearing box 64θ. Two ball bearings 65θ fitted inside,
65θ, and the eccentric shaft 62θ
A rotating table 50θ, which will be described later, rotates around a swing bearing 52θ due to the amount of eccentricity.

旋回軸受52θの内輪には基台57と略同一外
形の平板状をなし中央部下向きに円筒状のボス部
を有する回動台50θの前記ボス部が内嵌され、
前記回動台50θは前記旋回軸受52θにより該
旋回軸受52θを中心として機体1の垂直軸回り
の回転方向(以下θ方向という)に回動自在とな
つている。また回動台50θの前部中央の下部に
は円筒状をなしその上下端に夫々取付フランジを
有する軸受箱64xが取付けられており、さらに
その下部取付フランジには前後方向(以下x方向
という)の移動用のステツピングモータを用いて
なる駆動モータ66xを、その出力軸を上に向け
て取付けている。駆動モータ66xの先端には、
たわみ継手61xを介して前記駆動モータ出力軸
に対して所定の偏芯量を有する偏芯軸62xが連
結されており、該偏芯軸62xの上端部に偏芯カ
ムである2個の玉軸受63x,63xが外嵌され
ている。前記偏芯軸62xは前記軸受箱64xの
上部に内嵌された2個の玉軸受65x,65xに
より軸支されており、前記偏芯軸62xの偏芯量
により後述する移動台50xがx方向に移動す
る。また前記回動台50θの前後部左右に適宜離
隔してリニアガイドのレール部を用いてなるx方
向の4個の移動ガイド52x,52xがその長手
方向を機体1のx方向に略一致させ取付けられて
いる。
The boss portion of a rotating table 50θ, which has a flat plate shape with approximately the same external shape as the base 57 and has a cylindrical boss portion facing downward at the center, is fitted into the inner ring of the swing bearing 52θ,
The rotating table 50θ is rotatable in a rotational direction (hereinafter referred to as the θ direction) about the vertical axis of the body 1 about the pivot bearing 52θ. Further, a cylindrical bearing box 64x having mounting flanges at the upper and lower ends is attached to the lower part of the center of the front part of the rotating table 50θ, and the lower mounting flange is attached in the front-rear direction (hereinafter referred to as the x direction). A drive motor 66x using a stepping motor for movement is mounted with its output shaft facing upward. At the tip of the drive motor 66x,
An eccentric shaft 62x having a predetermined eccentricity is connected to the drive motor output shaft via a flexible joint 61x, and two ball bearings, which are eccentric cams, are mounted at the upper end of the eccentric shaft 62x. 63x, 63x are fitted externally. The eccentric shaft 62x is supported by two ball bearings 65x, 65x fitted in the upper part of the bearing box 64x, and the moving table 50x, which will be described later, is moved in the x direction depending on the eccentricity of the eccentric shaft 62x. Move to. In addition, four moving guides 52x, 52x in the x direction, which are made of rails of linear guides and are appropriately spaced on the front, rear, left and right sides of the rotating table 50θ, are installed with their longitudinal directions substantially aligned with the x direction of the fuselage 1. It is being

第3図は載荷台の駆動手段の偏芯カムの取付状
態を示す拡大斜視図であり、偏芯カムである玉軸
受63θ,63θは矩形平板状をなし一端に角棒
状の凸部を有し、その中央に長手方向長さを凸部
と同方向となした長丸形の偏芯カム溝59θを形
成した下部カム受54θ及び該下部カム受54θ
の上側に載置された下部カム受54θと同様の偏
芯カム溝58θを形成した上部カム受53θに内
嵌されており、上部カム受53θは下部カム受5
4θの凸部の長手方向に適宜離隔して螺合された
調整ネジ55θ,55θにより、下部カム受54
θに対し、偏芯カム溝の長手方向と直交する方向
に摺動自在となしてある。また下部カム受54θ
と上部カム受53θとは、偏芯カムである2個の
前記玉軸受63θ,63θの上部の玉軸受63θ
の外輪が上部カム受53θの偏芯カム溝58θの
調整ボルト55θ側の側面に圧接され、下部の玉
軸受63θの外輪が下部カム受54θの偏芯カム
溝59θの調整ボルト55θと逆側の側面に圧接
されるように調整ボルト55θにより調整されて
おり、それにより各外輪に予圧を与えている。そ
してこの調整が終わるロツクナツト56θによ
り、調整ボルト55θの回動が封じられる。そし
て前記下部カム受54θ及び上部カム受53θが
回動台50θの後部中央に取付けられている。
FIG. 3 is an enlarged perspective view showing the mounting state of the eccentric cam of the driving means of the loading platform, and the ball bearings 63θ, 63θ, which are the eccentric cams, have a rectangular flat plate shape and have a square bar-shaped convex portion at one end. , a lower cam receiver 54θ having an oblong eccentric cam groove 59θ whose longitudinal direction is in the same direction as the convex portion in the center; and the lower cam receiver 54θ.
The upper cam receiver 53θ is fitted inside the upper cam receiver 53θ, which has an eccentric cam groove 58θ similar to the lower cam receiver 54θ placed on the upper side.
The lower cam receiver 54 is adjusted by adjusting screws 55θ, 55θ screwed together at appropriate intervals in the longitudinal direction of the 4θ convex portion.
With respect to θ, it is slidable in a direction perpendicular to the longitudinal direction of the eccentric cam groove. Also, the lower cam receiver 54θ
The upper cam bearing 53θ is the upper ball bearing 63θ of the two ball bearings 63θ, 63θ which are eccentric cams.
The outer ring of the lower ball bearing 63θ is pressed against the side surface of the eccentric cam groove 58θ of the upper cam receiver 53θ on the adjustment bolt 55θ side, and the outer ring of the lower ball bearing 63θ is pressed against the side surface of the eccentric cam groove 59θ of the lower cam receiver 54θ on the side opposite to the adjustment bolt 55θ. It is adjusted by an adjustment bolt 55θ so that it is pressed against the side surface, thereby applying a preload to each outer ring. After this adjustment is completed, the lock nut 56θ locks the adjustment bolt 55θ from rotating. The lower cam receiver 54θ and the upper cam receiver 53θ are attached to the rear center of the rotating table 50θ.

一方回動台50θに取付けられた移動ガイド5
2x,52x…に係合し、該移動ガイド52x,
52x…に対して転動するリニアガイドの転動部
を用いてなる4個の上部ガイド51x,51x…
が移動台50xの下部に取付けられ、移動台50
xを回動台50θに対してx方向に転動自在とな
している。
On the other hand, the moving guide 5 attached to the rotating table 50θ
2x, 52x..., and the moving guides 52x,
Four upper guides 51x, 51x... are formed using rolling parts of linear guides that roll against 52x...
is attached to the lower part of the moving table 50x, and the moving table 50
x can be freely rolled in the x direction with respect to the rotating table 50θ.

移動台50xは回動台50θと略同一外形の平
板状をなしており、その左側中央の下側には、円
筒状をなし、その上下部に夫々取付フランジを有
する軸受箱64yが取付けられている。またその
下部取付フランジには進行方向と直交する方向、
即ち機体1の左右方向(以下y方向という)の移
動用のステツピングモータを用いてなる駆動モー
タ66yを、その出力軸を上に向けて取付けてい
る。駆動モータ66yの先端には、たわみ軸受6
1yを介して前記駆動モータ66yの出力軸に対
して所定の偏芯量を有する偏芯軸62yが連結さ
れており、該偏芯軸62yの上端部に偏芯カムで
ある2個の玉軸受63y,63yが外嵌されてい
る。前記偏芯軸62yは前記軸受箱64yの上部
に内嵌された2個の玉軸受65y,65yにより
軸支されており、前記偏芯軸62yの偏芯量によ
り後述する移動台50yがy方向に移動する。ま
た移動台50xの前部中央の上側には、回動台5
0θに取付けられた上部カム受53θ及び下部カ
ム受54θと同様の構造をなした上部カム受53
x及び下部カム受54xがその偏芯カム溝58
x,59xの長手方向をy方向として取付けられ
ている。さらに移動台50xの上側の前後部左右
に適宜離隔してリニアガイドのレール部を用いて
なる4個のy方向の移動ガイド52y,52y…
が取付けられている。そしてリニアガイドの転動
部を用いてなる4個の上部ガイド51y,51y
…が矩形平板状をなす移動台50yの下部に前記
移動ガイド52y,52y…に係合するように取
付けられ、移動台50yをy方向に転動自在とな
している。また移動台50yの左側中央下部には
前記玉軸受63y,63yに係合し、上部カム受
53θ及び下部カム受54θと同様の構造をなし
た上部カム受53y及び下部カム受54yがその
偏芯カム溝58y,59y長手方向をx方向と
し、さらに上下を前記上部カム受53θ及び下部
カム受54θと逆にして取付けられている。そし
て移動台50yの上部には載荷台4を構成する物
品を載荷する載荷部41が取付けられている。
The moving table 50x has a flat plate shape having approximately the same external shape as the rotating table 50θ, and a cylindrical bearing box 64y having mounting flanges at the upper and lower parts is attached to the lower left center of the moving table 50x. There is. In addition, the lower mounting flange has a direction perpendicular to the direction of travel,
That is, a drive motor 66y using a stepping motor for moving the body 1 in the left-right direction (hereinafter referred to as the y-direction) is mounted with its output shaft facing upward. A flexible bearing 6 is attached to the tip of the drive motor 66y.
An eccentric shaft 62y having a predetermined eccentricity is connected to the output shaft of the drive motor 66y via 1y, and two ball bearings, which are eccentric cams, are attached to the upper end of the eccentric shaft 62y. 63y, 63y are fitted externally. The eccentric shaft 62y is supported by two ball bearings 65y, 65y fitted in the upper part of the bearing box 64y, and the moving table 50y, which will be described later, is moved in the y direction depending on the eccentricity of the eccentric shaft 62y. Move to. In addition, above the center of the front part of the moving table 50x, there is a rotating table 5.
The upper cam receiver 53 has the same structure as the upper cam receiver 53θ and the lower cam receiver 54θ installed at 0θ.
x and the lower cam receiver 54x are connected to the eccentric cam groove 58.
It is attached with the longitudinal direction of x, 59x as the y direction. Furthermore, there are four y-direction moving guides 52y, 52y, which are appropriately spaced apart from each other on the front, rear, left, and right sides of the upper side of the moving table 50x, and are formed by using the rail portions of linear guides.
is installed. And four upper guides 51y, 51y using rolling parts of linear guides.
... are attached to the lower part of the rectangular plate-shaped moving table 50y so as to engage with the moving guides 52y, 52y, etc., making the moving table 50y freely rollable in the y direction. In addition, at the lower center of the left side of the moving table 50y, an upper cam receiver 53y and a lower cam receiver 54y, which are engaged with the ball bearings 63y and 63y and have the same structure as the upper cam receiver 53θ and the lower cam receiver 54θ, are located on the eccentric side. The longitudinal direction of the cam grooves 58y and 59y is the x direction, and the upper and lower cam receivers 53[theta] and lower cam receivers 54[theta] are installed with their upper and lower sides reversed. A loading section 41 for loading articles constituting the loading platform 4 is attached to the upper part of the moving platform 50y.

第4図は本発明に係る搬送車両の位置決め制御
装置の構成を示すブロツク図であり、位置決め制
御装置9は視覚センサ7A,7Bにより撮像された
位置決め標識8,8の位置を検出する位置検出部
91、視覚センサの視野の中心位置PA,PBと検
出された位置決め標識8,8の重心位置PA′,
PB′とのずれを算出し、それに基づき前記搬送車
両の載荷台4を前記ずれ量を解消する方向に位置
決めするためのx方向、y方向及びθ方向の各位
置決め補正値Δx,Δy,Δθを算出する位置決め補
正値算出部92及び算出された各位置決め補正値
Δx,Δy,Δθと各駆動モータ66x,66y,6
6θに与えるパルス数との関係を記憶し、その記
憶に基づき各駆動モータ66x,66y,66θ
に所定のパルス数Lx,Ly,Lθを与えるモータ駆
動部93を備えている。
FIG. 4 is a block diagram showing the configuration of the positioning control device for a conveyance vehicle according to the present invention, and the positioning control device 9 is a positioning device for detecting the positions of the positioning marks 8, 8 imaged by the visual sensors 7A , 7B . The detection unit 91 detects the center positions P A , P B of the field of view of the visual sensor and the center positions P A ′, of the detected positioning marks 8 , 8 .
Positioning correction values Δx, Δy, Δθ in the x direction, y direction, and θ direction for calculating the deviation from P B ′ and positioning the loading platform 4 of the conveyance vehicle in a direction that eliminates the deviation amount based on the calculated deviation. The positioning correction value calculation unit 92 calculates the positioning correction values Δx, Δy, Δθ and the respective drive motors 66x, 66y, 6.
The relationship between the number of pulses given to 6θ and the number of pulses applied to each drive motor 66x, 66y, 66θ
A motor drive unit 93 is provided to provide a predetermined number of pulses Lx, Ly, and Lθ to the motor.

次に本発明に係る搬送車両の制御及び停止位置
での位置決め補正値の算出方法について説明す
る。位置決め補正値Δx,Δy,Δθは載荷台4の中
心位置G及びそのx方向を位置決め標識8,8の
中間位置G′及びその設置方向に一致させるため
に載荷台の駆動部6x,6y,6θに与えるもの
であり、これにより前記ずれを解消する。
Next, a method for controlling a conveyance vehicle and calculating a positioning correction value at a stop position according to the present invention will be explained. The positioning correction values Δx, Δy, and Δθ are determined by the driving parts 6x, 6y, and 6θ of the loading platform in order to match the center position G of the loading platform 4 and its x direction with the intermediate position G' of the positioning marks 8, 8 and their installation direction. This eliminates the above deviation.

第5図は本発明の要部である搬送車両の位置決
め方法の制御の流れを示すフローチヤートであ
り、第6図は位置決め補正値の算出方法を説明す
る図であるが、搬送車両は所定の誘導装置により
各工程に設けられたステーシヨンに向けて自動走
行され、前記位置決め標識8,8の中心の黒地の
円を視覚センサ7A,7Bの視野が捉えられる位置
に停止する。搬送車両が停止すると、位置決め標
識8,8を視覚センサ7A,7Bにより撮像し、撮
像結果に基づき位置検出部91により、位置決め
標識8,8の中間位置G′を原点としその設置方
向をX′軸とし、それと直交する方向をY′軸とな
した座標系での前記視野の中心位置PA,PBと位
置決め標識PA′,PB′との距離dXA,dYA,dXB,dYB
を求める。位置決め補正値算出部92では前記位
置検出部91により求められた各距離dXA,dXB
dYA,dYBにより後述する算出方法により各位置決
め補正値Δx,Δy,Δθを算出する。そしてモータ
駆動部93により各位置決め補正値Δx,Δy,Δθ
を各駆動モータの所要パルスLx,Ly,Lθに変換
し、前記所要パルス数Lx,Ly,Lθを各駆動モー
タ66x,66y,66θに出力する。
FIG. 5 is a flowchart showing the control flow of the method for positioning the conveyance vehicle, which is the main part of the present invention, and FIG. 6 is a diagram explaining the method for calculating the positioning correction value. The guide device automatically travels toward a station provided in each process, and stops at a position where the black circle at the center of the positioning marks 8, 8 can be seen by the visual sensors 7A , 7B . When the conveyance vehicle stops, the positioning marks 8, 8 are imaged by the visual sensors 7A , 7B , and based on the imaging results, the position detection unit 91 determines the installation direction with the intermediate position G' between the positioning marks 8, 8 as the origin. The distances d XA , d YA , d XB , dYB
seek. The positioning correction value calculation unit 92 calculates the distances d XA , d XB , and
Using d YA and d YB , positioning correction values Δx, Δy, and Δθ are calculated using a calculation method described later. Then, each positioning correction value Δx, Δy, Δθ is determined by the motor drive unit 93.
are converted into required pulses Lx, Ly, Lθ for each drive motor, and the required pulse numbers Lx, Ly, Lθ are output to each drive motor 66x, 66y, 66θ.

これにより載荷台4が位置決めされる。 The loading platform 4 is thereby positioned.

一方各位置決め補正値Δx,Δy,Δθの算出は、
第6図の2点鎖線で示した光学センサ7A,7B
視野内に位置決め標識8,8の重心位置が捉えら
れると、前記距離dXA,dYA,dXB,dYBが求められ
る。求められた距離により下記の式により各位置
決め補正値をΔx,Δy,Δθが求められる。
On the other hand, the calculation of each positioning correction value Δx, Δy, Δθ is as follows:
When the center of gravity of the positioning markers 8, 8 is captured within the field of view of the optical sensors 7A , 7B indicated by the two-dot chain lines in Fig. 6, the distances dXA , dYA , dXB , dYB can be determined. . Using the determined distances, positioning correction values Δx, Δy, and Δθ are determined using the following equations.

ΔX=dXA+dXB/2 …(1) dY=dYA−dYB Δy=dY/2+dYB=dYA−dYB/2+dYB =dYA+dYB/2 …(2) Δθ=sin-1(dY/2L) =sin-1(dYA−dYB/2L) …(3) 但し 2L:位置決め標識8,8の設置距離 上記(1)〜(3)式により各位置決め補正値Δx,
Δy,Δθを求め、各位置決め補正値Δx,Δy,Δθ
に見合う所定のパルス数Lx,Ly,Lθをモータ駆
動部93にて出力して、各駆動モータ66x,6
6Y,66θを駆動することにより載荷台4を正
規の停止位置に位置決めする。そして偏芯量によ
る3方向の移動及び回動量は、前記ずれ量に対し
て十分大きな値(本実施例ではx方向±15mm、y
方向±20mm、θ方向±2゜)となつているので、搬
送車の停止精度が十分でなくとも載荷台と移載装
置との相対位置精度はx方向及びy方向に±1
mm、θ方向は許容値以内に抑えることが可能とな
つた。
ΔX d XA + d _ _ _ _ _ _ -1 (d Y / 2L) = sin -1 (d YA - d YB / 2L) ...(3) However, 2L: Installation distance of positioning signs 8 and 8 Each positioning correction value according to equations (1) to (3) above Δx,
Find Δy, Δθ, and calculate each positioning correction value Δx, Δy, Δθ
The predetermined number of pulses Lx, Ly, Lθ corresponding to the
By driving 6Y and 66θ, the loading platform 4 is positioned at the normal stop position. The amount of movement and rotation in the three directions due to the amount of eccentricity is a sufficiently large value (in this example, ±15 mm in the x direction, ±15 mm in the y direction,
±20 mm in the direction and ±2° in the θ direction), so even if the stopping accuracy of the transport vehicle is not sufficient, the relative positional accuracy between the loading platform and the transfer device can be ±1 in the x and y directions.
It became possible to keep the mm and θ directions within the allowable values.

また本実施例では玉軸受を用いた偏芯カムを用
い、さらにその外輪に予圧を与えているので、位
置決め手段の構造を簡単にし、偏芯カムと偏芯カ
ム溝とのガタを抑えることができ、円滑な位置決
めが可能となつた。
Furthermore, in this embodiment, an eccentric cam using a ball bearing is used, and a preload is applied to its outer ring, so the structure of the positioning means is simplified and play between the eccentric cam and the eccentric cam groove can be suppressed. This enabled smooth positioning.

なお本実施例においては、位置決め手段として
偏芯カム機構を用いたが本発明はこれに限るもの
ではなく、ラツクピニオン、ボールスクリユーそ
の他のx方向、y方向、θ方向の3方向の位置決
めを可能とする機構であれば何でもよい。また本
実施例においては位置決め標識として白地の正方
形の中心に黒地の円を描いたものを用いたが光学
センサによる検出が可能なものであれば何でもよ
い。
In this embodiment, an eccentric cam mechanism is used as a positioning means, but the present invention is not limited to this. Positioning means in the three directions of the x direction, y direction, and θ direction such as a rack pinion, a ball screw, etc. Any mechanism that makes it possible may be used. Further, in this embodiment, a positioning mark with a black circle drawn at the center of a white square was used as the positioning mark, but any mark can be used as long as it can be detected by an optical sensor.

また本実施例においては、視覚センサを機体の
中心から等距離離隔させ設けたが、本発明はこれ
に限るものではなく、前記ずれ量を検出できる位
置であれば視覚センサは機体のどのような位置に
設けてもよいことは言うまでもない。
Further, in this embodiment, the visual sensor is provided at an equal distance from the center of the aircraft body, but the present invention is not limited to this. Needless to say, it may be provided at any position.

さらに本実施例においては、駆動モータとして
ステツピングモータを用いたが、本発明はこれに
限るものではなく、エンコーダ付サーボモータ等
の位置制御が可能なモータであれば何でもよい。
Further, in this embodiment, a stepping motor is used as the drive motor, but the present invention is not limited to this, and any motor capable of position control, such as a servo motor with an encoder, may be used.

〔効果〕〔effect〕

以上詳述した如く本発明に係る搬送車両の位置
決め方法においては、物品を載置する載荷台に水
平面内の2方向及び垂直軸回りの回転方向の3方
向の位置決めを高精度に行える位置決め手段を設
け、視覚センサにより所定の停止位置と搬送車両
の停止位置とのずれ量を検出し、それに基づき3
方向の位置決め補正値を求め、載荷台の位置決め
を行つているので、載荷台の停止位置を簡単な構
造で非接触で安価に高精度に位置決めする搬送車
両の位置決め方法を提供できる等優れた効果を奏
する。
As described in detail above, in the method for positioning a conveyance vehicle according to the present invention, the loading platform on which the article is placed is provided with positioning means that can position the article with high precision in two directions in the horizontal plane and in three directions in the rotational direction around the vertical axis. A visual sensor detects the amount of deviation between the predetermined stop position and the stop position of the conveyance vehicle, and based on that, 3
Since the positioning correction value in the direction is determined and the loading platform is positioned, it has excellent effects such as providing a transportation vehicle positioning method that can accurately position the loading platform in a non-contact manner with a simple structure and at low cost. play.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものであり、第
1図は本発明に係る搬送車両の左側面図、第2図
は載荷台の位置決め手段を示す一部破断側面図、
第3図は偏芯カムの取付状態を示す拡大斜視図、
第4図は本発明の位置決め制御装置の構成を示す
ブロツク図、第5図は制御の流れを示すフローチ
ヤート、第6図は位置決め値の算出方法を示す線
図である。 1…機体、5x…x方向位置決め手段、5y…
y方向位置決め手段、5θ…θ方向位置決め手
段。
The drawings show one embodiment of the present invention, and FIG. 1 is a left side view of a conveyance vehicle according to the present invention, and FIG. 2 is a partially cutaway side view showing a means for positioning a loading platform.
Figure 3 is an enlarged perspective view showing the installation state of the eccentric cam;
FIG. 4 is a block diagram showing the configuration of the positioning control device of the present invention, FIG. 5 is a flowchart showing the flow of control, and FIG. 6 is a diagram showing the method of calculating positioning values. 1... Airframe, 5x... x direction positioning means, 5y...
y direction positioning means, 5θ...θ direction positioning means.

Claims (1)

【特許請求の範囲】 1 物品を載置する載荷台を有し、自動走行する
と共に位置決め標識を目標として停止する搬送車
両の位置決め方法において、 水平面内での2方向及び垂直軸回りの回転方向
の3方向の載荷台の位置決め手段と、前記位置決
め標識を検出する視覚センサとを前記搬送車両に
設け、 前記視覚センサの検出結果により、搬送車両と
前記位置決め標識との間の前記3方向へのずれ量
を算出し、 該ずれ量に基づき、前記載荷台における前記ず
れ量を減少させるべき、前記3方向の移動量たる
位置決め補正値を算出し、 該位置決め補正値に基づき、前記3方向の位置
決め手段を駆動して載荷台を移動することを特徴
とする搬送車両の位置決め方法。
[Scope of Claims] 1. A method for positioning a transport vehicle that has a loading platform on which articles are placed and that travels automatically and stops at a positioning mark, the method comprising: two directions in a horizontal plane and a rotation direction around a vertical axis; A means for positioning the loading platform in three directions and a visual sensor for detecting the positioning mark are provided in the transport vehicle, and a deviation between the transport vehicle and the positioning mark in the three directions is determined based on the detection result of the visual sensor. Based on the amount of deviation, calculate a positioning correction value that is the amount of movement in the three directions that should reduce the amount of deviation in the loading platform, and based on the positioning correction value, positioning means in the three directions. A method for positioning a conveyance vehicle, characterized in that a loading platform is moved by driving.
JP1284188A 1988-01-19 1988-01-22 Positioning method for carrying vehicle Granted JPH01186459A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1284188A JPH01186459A (en) 1988-01-22 1988-01-22 Positioning method for carrying vehicle
US07/289,400 US5023534A (en) 1988-01-19 1988-12-22 Automatic guided vehicle, method for positioning said vehicle, and loading table having positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284188A JPH01186459A (en) 1988-01-22 1988-01-22 Positioning method for carrying vehicle

Publications (2)

Publication Number Publication Date
JPH01186459A JPH01186459A (en) 1989-07-25
JPH0529579B2 true JPH0529579B2 (en) 1993-04-30

Family

ID=11816611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284188A Granted JPH01186459A (en) 1988-01-19 1988-01-22 Positioning method for carrying vehicle

Country Status (1)

Country Link
JP (1) JPH01186459A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636732B2 (en) * 2010-05-11 2014-12-10 株式会社Ihi Automatic warehouse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181863A (en) * 1984-09-29 1986-04-25 株式会社東芝 Unmanned cart with freight shifter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649536Y2 (en) * 1985-04-22 1994-12-14 株式会社ダイフク Cargo carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181863A (en) * 1984-09-29 1986-04-25 株式会社東芝 Unmanned cart with freight shifter

Also Published As

Publication number Publication date
JPH01186459A (en) 1989-07-25

Similar Documents

Publication Publication Date Title
US5764014A (en) Automated guided vehicle having ground track sensor
US4718810A (en) High speed transporter for multiple station production line
JP2007213356A (en) Automated guided facility
US5023534A (en) Automatic guided vehicle, method for positioning said vehicle, and loading table having positioning device
JPH0529579B2 (en)
US4781514A (en) Material handling vehicle load retention apparatus
JP2521508B2 (en) Transport vehicle
JPH01186464A (en) Freight loading platform
JPH0635538A (en) Method and device for calibration of stop position of mobile object
JP2864295B2 (en) Automatic direction correction system for self-propelled vehicles
CN110989572B (en) Accurate transfer control method suitable for AGV
JP3158664B2 (en) Traveling trolley
JP2881889B2 (en) Transfer positioning device for automatic guided vehicles
JPH0418977Y2 (en)
JP2011243129A (en) Transportation vehicle system
JPS6181863A (en) Unmanned cart with freight shifter
JPH10222225A (en) Unmanned travel body and its travel method
JP2016091389A (en) Turning method and turning equipment for self-propelled truck
JP3161594B2 (en) Transfer equipment
JP2845067B2 (en) Traveling trolley
JPH0396568A (en) Execution robot
JP2002267411A (en) Conveyance vehicle
JPH0456325B2 (en)
JPH05108155A (en) Method for controlling attitude getting beneath wagon for unmanned wagon tracter
JPH056221Y2 (en)