JPH0529503A - Heat dissipation equipment - Google Patents

Heat dissipation equipment

Info

Publication number
JPH0529503A
JPH0529503A JP3184386A JP18438691A JPH0529503A JP H0529503 A JPH0529503 A JP H0529503A JP 3184386 A JP3184386 A JP 3184386A JP 18438691 A JP18438691 A JP 18438691A JP H0529503 A JPH0529503 A JP H0529503A
Authority
JP
Japan
Prior art keywords
heat dissipation
air
columnar protrusions
hollow
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3184386A
Other languages
Japanese (ja)
Other versions
JP2768063B2 (en
Inventor
Nobuitsu Takehashi
信逸 竹橋
Kenzo Hatada
賢造 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3184386A priority Critical patent/JP2768063B2/en
Publication of JPH0529503A publication Critical patent/JPH0529503A/en
Application granted granted Critical
Publication of JP2768063B2 publication Critical patent/JP2768063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Abstract

PURPOSE:To obtain a pin type heat dissipation equipment capable of effective heat dissipation wherein thermal conduction efficiency as far as a heat dissipation region from a heat generation source to the outside (in the air) is not damaged, and heat dissipation characteristics are not deteriorated by convection reduction of air between pins on account of the decrease of arrangement pitch of pins. CONSTITUTION:A plurality of columnar protrusions which are main heat dissipation regions of a pin type heat dissipation equipment are constituted as cylindrical hollow structures. Penetrating holes linked with hollow parts inside the protrusions are formed in the lower parts of the columnar protrusions. When sent cooling wind 32 collides against a plurality of the columnar protrusions which are main heat dissipation regions of the pin type heat dissipation equipment, the air in hollow parts 24 inside the columnar protrusions 23 is conducted and discharged by air flow as the result of the Venturi effect. Cooled air from penetrating holes 25 in the lower part is sent into the hollow parts 24 inside the columnar protrusions 23, and active convection and circulation are generated. Thereby the inner walls of the hollow parts are always cooled by the cold air, so that heat dissipation characteristics of a semiconductor device 27 can remarkably be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の放熱の手段
として用いる放熱器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator used as a means for radiating heat from a semiconductor device.

【0002】[0002]

【従来の技術】近年、半導体集積回路の素子数は増大し
又、チップサイズは大型化の傾向にある。一方、このた
め半導体集積回路動作時の発熱も大きくなり半導体素子
の信頼性上、半導体装置には放熱の必要性が生じてく
る。半導体装置の放熱方法には一般的に放熱器による空
冷方式がコスト的にも、信頼性的にも有利であるため多
く用いられている。放熱器には種々の種類があるが、図
5は従来におけるピン型放熱器を示したもので、ピン型
放熱器1は放熱部2に複数の角柱3状または円柱4状の
凸部5を整列して表面積をもたせたものである。前期ピ
ン型放熱器1による放熱方法は図6に示すとおり、半導
体装置6の発熱領域7にピン型放熱器1を設け、半導体
装置より発生した熱8はピン型放熱器1に伝わり放熱部
2である複数の角柱状3または円柱状4の凸部5から熱
を外部(大気中)に放散させる。この時無風すなわち、
自然空冷の場合同図(A)に示すとおり、放熱部2に設
けられた複数の角柱及び、円柱状の凸部3,4から放散
される熱9により空気の対流10が生じて冷却される。
一方、ファン(図示せず)による強制空冷時は送風され
る冷却風11がピン型放熱器1の放熱面2に設けられた
複数の角柱または円柱状の凸部3,4にふれ、冷却され
るものである。この時、放熱面2は複数の角柱状3また
は円柱状4の凸部であるためピン型放熱器1は風向が制
限されない。また、無風及び、強制空冷いずれの場合に
でも使用する事が可能であるなどの特徴を有するため主
に大型計算機等の多ピンLSIパッケージに用いられて
いるものであった。しかしながら、ピン型放熱器1の放
熱特性は放熱面積に依存しており、角柱3または円柱4
の凸部の直径12及び、配置数により放熱面積が決定さ
れる。従って、外形寸法13に対していかに多くのピン
を設け、放熱面積を確保するかが問題であった。そのた
め多数のピンを配置できるよにピンの配置ピッチ14を
少なくしたりピンの形状寸法を細かくするなどの方法が
とられているものであった。
2. Description of the Related Art In recent years, the number of elements in semiconductor integrated circuits has increased and the chip size has tended to increase in size. On the other hand, this causes a large amount of heat generation during the operation of the semiconductor integrated circuit, and the semiconductor device needs to dissipate heat in terms of reliability of the semiconductor element. As a heat dissipation method for semiconductor devices, an air cooling method using a radiator is generally used because it is advantageous in terms of cost and reliability. Although there are various kinds of radiators, FIG. 5 shows a conventional pin-type radiator, in which the pin-type radiator 1 has a plurality of prismatic protrusions 5 in the shape of a prism 3 or a cylinder 4 in the heat radiating portion 2. They are aligned and have a surface area. As shown in FIG. 6, the heat dissipation method by the pin type radiator 1 in the previous period is such that the pin type radiator 1 is provided in the heat generating area 7 of the semiconductor device 6, and the heat 8 generated from the semiconductor device is transmitted to the pin type radiator 1 and the heat dissipation portion 2 The heat is dissipated to the outside (in the atmosphere) from the convex portions 5 of the plurality of prismatic columns 3 or cylindrical columns 4 which are This time there is no wind, that is,
In the case of natural air cooling, as shown in FIG. 1A, air 9 is cooled by the convection 10 of air generated by the heat 9 radiated from the plurality of prisms provided in the heat radiating portion 2 and the cylindrical convex portions 3 and 4. .
On the other hand, during forced air cooling by a fan (not shown), the cooling air 11 blown is touched and cooled by the plurality of prismatic or cylindrical projections 3 and 4 provided on the heat radiation surface 2 of the pin-type radiator 1. It is something. At this time, since the heat radiation surface 2 is a plurality of convex portions of the prismatic shape 3 or the cylindrical shape 4, the wind direction of the pin-type radiator 1 is not limited. Further, since it has characteristics such that it can be used in both cases of no wind and forced air cooling, it has been mainly used for multi-pin LSI packages such as large-scale computers. However, the heat dissipation characteristics of the pin-type radiator 1 depend on the heat dissipation area, and the prism 3 or the cylinder 4
The heat dissipation area is determined by the diameter 12 of the convex portion and the number of arrangements. Therefore, it has been a problem how many pins are provided for the outer dimension 13 to secure a heat radiation area. Therefore, methods such as reducing the pin arrangement pitch 14 or making the pin shape fine are adopted so that a large number of pins can be arranged.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記のよ
うな構成では、 1)放熱面積を増大するためにピン型放熱器のピンの配
置ピッチを小さくすると発熱源から外部(大気中)へ放
散させる放熱領域までの熱伝達効率が低下する。 2)ピン型放熱器のピンの配置ピッチを少なくすること
によりピン間の空気の対流が緩慢になり放熱特性が悪化
し、さらには冷却風が極めて弱い場合放熱効果が著しく
低下するというきわめて重大な問題点を有していた。本
発明はかかる点に鑑み、発熱源から外部(大気中)へ放
散させる放熱領域までの熱伝達効率を損なわず又、ピン
型放熱器のピンの配置ピッチを少なくすることによるピ
ン間の空気の対流の緩慢で放熱特性が悪化しない効果的
な放熱を行うピン型放熱器を提供することを目的とす
る。
However, in the above-mentioned configuration, 1) heat radiation to be dissipated from the heat source to the outside (in the atmosphere) by reducing the pin arrangement pitch of the pin type radiator to increase the heat radiation area The heat transfer efficiency to the area is reduced. 2) By reducing the pin pitch of the pin-type radiator, the convection of air between the pins becomes slower and the heat dissipation characteristics deteriorate, and when the cooling air is extremely weak, the heat dissipation effect significantly decreases. I had a problem. In view of such a point, the present invention does not impair the heat transfer efficiency from the heat source to the heat dissipation area to be dissipated to the outside (in the atmosphere), and reduces the pitch between the pins by reducing the pin arrangement pitch of the pin type radiator. An object of the present invention is to provide a pin-type radiator that radiates effective heat without slowing convection and deteriorating heat radiation characteristics.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の放熱器は、ピン型放熱器の主たる放熱領域
である複数個の柱状の突起部の内部が筒状の中空構造
で、前記柱状の突起部の下部に突起部内部の中空部に通
じる貫通孔が設けられているという構成を備えたもので
ある。
In order to solve the above-mentioned problems, the radiator of the present invention has a hollow structure in which a plurality of columnar projections, which are the main heat radiation areas of the pin-type radiator, have a cylindrical hollow inside. A structure is provided in which a through hole communicating with a hollow portion inside the protrusion is provided in the lower portion of the columnar protrusion.

【0005】[0005]

【作用】本発明は上記した構成によって放熱器の主たる
放熱領域である複数個の柱状の突起部の内部が筒状の中
空構造となっているため中空部壁面からの熱の放出によ
り中空部内部に熱気流が発生し中空部壁面からの熱によ
り加熱された空気は筒状の中空部の上部に移動、大気中
に放出される。この時、柱状の突起部の下部に設けられ
ている突起部内部の中空部に通じる貫通孔から常に外部
の大気が循環することとなる。
According to the present invention, since the inside of the plurality of pillar-shaped projections, which are the main heat dissipation areas of the radiator, has a hollow cylindrical shape due to the above-described structure, heat is released from the wall surface of the hollow part to the inside of the hollow part. A hot air flow is generated in the air, and the air heated by the heat from the wall surface of the hollow portion moves to the upper part of the cylindrical hollow portion and is released into the atmosphere. At this time, the outside atmosphere is always circulated through the through hole provided in the lower portion of the columnar protrusion and communicating with the hollow portion inside the protrusion.

【0006】[0006]

【実施例】以下本発明の放熱器の実施例について、図面
を参照しながら説明する。(図1)、(図2)および
(図3)は本発明のにおける放熱器の構造を示した外観
図ある。(図1,2,3)において、ピン型放熱器20
の放熱領域である円柱状21及び、角柱状22の凸部2
3の内部は筒状または、角柱状の中空構造24である。
また、凸部23の下部に凸部23の内部の中空部24に
通じる貫通孔25が設けられている構造となっており、
ピン型放熱器20と半導体装置27との接着はピン型放
熱器20の接着面26で行われている。次に(図4)を
用いて本発明における実施例について説明する。(図4
−A)は第1の実施例である自然空冷における場合を示
したものである。半導体装置27とピン型放熱器20と
の接着は一般的には接着樹脂(図示せず)で行われる。
半導体装置27から生じる熱は半導体装置27の発熱面
28からピン型放熱器20の接着面26に伝達される。
伝達された熱はピン型放熱器20の凸部23の表面およ
び、中空部24の内壁部から放散される。このとき、凸
部23の表面および、内部に設けられた中空部24の内
壁面から生じる熱29で空気の対流30が生じ、特に凸
部23の内部の中空部24において熱せられた空気30
が中空部内24を通り上昇し、これによって気流の煙突
効果が生じる。したがって、熱せられた空気30の上昇
移動により凸部23の下部に凸部23の内部の中空部2
4に通じる貫通孔25から常に外部からの冷えた空気3
1が送り込まれ、空気の対流・循環が行われる。このよ
うな熱気流の煙突効果によって中空部24の内壁が常に
冷えた空気31によって冷却され、放熱効果は著しく向
上するものである。次に(図4−b)は本発明の第2の
実施例である強制空冷における場合を示したものであ
る。半導体装置27に接着されたピン型放熱器20に送
風ファン等(図示せず)によって強制的に冷却風32を
送風する。送風された冷却風32はピン型放熱器21の
主たる放熱領域である複数個の柱状の凸部21に当た
る。柱状の凸部21の上部は内部の中空部24の開口部
であるため、送風された冷却風32が開口部と垂直方向
に当たると、ベンチェリー効果により、柱状の凸部21
の内部の中空部24の空気31は冷却風32の気流に導
かれて放出される。この作用によって、柱状の凸部21
の内部の中空部24はわずかな真空状態となり、前記柱
状の凸部21の下部に凸部の内部の中空部24に通じる
貫通孔25から外部の空気31を吸入して柱状の凸部2
1の内部の中空部24内には外部からの冷えた空気31
が送り込まれ、活発な空気31の対流・循環が行われ
る。それにより中空部24の内壁が常に大気の冷えた空
気31によって冷却が行われるため、半導体装置の放熱
特性は著しく向上するものである。
Embodiments of the radiator of the present invention will be described below with reference to the drawings. (FIG. 1), (FIG. 2) and (FIG. 3) are external views showing the structure of the radiator in the present invention. In FIGS. 1, 2, and 3, the pin type radiator 20
Of the columnar shape 21 and the prismatic shape 22 of the heat dissipation area of
The inside of 3 is a hollow structure 24 having a cylindrical or prismatic shape.
Further, the through hole 25 communicating with the hollow portion 24 inside the convex portion 23 is provided in the lower portion of the convex portion 23,
The pin type radiator 20 and the semiconductor device 27 are bonded to each other on the bonding surface 26 of the pin type radiator 20. Next, an example of the present invention will be described with reference to FIG. (Fig. 4
-A) shows the case of natural air cooling which is the first embodiment. Bonding between the semiconductor device 27 and the pin-type radiator 20 is generally performed with an adhesive resin (not shown).
The heat generated from the semiconductor device 27 is transferred from the heat generating surface 28 of the semiconductor device 27 to the bonding surface 26 of the pin type radiator 20.
The transferred heat is dissipated from the surface of the convex portion 23 of the pin type radiator 20 and the inner wall portion of the hollow portion 24. At this time, air convection 30 is generated by the heat 29 generated from the surface of the convex portion 23 and the inner wall surface of the hollow portion 24 provided inside, and particularly the air 30 heated in the hollow portion 24 inside the convex portion 23.
Rises through the hollow interior 24, which creates a chimney effect of the air flow. Therefore, due to the rising movement of the heated air 30, the hollow portion 2 inside the convex portion 23 is formed below the convex portion 23.
Cool air from outside always through the through hole 25 leading to 4
1 is sent, and air convection and circulation are performed. Due to such a chimney effect of the hot air flow, the inner wall of the hollow portion 24 is constantly cooled by the cooled air 31, and the heat radiation effect is significantly improved. Next (FIG. 4-b) shows a case of forced air cooling which is a second embodiment of the present invention. The cooling air 32 is forcibly blown to the pin type radiator 20 adhered to the semiconductor device 27 by a blower fan or the like (not shown). The blown cooling air 32 hits a plurality of columnar protrusions 21 which are the main heat dissipation areas of the pin-type radiator 21. Since the upper portion of the columnar convex portion 21 is the opening portion of the hollow portion 24 inside, when the blown cooling air 32 hits the opening portion in the vertical direction, the columnar convex portion 21 is generated due to the Benchery effect.
The air 31 in the hollow portion 24 inside is discharged by being guided by the cooling airflow 32. By this action, the columnar convex portion 21
The hollow portion 24 in the inside of the columnar convex portion 2 is in a slight vacuum state, and external air 31 is sucked into the lower portion of the columnar convex portion 21 from the through hole 25 communicating with the hollow portion 24 inside the convex portion to form the columnar convex portion 2.
1. Inside the hollow portion 24 of the inside 1, cold air 31 from the outside
Is sent, and active convection and circulation of the air 31 is performed. As a result, the inner wall of the hollow portion 24 is always cooled by the cooled air 31 of the atmosphere, so that the heat dissipation characteristics of the semiconductor device are significantly improved.

【0007】[0007]

【発明の効果】以上説明したように、本発明によれば、
本発明は放熱器の主たる放熱領域である複数個の柱状の
凸部の内部を筒状の中空構造とし、柱状の凸部の下部に
凸部内部の中空部に通じる貫通孔設けた構造にすること
で、凸部の内部の中空部の壁面より熱が放出されその熱
によって加熱された空気が筒状の中空部の上部に上昇
し、外部へ放出される。その結果、柱状の凸部の下部に
設けられている凸部の内部の中空部に通じる貫通孔から
常に外部の大気が循環され中空部の内壁が常に大気の冷
えた空気によって冷却が行われ、放熱特性は著しく向上
するものである。
As described above, according to the present invention,
According to the present invention, the inside of a plurality of pillar-shaped protrusions, which is the main heat dissipation area of the radiator, has a cylindrical hollow structure, and a through hole is provided in the lower portion of the pillar-shaped protrusion to communicate with the hollow inside the protrusion. As a result, heat is released from the wall surface of the hollow portion inside the convex portion, and the air heated by the heat rises to the upper portion of the cylindrical hollow portion and is released to the outside. As a result, the outside atmosphere is always circulated from the through hole that communicates with the hollow portion inside the convex portion provided at the lower portion of the columnar convex portion, and the inner wall of the hollow portion is always cooled by the cold air of the atmosphere, The heat dissipation characteristics are remarkably improved.

【0008】これらの構造をとることによって従来の放
熱器で放熱領域の増大する方法として行われていたピン
の直径及び、ピン数を増大化やピンの配置ピッチを狭ピ
ッチにすることでピン間の空気の対流の緩慢化によって
放熱特性が悪化するということがない。したがって、半
導体装置をきわめて低コストで信頼性の高い放熱手段と
して用いることが可能となり、その実用的効果は極めて
大きい。
By adopting these structures, the diameter of the pins and the number of pins, which have been used as a method of increasing the heat radiation area in the conventional radiator, are increased, and the pitch between the pins is narrowed to increase the space between the pins. The heat dissipation characteristic does not deteriorate due to the slower convection of the air. Therefore, the semiconductor device can be used as a highly reliable heat dissipation means at a very low cost, and its practical effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における放熱器の斜視図FIG. 1 is a perspective view of a radiator according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における放熱器の斜視図FIG. 2 is a perspective view of a radiator according to a second embodiment of the present invention.

【図3】本発明の実施例における放熱器の断面構造図FIG. 3 is a cross-sectional structural diagram of a radiator according to an embodiment of the present invention.

【図4】本発明の実施例における半導体装置の放熱手段
を示した構造図
FIG. 4 is a structural diagram showing a heat dissipation means of a semiconductor device according to an embodiment of the present invention.

【図5】本発明における従来の放熱器の斜視図FIG. 5 is a perspective view of a conventional radiator according to the present invention.

【図6】本発明における従来の半導体装置の放熱手段を
示した構造図
FIG. 6 is a structural diagram showing a heat dissipation means of a conventional semiconductor device according to the present invention.

【符号の説明】[Explanation of symbols]

20 ピン型放熱器 21 角柱 22 円柱 23 凸部 24 中空部 25 貫通穴 27 半導体装置 29 熱 30 空気の対流 31 空気 32 冷却風 20-pin type radiator 21 prism 22 cylinder 23 Convex part 24 Hollow part 25 through holes 27 Semiconductor device 29 fever 30 air convection 31 air 32 cooling air

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基台の主面に複数個の柱状の突起部が設け
られた放熱器において、前記柱状の突起部の先端部が解
放された空洞でかつ、前記柱状の突起部の基台近傍側面
に前記柱状の突起部内部の空洞と通じる貫通孔が設けら
れたことを特徴とする放熱器。
1. A radiator in which a plurality of columnar protrusions are provided on a main surface of a base, and the base of the columnar protrusions is a cavity in which a tip end of the columnar protrusions is opened. A radiator characterized in that a through hole communicating with a cavity inside the columnar protrusion is provided on a side surface in the vicinity thereof.
【請求項2】基台に半導体装置が固定されてなる請求項
1記載の放熱器。
2. The radiator according to claim 1, wherein the semiconductor device is fixed to the base.
JP3184386A 1991-07-24 1991-07-24 Radiator Expired - Fee Related JP2768063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184386A JP2768063B2 (en) 1991-07-24 1991-07-24 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184386A JP2768063B2 (en) 1991-07-24 1991-07-24 Radiator

Publications (2)

Publication Number Publication Date
JPH0529503A true JPH0529503A (en) 1993-02-05
JP2768063B2 JP2768063B2 (en) 1998-06-25

Family

ID=16152279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184386A Expired - Fee Related JP2768063B2 (en) 1991-07-24 1991-07-24 Radiator

Country Status (1)

Country Link
JP (1) JP2768063B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107235A (en) * 1996-09-05 2000-08-22 Japan Energy Corporation Solid acid catalyst and process for preparing the same
US6420305B1 (en) 1998-03-04 2002-07-16 Japan Energy Corporation Solid acid catalyst, method for producing the same and reaction method using the same
JP2007073843A (en) * 2005-09-08 2007-03-22 Tdk Taiwan Corp Heat sink with chimney structure
CN106595367A (en) * 2016-12-08 2017-04-26 广东明路电力电子有限公司 Combined type radiator
KR20200020044A (en) * 2018-08-16 2020-02-26 이향순 heat sink of minimization heat-transfer loss
WO2021181021A1 (en) * 2020-03-13 2021-09-16 Safran Device for transferring heat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107235A (en) * 1996-09-05 2000-08-22 Japan Energy Corporation Solid acid catalyst and process for preparing the same
US6420305B1 (en) 1998-03-04 2002-07-16 Japan Energy Corporation Solid acid catalyst, method for producing the same and reaction method using the same
JP2007073843A (en) * 2005-09-08 2007-03-22 Tdk Taiwan Corp Heat sink with chimney structure
CN106595367A (en) * 2016-12-08 2017-04-26 广东明路电力电子有限公司 Combined type radiator
CN106595367B (en) * 2016-12-08 2019-10-29 广东明路电力电子有限公司 Combined radiator
KR20200020044A (en) * 2018-08-16 2020-02-26 이향순 heat sink of minimization heat-transfer loss
WO2021181021A1 (en) * 2020-03-13 2021-09-16 Safran Device for transferring heat
FR3108169A1 (en) * 2020-03-13 2021-09-17 Safran Calorie transfer device

Also Published As

Publication number Publication date
JP2768063B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US20060139880A1 (en) Integrated circuit cooling system including heat pipes and external heat sink
EP0856888A2 (en) Cooling structure for multi-chip module
JPH09223883A (en) Cooling equipment of electronic apparatus
KR100622793B1 (en) Apparatus for cooling a box with heat generating elements received therein and a method for cooling same
US6736192B2 (en) CPU cooler
JP2768063B2 (en) Radiator
JP2002280779A (en) Cooler for electronic apparatus
JP2735306B2 (en) Substrate cooling device
JP3037323B1 (en) Computer cooling system
JPH04294570A (en) Heat sink
JP2003258463A (en) Heat exchanging structure of casing
JP3492504B2 (en) Heat dissipation device for electronic components
JPH11307705A (en) Heat sink for forced air cooling and its cooling method
JP2006319334A (en) Combination of fan and heatsink
JP2895388B2 (en) PCB cooling structure
JPH10190268A (en) Electronic device cooler
JPH06244575A (en) Radiator
JP2002026214A (en) Electronic component cooling apparatus
JPH0888301A (en) Heat-dissipating fin
JP2908390B2 (en) heatsink
KR100982256B1 (en) Heat radiating module for notebook computer
JPH04266091A (en) Cooling mechanism for electronic device
JP2724243B2 (en) Heat dissipation device
TWI363594B (en)
JPH07297583A (en) Heat sink equipped with fan

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees