JPH052951B2 - - Google Patents

Info

Publication number
JPH052951B2
JPH052951B2 JP59019993A JP1999384A JPH052951B2 JP H052951 B2 JPH052951 B2 JP H052951B2 JP 59019993 A JP59019993 A JP 59019993A JP 1999384 A JP1999384 A JP 1999384A JP H052951 B2 JPH052951 B2 JP H052951B2
Authority
JP
Japan
Prior art keywords
conductivity
measurement
cell
sample water
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59019993A
Other languages
Japanese (ja)
Other versions
JPS60165560A (en
Inventor
Akira Ishizuka
Yutaka Ozawa
Ichitaro Miura
Mitsuoki Kondo
Yutaka Mitarai
Kenji Odajima
Akira Okamoto
Yutaka Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP1999384A priority Critical patent/JPS60165560A/en
Publication of JPS60165560A publication Critical patent/JPS60165560A/en
Publication of JPH052951B2 publication Critical patent/JPH052951B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液体の導電率を無保守の状態で長期
間に亘つて連続的に、しかも精度良好にして測定
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for measuring the electrical conductivity of a liquid continuously over a long period of time without maintenance and with good accuracy.

〔発明の背景〕[Background of the invention]

一般に液体の導電率を連続的に測定する工業用
導電率計においては、測定電極としてステンレス
製のものが使用されているが、その電極表面に生
じる腐蝕生成物によつて導電率を長期間に亘つて
連続的に、しかも精度良好にして測定し得ないの
が実状である。この傾向は試料水の腐蝕性が強い
程に顕著である。例えば導電率計が腐蝕性の強い
原子力発電プラントにおける炉水などの測定に使
用される場合には、測定電極面に生じる腐蝕生成
物によつて導電率測定値に大きな誤差を生じてい
る。腐蝕生成物による誤差を解消する方法として
は測定電極表面に生じた腐蝕生成物を保守時に除
去することが考えられる。たとえば電解洗浄など
によつて測定電極表面より腐蝕生成物を除去する
にしてもその完全を期することは困難で、セル定
数を変更するなどして導電率測定値を校正してい
るのが実状である。そのため測定精度は必ずしも
良好ではないという欠点がある。また、これとは
別に導電率計が炉水を測定対象とする場合には、
その保守時に保守員が被曝するといつた安全上の
問題も残されている。
Generally, stainless steel measurement electrodes are used in industrial conductivity meters that continuously measure the conductivity of liquids, but corrosion products that occur on the electrode surface may cause the conductivity to deteriorate over a long period of time. The reality is that it is not possible to measure continuously and with good accuracy. This tendency is more pronounced as the sample water becomes more corrosive. For example, when a conductivity meter is used to measure highly corrosive reactor water in a nuclear power plant, corrosion products generated on the measurement electrode surface cause large errors in the conductivity measurements. One possible way to eliminate errors caused by corrosion products is to remove the corrosion products generated on the surface of the measurement electrode during maintenance. For example, even if corrosion products are removed from the surface of the measurement electrode by electrolytic cleaning, it is difficult to completely remove them, and the actual conductivity measurements are calibrated by changing the cell constant. It is. Therefore, there is a drawback that the measurement accuracy is not necessarily good. In addition, if the conductivity meter measures reactor water,
Safety issues remain, such as maintenance personnel being exposed to radiation during maintenance.

なお、この種の導電率測定方法として、実開昭
58−104961号に開示された技術がある。この従来
技術は、試料水及び純水を測定電極、基準電極に
与えることによつて試料水、純水の各々について
2種類の導電率計測値を求め、更にこれら計測値
より定量的に被膜抵抗と電極表面積の減少とに起
因するセル定数の補正係数を求めるようにし、こ
れらの値によつて測定電極による試料水の導電率
測定値を校正あるいは補正するものである。しか
しながら、この従来技術においては、基準電極に
試料水が導入されるため、基準電極の表面を高品
位に保つことが難しい懸念があり、また校正・補
正のための基準となる液が純水1種類であるた
め、正確な校正・補正値を得るには難点があつ
た。
Note that this type of conductivity measurement method was developed by
There is a technique disclosed in No. 58-104961. This conventional technology obtains two types of conductivity measurement values for each of the sample water and pure water by applying the sample water and pure water to a measurement electrode and a reference electrode, and then quantitatively calculates the film resistance from these measurement values. The cell constant correction coefficients caused by the reduction in the electrode surface area and the reduction in the electrode surface area are determined, and the conductivity measurement value of the sample water by the measurement electrode is calibrated or corrected using these values. However, in this conventional technology, since sample water is introduced into the reference electrode, there is a concern that it is difficult to maintain a high quality surface of the reference electrode, and the reference liquid for calibration and correction is pure water. Because of the different types, it was difficult to obtain accurate calibration and correction values.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、保守を頻繁に行なうことなく
液体の導電率を長期間に亘つて連続的に、しかも
精度良好にして測定し得る方法を供するにある。
An object of the present invention is to provide a method for measuring the conductivity of a liquid continuously over a long period of time and with good accuracy without frequent maintenance.

〔発明の概要〕[Summary of the invention]

この目的のため本発明は、導電率測定値の誤差
の原因が、腐蝕等で生じた酸化膜による被膜抵抗
の増大とヘマタイトなどの絶縁性微粒子の付着に
よる電極表面積の減少とに存することを実験的に
究明し、定量的に被膜抵抗と電極表面積の減少に
起因するセル定数の補正係数とを求め、これらの
値にもとづき測定電極による試料水の導電率測定
値を校正あるいは補正することによつて正しい導
電率測定値を得んとするものである。
To this end, the present invention has conducted experiments to demonstrate that the causes of errors in conductivity measurements are an increase in film resistance due to an oxide film caused by corrosion, and a decrease in electrode surface area due to the adhesion of insulating particles such as hematite. By determining the film resistance and quantitatively determining the correction coefficient of the cell constant due to the decrease in the electrode surface area, and calibrating or correcting the conductivity measurement value of the sample water using the measurement electrode based on these values. The objective is to obtain accurate conductivity measurements.

即ち、本発明は、測定電極を有する測定セル
と、基準電極を有する基準測定セルとを備え、上
記測定セルに試料水及び一定の導電率の溶液とを
それぞれ導入するとともに、上記基準測定セルに
一定の導電率の溶液を導入して、それらの測定値
から測定電極についての被膜抵抗の値とセル定数
に対する補正係数の値とを求め、上記試料水につ
いての導電率測定値を校正・補正するようになし
た導電率測定方法であつて、上記基準測定セル
は、上記試料水の流路からバルブによつて隔離さ
れるとともに、上記測定セルに一定の導電率の溶
液を導入する際当該測定セルの上流側に配置さ
れ、この基準測定セル、測定セルの流路に、一定
の導電率をもつ2種の溶液をそれぞれ導入するこ
とにより、上記測定電極についての被膜抵抗の値
とセル定数に対する補正係数の値とを求め、上記
試料水についての導電率測定値を校正・補正する
ようになしたことを特徴とする。
That is, the present invention includes a measurement cell having a measurement electrode and a reference measurement cell having a reference electrode, and a sample water and a solution having a constant conductivity are respectively introduced into the measurement cell, and the reference measurement cell is provided with a sample water and a solution having a constant conductivity. A solution with a constant conductivity is introduced, and the value of the film resistance for the measurement electrode and the value of the correction coefficient for the cell constant are determined from the measured values, and the measured value of the conductivity for the sample water is calibrated and corrected. In the conductivity measurement method, the reference measurement cell is isolated from the flow path of the sample water by a valve, and when a solution having a constant conductivity is introduced into the measurement cell, the reference measurement cell is isolated from the flow path of the sample water. By introducing two types of solutions each having a certain conductivity into the reference measurement cell and the flow path of the measurement cell, which are arranged on the upstream side of the cell, the value of the film resistance and the cell constant for the measurement electrode can be determined. The present invention is characterized in that the conductivity measurement value for the sample water is calibrated and corrected by determining the value of the correction coefficient.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を添附した図により説明する。原
子力発電プラントに例を採れば、炉水は試料水導
入口12から測定セル15内に連続的に導入さ
れ、その導電率は測定電極16によつて測定され
る。バルブ11を閉じ、また、バルブ14を連続
的に開いておく場合は、試料水導入口12からの
炉水は導入管13、バルブ14を介し測定セル1
5内に導入され、測定セル15内に導入された炉
水はその炉水に浸漬すべく設けられた測定電極1
6によつて連続的にその導電率が測定されるよう
になつている。測定済の炉水は試料水排出管17
を介して測定セル15内より排出されるようにな
つている。これまで、導電率の測定は以上のよう
にして行なわれていたが、本発明の実施に際して
は測定値校正装置19が必要とされる。これによ
つて測定電極16による導電率測定値を校正す
る。
Hereinafter, the present invention will be explained with reference to the accompanying drawings. Taking a nuclear power plant as an example, reactor water is continuously introduced into the measurement cell 15 from the sample water inlet 12, and its conductivity is measured by the measurement electrode 16. When the valve 11 is closed and the valve 14 is kept open continuously, the reactor water from the sample water inlet 12 passes through the inlet pipe 13 and the valve 14 to the measurement cell 1.
5 and into the measurement cell 15, the measurement electrode 1 is provided to be immersed in the reactor water.
6, its conductivity is continuously measured. Measured reactor water is sample water discharge pipe 17
It is designed to be discharged from the measurement cell 15 via. Until now, conductivity measurements have been carried out as described above, but the measurement value calibration device 19 is required when implementing the present invention. This calibrates the conductivity measurement value by the measurement electrode 16.

測定電極16による導電率測定値の校正は以下
のようにして行なわれる。即ち、バルブ14,1
1をそれぞれ閉、開とした状態で移送流量可変定
量ポンプ3,4が作動するようにされる。これに
より貯槽1からは一定流量の校正原液2が、ま
た、貯槽5からは一定流量のイオン交換水6が取
り出され、これらは混合器7で一定の濃度、した
がつて一定の導電率の溶液として混合・調整され
た後、フイルタ8を介し基準測定セル10と測定
セル15に供され、基準電極9および測定電極1
6によつてその溶液の導電率が測定される。これ
らの測定が終了したならば、次にはポンプ3によ
る校正原液2の流量を変えることによつて前記溶
液とは異なつた濃度および導電率の溶液を得る。
この溶液の導電率を先の場合と同様にして基準電
極9および測定電極16によつて測定する。これ
らの測定に際し基準電極9による導電率測定値は
正確であるべきである。これは、後述するところ
から明らかである。
Calibration of the conductivity measurement value by the measurement electrode 16 is performed as follows. That is, valve 14,1
The variable transfer flow rate metering pumps 3 and 4 are operated with the pumps 1 closed and open, respectively. As a result, a constant flow rate of the calibration stock solution 2 is taken out from the storage tank 1, and a constant flow rate of ion-exchanged water 6 is taken out from the storage tank 5. After being mixed and adjusted as
The conductivity of the solution is measured by 6. Once these measurements have been completed, the flow rate of the calibration stock solution 2 by the pump 3 is changed to obtain a solution with a different concentration and conductivity from the above solution.
The conductivity of this solution is measured as before using the reference electrode 9 and the measuring electrode 16. During these measurements, the conductivity measurements made by the reference electrode 9 should be accurate. This will be clear from what will be described later.

ここで最初の溶接に対する基準電極9、測定電
極16による導電率測定値をそれぞれK′,K′x、
または次の溶液に対する導電率測定値をそれぞれ
K″,K″xとすれば以下の式が成立する。
Here, the conductivity values measured by the reference electrode 9 and the measuring electrode 16 for the first welding are K′, K′x, respectively.
or conductivity measurements for the following solutions, respectively.
If K″ and K″x are used, the following formula holds true.

K′=C/R′ ………(1) K′x=αC/R′+△γ ………(2) K″=C/R″ ………(3) K″x=αC/R″+△γ ………(4) 但し、C,R′,α,△γ,R″は C;セル定数、 R′;最初の基準溶液の抵抗、 α;セル定数Cに対する補正係数、 △γ:測定電極16における被膜抵抗、 R″;次の基準溶液の抵抗。 K′=C/R′……(1) K′x=αC/R′+△γ……(2) K″=C/R″……(3) K″x=αC/R″+△γ……(4) However, C, R′, α, △γ, R″ are C; cell constant, R′; resistance of the initial reference solution, α; correction coefficient for cell constant C; Δγ: film resistance in the measurement electrode 16, R″; resistance of the next reference solution.

したがつて式(1),(2)および式(3),(4)より△γと
αとの間係は式(5),(6)として、更に式(5),(6)より
αは式(7)として求められる。
Therefore, from equations (1) and (2) and equations (3) and (4), the relationship between △γ and α is expressed as equations (5) and (6), and further from equations (5) and (6), α is obtained as equation (7).

△γ/C=αK′−K′x/K′K′x ………(5) △γ/C=αK″−K″x/K″K″x ………(6) α=1/K′−1/K″/1/K′−1/K″x………(7) 即ち、式(5)〜(7)よりαと△γが定量的に求めら
れる。△γは経時的に徐々に変化するが、一般に
△γの値は長時間に亘つて安定でありK′x,K″x
を相前後して同時に得る場合は定数と看做し得る
ので△γ/C=1/K0とおき、更に試料水の導
電率をK、測定電極16による導電率測定値を
Kxとすれば、Kは以下のようにして求められる。
△γ/C=αK′−K′x/K′K′x ………(5) △γ/C=αK″−K″x/K″K″x……(6) α=1/ K′-1/K″/1/K′-1/K″x (7) That is, α and Δγ can be quantitatively determined from equations (5) to (7). Although △γ gradually changes over time, the value of △γ is generally stable over a long period of time, and K′x, K″x
If obtained simultaneously before and after, it can be regarded as a constant, so set △γ/C=1/K 0 , furthermore, let the conductivity of the sample water be K, and the conductivity value measured by the measuring electrode 16.
If Kx, then K can be found as follows.

K=KxK0/αK0−Kx ………(8) αと△γ、更に△γよりK0を求め、これらの
値とKxより試料水の導電率Kは式(8)によつて与
えられる。導電率Kは具体的には測定値校正装置
19の一部を構成するマイクロコンピユータ18
によつて算出される。マイクロコンピユータ18
は導電率算出プログラムに従い基準電極9、測定
電極16からの導電率測定値を演算処理すること
によつて連続的に導電率Kを算出している。マイ
クロコンピユータ18また導電率Kの算出のみな
らずその表示・記録やK0の算出に必要とされる
バルブ11,14の開閉制御やポンプ3,4をも
制御している。
K=KxK 0 /αK 0 −Kx ………(8) Find K 0 from α, △γ, and △γ, and from these values and Kx, the conductivity K of the sample water is given by equation (8). It will be done. Specifically, the conductivity K is determined by the microcomputer 18 that constitutes a part of the measured value calibration device 19.
Calculated by. Microcomputer 18
The conductivity K is continuously calculated by processing the conductivity measurement values from the reference electrode 9 and the measurement electrode 16 according to the conductivity calculation program. The microcomputer 18 also controls not only the calculation of the conductivity K but also the opening and closing of the valves 11 and 14 and the pumps 3 and 4 necessary for displaying and recording the conductivity and calculating K 0 .

本発明は以上のようなものであるが、2種類の
溶液としては測定対象である試料水の導電率の上
限および下限に対応するもので十分である。ま
た、校正原液としては経時変化のないものが望ま
れるが、これには例えば濃度が1000ppm程度の塩
化カリウムが適当である。ところで基準電極は校
正時にのみ使用に供されるが、それ以外の間にそ
の電極表面が劣化されないように考慮されるべき
である。使用に供されていない間基準電極は微粒
子が含まれていないイオン交換水に浸漬するか、
あるいは窒素などの不活性気体の雰囲気下で保存
するのが適当である。ただ、イオン交換水に浸漬
した状態で保存する場合は、紫外線殺菌灯などに
よつて細菌類の繁殖を抑えるなどの配慮が必要で
ある。細菌類の繁殖防止はまたポンプの故障防止
にも有効である。ところで混合器の下流に配され
ているフイルタは基準電極の劣化を防止すべく溶
液中に含まれている微粒子を除去するためのもの
で、これには孔径が0.45μ程度のメンブランフイ
ルタが適当である。
Although the present invention is as described above, it is sufficient that the two types of solutions correspond to the upper and lower limits of the conductivity of the sample water to be measured. Further, it is desirable that the calibration stock solution be one that does not change over time, and for example, potassium chloride with a concentration of about 1000 ppm is suitable for this purpose. By the way, although the reference electrode is used only during calibration, care should be taken to prevent the electrode surface from being deteriorated during other times. While not in use, the reference electrode should be immersed in ion-exchanged water that does not contain particulates, or
Alternatively, it is appropriate to store it under an atmosphere of an inert gas such as nitrogen. However, if they are to be stored immersed in ion-exchanged water, care must be taken, such as using an ultraviolet germicidal lamp to suppress the growth of bacteria. Preventing bacterial growth is also effective in preventing pump failure. By the way, the filter placed downstream of the mixer is to remove fine particles contained in the solution to prevent deterioration of the reference electrode, and a membrane filter with a pore size of about 0.45μ is suitable for this purpose. be.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、測定電極による
試料水の導電率の連続的測定に際し、測定電極に
おける被膜抵抗の値とセル定数の補正係数とを定
期的に、あるいは随時求め、これらの値によつて
連続的に得られる導電率測定値を補正するように
したものである。本発明によれば、保守を行なう
ことなく液体の導電率を長期間に亘つて連続的
に、しかも精度良好にして測定し得る。特に炉水
の導電率を測定する場合には被曝量が低減される
といつた効果も併せて得られる。
As explained above, the present invention, when continuously measuring the conductivity of sample water using a measuring electrode, periodically or at any time determines the value of the film resistance at the measuring electrode and the correction coefficient of the cell constant, and adjusts these values. Therefore, the continuously obtained conductivity measurement values are corrected. According to the present invention, the conductivity of a liquid can be measured continuously over a long period of time and with good accuracy without maintenance. In particular, when measuring the conductivity of reactor water, the effect of reducing radiation exposure can also be obtained.

更に本発明によれば、基準電極には試料水が導
入されずに高品位の一定の導電率の溶液のみが供
給されるため基準電極の表面は高品位に保たれ、
また校正・補正のための基準となる液が溶液2種
類であるため、正確な校正・補正値を得ることが
可能である。
Furthermore, according to the present invention, only a high-quality solution with a constant conductivity is supplied to the reference electrode without introducing sample water, so that the surface of the reference electrode is maintained in high quality.
Furthermore, since there are two types of solutions that serve as standards for calibration and correction, it is possible to obtain accurate calibration and correction values.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明が実施された導電率測定システム
の一例での構成を示す図である。 2……校正原液、3,4……ポンプ、6……イ
オン交換水、7……混合器、9……基準電極、1
2……試料水導入口、16……測定電極、18…
…マイクロコンピユータ。
The figure is a diagram showing the configuration of an example of a conductivity measurement system in which the present invention is implemented. 2... Calibration stock solution, 3, 4... Pump, 6... Ion exchange water, 7... Mixer, 9... Reference electrode, 1
2...Sample water inlet, 16...Measurement electrode, 18...
...Microcomputer.

Claims (1)

【特許請求の範囲】 1 測定電極を有する測定セルと、基準電極を有
する基準測定セルとを備え、上記測定セルに試料
水及び一定の導電率の溶液とをそれぞれ導入する
とともに、上記基準測定セルに一定の導電率の溶
液を導入して、それらの測定値から測定電極につ
いての被膜抵抗の値とセル定数に対する補正係数
の値とを求め、上記試料水についての導電率測定
値を校正・補正するようになした導電率測定方法
であつて、 上記基準測定セルは、上記試料水の流路からバ
ルブによつて隔離されるとともに、上記測定セル
に一定の導電率の溶液を導入する際当該測定セル
の上流側に配置され、 この基準測定セル、測定セルの流路に、一定の
導電率をもつ2種の溶液をそれぞれ導入すること
により、 上記測定電極についての被膜抵抗の値とセル定
数に対する補正係数の値とを求め、上記試料水に
ついての導電率測定値を校正・補正するようにな
したことを特徴とする導電率測定方法。
[Scope of Claims] 1. A measuring cell having a measuring electrode and a reference measuring cell having a reference electrode, in which sample water and a solution having a constant conductivity are respectively introduced into the measuring cell, and the reference measuring cell is A solution with a constant conductivity is introduced into the sample water, and the film resistance value and the correction coefficient value for the cell constant are calculated from these measured values, and the conductivity measurement value for the sample water is calibrated and corrected. In the conductivity measurement method, the reference measurement cell is isolated from the flow path of the sample water by a valve, and when a solution having a constant conductivity is introduced into the measurement cell, the reference measurement cell is isolated from the sample water flow path by a valve. By introducing two types of solutions, which are placed upstream of the measurement cell and have a constant conductivity, into the reference measurement cell and the flow path of the measurement cell, the value of the film resistance and the cell constant for the measurement electrode can be determined. A conductivity measurement method characterized in that the conductivity measurement value for the sample water is calibrated and corrected by determining the value of a correction coefficient for the sample water.
JP1999384A 1984-02-08 1984-02-08 Measuring method of conductivity Granted JPS60165560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1999384A JPS60165560A (en) 1984-02-08 1984-02-08 Measuring method of conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1999384A JPS60165560A (en) 1984-02-08 1984-02-08 Measuring method of conductivity

Publications (2)

Publication Number Publication Date
JPS60165560A JPS60165560A (en) 1985-08-28
JPH052951B2 true JPH052951B2 (en) 1993-01-13

Family

ID=12014685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1999384A Granted JPS60165560A (en) 1984-02-08 1984-02-08 Measuring method of conductivity

Country Status (1)

Country Link
JP (1) JPS60165560A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296262A (en) * 2000-04-13 2001-10-26 Techno Medica Co Ltd Conductivity measuring method
JP5198187B2 (en) * 2007-09-26 2013-05-15 東京エレクトロン株式会社 Liquid processing apparatus and processing liquid supply method
US8491726B2 (en) * 2007-09-26 2013-07-23 Tokyo Electron Limited Liquid processing apparatus and process liquid supplying method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104961U (en) * 1982-01-12 1983-07-16 株式会社日立製作所 Conductivity measurement device

Also Published As

Publication number Publication date
JPS60165560A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
JP5317321B2 (en) Metal material, storage container using the same, gas piping, apparatus, manufacturing method thereof, and ClF3 storage method
JPH052951B2 (en)
US6494961B2 (en) Method of controlling solution concentration in strip cleaning line
Rho et al. Optimization of chemical oxygen demand determination in seawater samples using the alkaline potassium permanganate method
Robinson et al. The aggregation of colloidal electrolytes from transport number and conductivity measurements: some benzidine dyes
JPH047942B2 (en)
TWI258387B (en) Automatic metal solution dilutor
Trojanowicz Continuous potentiometric determination of sulphate in a differential flow system
JPS60165561A (en) Measuring method of conductivity
US3214301A (en) Automatic ph control of chemical treating baths
JPS6093952A (en) Continuous measurement of bod
CN112067682A (en) Online dissolved oxygen meter zero calibration system and method
JPH0427856A (en) Method and apparatus for measuring concentration of ion
JP2008107244A (en) Method for measuring continuous type total organic carbon concentration, and device thereof
CN114791457B (en) Verification method and device for online pH analyzer of power plant
US4020329A (en) Apparatus for radiation dose measurement
JP2002228629A (en) Method for measuring nitrate ion concentration
JP7451751B2 (en) Analysis system, management system, analysis method, and analysis program
JP4243509B2 (en) Chemical device
CN212622384U (en) On-line dissolved oxygen meter zero calibration system
CN208776839U (en) A kind of dosing calibrating installation and chemical thought coating apparatus
JPH0364483A (en) Method for measuring and adjusting concentration of plating solution and concentration adjusting device
JPH0617890B2 (en) Dissolved oxygen concentration measuring device
JPH10332679A (en) Automatic measuring device for stability index
EP0007733B1 (en) Method and apparatus for use in ion-selective electrode measurements