JPH05294641A - Device for molding optical element of glass - Google Patents

Device for molding optical element of glass

Info

Publication number
JPH05294641A
JPH05294641A JP9532892A JP9532892A JPH05294641A JP H05294641 A JPH05294641 A JP H05294641A JP 9532892 A JP9532892 A JP 9532892A JP 9532892 A JP9532892 A JP 9532892A JP H05294641 A JPH05294641 A JP H05294641A
Authority
JP
Japan
Prior art keywords
mold
die
barrel
molds
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9532892A
Other languages
Japanese (ja)
Inventor
Koichi Kawakami
浩一 川上
Masashi Furuse
昌司 古瀬
Hideki Uchida
秀樹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9532892A priority Critical patent/JPH05294641A/en
Publication of JPH05294641A publication Critical patent/JPH05294641A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To more uniformly heat a mold and a glass material, to enlarge an aperture, to form a multi-cavity, to reduce power consumption, to increase conversion efficiency and to miniaturize a device in a device for molding glass optical element. CONSTITUTION:Barrel molds 3 and 4 for holding molds 1 and 2 are made up of electrically conductive ceramics or a carbonaceous composite material, heat is generated in the barrel molds themselves by current injection to heat the molds 1 and 2 and the glass material 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス光学素子を直接
プレス成形により製造するためのガラス光学素子成形装
置であって、特に通電加熱方式の成形装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass optical element molding apparatus for directly manufacturing a glass optical element by direct press molding, and more particularly to an electric heating type molding apparatus.

【0002】[0002]

【従来の技術】近年、光学ガラスを素材としたレンズの
製造方法は、従来の研削、研磨による製造方法に代え
て、高精度な金型を用いて加熱軟化したガラス材料を精
密プレスすることにより、所定の性能を有するガラス光
学素子を得る方法が注目されている。
2. Description of the Related Art In recent years, a method of manufacturing a lens made of an optical glass is performed by precision pressing a softened glass material using a highly accurate mold, instead of the conventional grinding and polishing manufacturing method. Attention has been drawn to a method of obtaining a glass optical element having a predetermined performance.

【0003】この光学素子をプレス成形する装置の金型
及びガラス素材(硝材)の加熱方法は、例えば特開昭6
3−170228号公報や特開昭64−45734号公
報で示されるような高周波誘導加熱方式(RF誘導加熱
方式)が採用されている。
A method of heating a die and a glass material (glass material) of an apparatus for press-molding this optical element is disclosed in, for example, Japanese Patent Laid-Open No.
A high frequency induction heating method (RF induction heating method) as disclosed in Japanese Patent Laid-Open No. 3-170228 and Japanese Patent Laid-Open No. 64-45734 is adopted.

【0004】高周波誘導加熱方式は、胴型をタングステ
ン、モリブデン及びその合金等の金属で構成し、高周波
誘導加熱により胴型を加熱し、加熱された胴型からの伝
熱及び輻射熱でセラミックス等で作られた金型が加熱さ
れ、これらの熱により硝材が加熱される。また、特開昭
62−59539号公報に示されるような熱輻射加熱方
式は、金型あるいは胴型を赤外線により加熱し、その金
型からの伝熱及び輻射熱により、この金型内に置かれた
硝材を加熱するものである。
In the high frequency induction heating system, the barrel die is made of metal such as tungsten, molybdenum and its alloy, and the barrel die is heated by the high frequency induction heating, and the heat transfer and radiant heat from the heated barrel die are used to form ceramics or the like. The produced mold is heated, and the glass material is heated by these heats. Further, in the thermal radiation heating method as disclosed in Japanese Patent Laid-Open No. 62-59539, a mold or a barrel mold is heated by infrared rays, and heat is transferred from the mold and radiant heat is applied to place the mold inside the mold. The glass material is heated.

【0005】一方、特開昭61−266321号公報に
示されるような金型自体を導電性セラミックスで構成
し、金型自体を通電し発熱させることにより加熱する通
電加熱方式を第5図に示す。この方式では、金型21、
22と胴型23、24との間に電極25、26及び2
7、28とを配置し、胴型23、24を不導電体セラミ
ックスで構成することにより、金型21、22に電流を
通電して発熱させ、その伝熱及び輻射熱により金型内に
置かれた硝材を加熱するものである。
On the other hand, FIG. 5 shows an electric heating method in which the mold itself is made of conductive ceramics as shown in Japanese Patent Laid-Open No. 61-266321, and the mold itself is heated by energizing and generating heat. .. In this method, the mold 21,
22 and electrodes 23, 24 between the electrodes 25, 26 and 2
7 and 28 are arranged, and the body dies 23 and 24 are made of non-conductive ceramics, current is passed through the dies 21 and 22 to generate heat, and they are placed in the dies by the heat transfer and radiant heat. The glass material is heated.

【0006】[0006]

【従来技術の課題】上述したように、高周波誘導加熱方
式による加熱は、胴型の中心部と周辺部とでは高周波の
浸透の差の問題が発生し、胴型を均一に加熱することは
難しく、特に大口径化やマルチキャビティ化した場合
は、この加熱の不均一性が顕著に表れる。更に、高周波
誘導加熱方式では、セラミック等の不導体で構成された
金型及び硝材を直接誘導加熱することは不可能である。
2. Description of the Related Art As described above, heating by the high-frequency induction heating method causes a problem of high-frequency permeation between the center portion and the peripheral portion of the barrel die, and it is difficult to uniformly heat the barrel die. In particular, when the diameter is increased or a multi-cavity is used, this heating nonuniformity is remarkable. Further, in the high frequency induction heating method, it is impossible to directly perform induction heating on the mold and glass material made of a non-conductor such as ceramic.

【0007】また、熱輻射加熱方式は、胴型の周辺部と
金型の中心部とでは赤外線の照射量を均一にすることは
難しく、特に大口径化やマルチキャビティ化した場合
は、高周波誘導加熱方式と同様に加熱の不均一性が顕著
に表れ、そのため成形可能な口径の大きさに限界を生じ
る。
In the thermal radiation heating method, it is difficult to make the irradiation amount of infrared rays uniform between the peripheral portion of the body die and the center portion of the die. In particular, when a large diameter or a multi-cavity is used, high frequency induction is applied. As in the case of the heating method, heating non-uniformity appears remarkably, which limits the size of the moldable diameter.

【0008】これらの加熱方法は電気を直接熱に変換す
るものではなく、高周波や赤外線に変換したあと2次的
に熱に変換するため、消費電力が大きく変換効率が悪く
なってしまう。
[0008] These heating methods do not directly convert electricity into heat, but secondarily convert it into high frequency or infrared rays, and secondarily convert it into heat, resulting in large power consumption and poor conversion efficiency.

【0009】また、変換効率が良い方法である金型自体
に通電し金型自体を発熱させる通電加熱方式は、金型を
構成する材料の種類が限定され、電極を金型と胴型との
間に構成するため、電極の取り付け方法や金型、胴型及
び電極の構造が複雑になりマルチキャビティ化が難しい
という問題があった。
Further, in the energization heating method, which is a method having a high conversion efficiency, in which the mold itself is energized to generate heat from the mold itself, the types of materials constituting the mold are limited, and the electrodes are divided into a mold and a body mold. Since the structure is provided between them, there is a problem that the method of attaching the electrodes and the structures of the mold, the barrel mold and the electrodes are complicated and it is difficult to form a multi-cavity.

【0010】一般的に、ガラス成形用金型を構成する材
質は、高温での強度、緻密性及び加工のしやすさ等が要
求されるが、導電性セラミックスで上記の諸条件を満た
す材料の種類は数少なく金型として高価になってしま
う。また、金型を摺動させ加圧する場合は、胴型の内壁
面との間で摺動摩擦が発生し、電極に高温での強度及び
耐摩耗性が要求され通電のための電極の取り付け方法が
困難である。ここで、プレスレンズの偏芯誤差(チル
ト、ディセンター)を防止するために金型と胴型のクリ
アランスは数μm以下でなくてはならないが、金型、胴
型及び電極の膨張係数を考慮して高温で数μm以下のク
リアランスを保つことは難しい。更に、マルチキャビテ
ィ化した場合は、キャビティ個々に電極を構成する必要
があるため、シングルキャビティにもまして電極の取り
付け方法や金型、胴型及び電極の構造がより複雑になっ
てしまうという欠点がある。
Generally, the material forming the glass molding die is required to have strength at high temperature, compactness, and easy workability. There are few types, and it becomes expensive as a mold. Further, when the die is slid and pressed, sliding friction occurs between the die and the inner wall surface of the barrel die, strength and wear resistance at high temperature are required for the electrode, and the electrode attachment method for energization is Have difficulty. Here, in order to prevent the eccentricity error (tilt, decenter) of the press lens, the clearance between the mold and the cylinder must be several μm or less, but consider the expansion coefficient of the mold, the cylinder and the electrode. It is difficult to maintain a clearance of several μm or less at high temperature. Further, in the case of forming a multi-cavity, it is necessary to configure an electrode for each cavity, so that there is a drawback that the method of attaching the electrode and the structure of the mold, the body and the electrode become more complicated than the single cavity. is there.

【0011】本発明は、金型及び硝材をより均一に加熱
することができるため、容易に大口径化やマルチキャビ
ティ化をすることができる。そのうえ電気を直接熱に変
換するため消費電力が少なく、変換効率が高く、装置的
にも小型化が可能になるガラス光学素子成形装置を提供
することを目的とする。
According to the present invention, since the mold and the glass material can be heated more uniformly, the diameter and the multi-cavity can be easily increased. Moreover, it is an object of the present invention to provide a glass optical element molding apparatus that directly converts electricity into heat, consumes less power, has high conversion efficiency, and can be downsized in terms of apparatus.

【0012】[0012]

【課題を解決するための手段】本発明は、成形用金型を
保持する胴型を導電性セラミックスまたは炭素系複合材
料(体積抵抗率:1×10-6〜7×10-1Ωm)で構成
し、胴型に電極を取り付け、胴型自体に電流を通電して
発熱させ、その発熱した胴型からの伝熱及び輻射熱によ
り金型及び硝材を加熱する。
According to the present invention, a body for holding a molding die is made of a conductive ceramic or a carbon-based composite material (volume resistivity: 1 × 10 −6 to 7 × 10 −1 Ωm). In this structure, an electrode is attached to the barrel die, and an electric current is passed through the barrel die itself to generate heat, and the metal mold and the glass material are heated by heat transfer and radiant heat from the heated barrel die.

【0013】[0013]

【作用】前記構成によれば、胴型自体を発熱させるた
め、胴型の形状及び電極の取り付け方法を工夫すること
により金型をより均一に直接加熱しやすく、また消費電
力が少なく変換効率が高くなる。また、発熱させる胴型
の温度を直接モニターし、胴型に通電する電気量をコン
トロールするため、胴型あるいは金型の温度をコントロ
ールし易く、装置としても大型の高周波発振器や赤外線
ランプユニットが不要になり小型化が可能になる。
According to the above construction, since the body itself is heated, by devising the shape of the body and the method of attaching the electrodes, the die can be heated more uniformly and directly, and the power consumption is low and the conversion efficiency is low. Get higher Also, since the temperature of the barrel die that heats up is directly monitored and the amount of electricity that is applied to the barrel die is controlled, it is easy to control the temperature of the barrel die or mold, and a large high-frequency oscillator or infrared lamp unit is not required as a device. Therefore, miniaturization is possible.

【0014】[0014]

【実施例】本発明の実施例を図面を用いて説明する。実験例1 図1は、金型、胴型、及び電極の構成図である。金型
1、2は型母材として炭化珪素(SiC)(体積抵抗
率:5×10-1Ωm)を用い、その成形面にCVD法に
よりSiC膜を厚さ数100μm成膜し、このSiC膜
の表面をRa=1nm以下になるように鏡面仕上げをす
る。その金型1、2をそれぞれ保持する胴型3、4は炭
化珪素(SiC) 含有の炭素系複合材料(体積抵抗率:5×
10-4Ωm)で構成し、電極5、6及び7、8は銅、ス
テンレス、タングステン等の金属で構成する。電極5、
6及び7、8を胴型3、4にそれぞれステンレス、タン
グステン、モリブデン等の金属製のネジで機械的に押し
つける方法により取り付け、胴型3、4自体に電流を流
し発熱させる。この発熱した胴型3、4の伝熱及び熱輻
射により金型1、2及び硝材9が加熱され、硝材9が軟
化後上下型を閉め成形を行う。この時、金型1と胴型3
及び金型2と胴型4との間は数μmのクリアランスしか
ないが、金型1と胴型3及び金型2と胴型4は電気的に
導通しない。すなわち、胴型の電極間の抵抗値が金型の
電極方向の抵抗値より3ケタ以上小さくなるように胴型
と金型の体積抵抗率を選択することにより、万一接触し
ても電流は流れないようにしている。このため金型と胴
型のクリアランスが数μm以下に保つことができ、特に
大口径化やマルチキャビティ化した場合には、金型をよ
り均一に加熱しやすくなる。ここで、加熱及びプレス成
形は、酸化しないように非酸化性雰囲気中(N2 ガス
等)で行う。
Embodiments of the present invention will be described with reference to the drawings. Experimental Example 1 FIG. 1 is a configuration diagram of a mold, a barrel mold, and an electrode. The molds 1 and 2 use silicon carbide (SiC) (volume resistivity: 5 × 10 −1 Ωm) as a mold base material, and a SiC film is formed on the molding surface by the CVD method to a thickness of several 100 μm. The surface of the film is mirror-finished so that Ra = 1 nm or less. The body dies 3 and 4 holding the dies 1 and 2, respectively, are carbon-based composite materials containing silicon carbide (SiC) (volume resistivity: 5 ×
10 -4 Ωm), and the electrodes 5, 6 and 7, 8 are made of a metal such as copper, stainless steel, or tungsten. Electrode 5,
6 and 7 and 8 are attached to the body dies 3 and 4 by a method of mechanically pressing them with screws made of metal such as stainless steel, tungsten and molybdenum, and an electric current is applied to the body dies 3 and 4 to generate heat. The metal molds 1 and 2 and the glass material 9 are heated by the heat transfer and heat radiation of the body dies 3 and 4 that generate heat, and after the glass material 9 is softened, the upper and lower molds are closed to perform molding. At this time, mold 1 and body 3
Although there is only a clearance of several μm between the mold 2 and the body mold 4, the mold 1 and the body mold 3 and the mold 2 and the body mold 4 are not electrically connected. That is, by selecting the volume resistivities of the barrel die and the die so that the resistance value between the electrodes of the barrel die is smaller than the resistance value in the electrode direction of the die by three digits or more, the current does not flow even if they contact each other. I try not to flow. Therefore, the clearance between the die and the body die can be maintained at several μm or less, and it becomes easier to heat the die more uniformly, especially when the diameter is increased or the cavity is increased. Here, heating and press molding are performed in a non-oxidizing atmosphere (N 2 gas or the like) so as not to oxidize.

【0015】図2は、プレス成形における金型、胴型及
び硝材の温度をコントロールするためのシステム図であ
る。金型1、2あるいは胴型3、4の温度を熱電対1
0、11により自動温度調節器(ATC)12、13に
それぞれ取り込み、設定温度との差に応じて比例・積分
・微分(PID)制御を行う。このATC12、13か
らの制御信号でサイリスタ14、15をそれぞれ制御
し、サイリスタ14、15は位相制御方式によりその制
御信号に応じた電圧または電流あるいは電力量を出力す
る。
FIG. 2 is a system diagram for controlling the temperatures of the mold, barrel mold and glass material in press molding. The temperature of the molds 1 and 2 or the body molds 3 and 4 is controlled by the thermocouple 1.
The values 0 and 11 are taken into automatic temperature controllers (ATC) 12 and 13, respectively, and proportional / integral / derivative (PID) control is performed according to the difference from the set temperature. The thyristors 14 and 15 are controlled by the control signals from the ATCs 12 and 13, respectively, and the thyristors 14 and 15 output the voltage or current or the electric energy according to the control signals by the phase control method.

【0016】一般に、胴型が体積抵抗率の温度係数が小
さい材料で構成されている場合は、ATCからの制御信
号に対して電圧が一定になるように制御する。胴型が、
体積抵抗率が4〜12倍も変化する材料で構成されてい
る場合は、ATCからの制御信号に対して電流が一定に
なるように制御する。また、炭化珪素のように発熱温度
によってその体積抵抗率が変化し、更に経年変化により
その体積抵抗率が初期の4倍近く変化する材料で胴型を
構成した場合は、ATCからの制御信号に対して電力量
が一定になるように制御する。
In general, when the barrel type is made of a material having a small temperature coefficient of volume resistivity, the voltage is controlled to be constant with respect to the control signal from the ATC. The body type
When it is made of a material whose volume resistivity changes 4 to 12 times, the current is controlled so as to be constant with respect to the control signal from the ATC. Further, when the barrel mold is made of a material such as silicon carbide whose volume resistivity changes with heat generation temperature and whose volume resistivity changes nearly four times as much as the initial value, the control signal from ATC On the other hand, the amount of electric power is controlled to be constant.

【0017】また、胴型3、4の抵抗値は、材料の体積
抵抗率や形状により変化するため、その抵抗値に合わせ
た電圧及び電流を与える必要からサイリスタ14、15
からの出力を変圧器16、17で適当な電圧及び電流に
変化させた後、電極5、6及び7、8を通じ胴型3、4
に電力を供給する。
Further, the resistance values of the barrel molds 3 and 4 vary depending on the volume resistivity and shape of the material, and therefore it is necessary to apply a voltage and current corresponding to the resistance values, so that the thyristors 14 and 15 are provided.
After changing the output from the transformers 16 and 17 to an appropriate voltage and current, the electrodes 5, 6 and 7, 8 are passed through the barrel molds 3, 4,
Supply power to.

【0018】今回実験に使用した胴型は、炭化珪素(Si
C) 含有の炭素系複合材料を用いたため電極間の抵抗値
が常温で0.1Ω程度になった。したがって、上述のP
ID制御で電流が一定になるように制御し、電圧はMA
X20V、電流はMAX300Aを胴型に通電し発熱さ
せ加熱した。上、下の金型及び胴型の温度は設定温度に
対して±1℃以内で安定させることができた。
The body type used in this experiment is silicon carbide (Si
Since the carbon-based composite material containing C) was used, the resistance value between the electrodes was about 0.1Ω at room temperature. Therefore, the above P
The current is controlled to be constant by ID control, and the voltage is MA
The current was X20 V, and the current was heated by heating MAX300A by passing it through a barrel. The temperatures of the upper and lower molds and the body were stable within ± 1 ° C of the set temperature.

【0019】実験例2 次に、実験例2について図面を用いて説明する。図3
は、金型、胴型、及び電極の構成図である。金型1、2
は、実験例1と同様の金型を使用する。その金型1、2
をそれぞれ保持する胴型3、4は炭化珪素(SiC) 含有の
炭素系複合材料(体積抵抗率:1×10-2Ωm)で構成
し、また電極5、6及び7、8は銅等の金属で円環状に
構成する。電極5、6及び7、8を胴型3、4にそれぞ
れ取り付け、胴型3、4自体に電流を流し発熱させる。
この発熱した胴型3、4の伝熱及び熱輻射により金型
1、2及び硝材9が加熱され、硝材9が軟化後上下型を
閉め成形を行う。この時胴型3、4のみに電流は流れ
て、金型1、2自体には電流は全く流れない。このため
金型と胴型のクリアランスが数μm以下で保つことがで
き、特に電極を上下方向に取り付けるため実験例1より
も金型をより均一に加熱しやすく、そのため大口径化や
マルチキャビティ化に非常に適した加熱方法である。
Experimental Example 2 Next, Experimental Example 2 will be described with reference to the drawings. Figure 3
FIG. 3 is a configuration diagram of a mold, a body mold, and an electrode. Mold 1, 2
Uses the same mold as in Experimental Example 1. The mold 1, 2
The cylindrical molds 3 and 4 for holding the respective are made of a carbon-based composite material containing silicon carbide (SiC) (volume resistivity: 1 × 10 −2 Ωm), and the electrodes 5, 6 and 7, 8 are made of copper or the like. It is made of metal in an annular shape. The electrodes 5, 6 and 7, 8 are attached to the body dies 3, 4 respectively, and an electric current is applied to the body dies 3, 4 themselves to generate heat.
The metal molds 1 and 2 and the glass material 9 are heated by the heat transfer and heat radiation of the body dies 3 and 4 that generate heat, and after the glass material 9 is softened, the upper and lower molds are closed to perform molding. At this time, the current flows only in the body molds 3 and 4, and no current flows in the molds 1 and 2 themselves. Therefore, the clearance between the mold and the body can be kept at several μm or less, and since the electrodes are attached in the vertical direction, the mold can be heated more uniformly than in Experimental Example 1, and therefore the diameter and the multi-cavity can be increased. This is a very suitable heating method.

【0020】図4は、プレス成形における金型、胴型及
び硝材の温度をコントロールするためのシステム図であ
る。温度をコントロールするシステムは基本的に実験例
1のシステムと同様のシステムである。実験例2の場合
は、電極を上下方向に取り付けるため上下型を閉めプレ
ス成形をする際、電気的に干渉が発生しないように上型
用電極6と下型用電極8とを同電位になるように配線し
ている。
FIG. 4 is a system diagram for controlling the temperatures of the mold, barrel and glass material in press molding. The system for controlling the temperature is basically the same as the system of Experimental Example 1. In the case of Experimental Example 2, when the upper and lower dies are closed and press molding is performed in order to attach the electrodes in the vertical direction, the upper die electrode 6 and the lower die electrode 8 are at the same potential so that electrical interference does not occur. Is wired like this.

【0021】実験例1と同様のPID制御で電流が一定
になるように制御し、電圧はMAX30V、電流はMA
X200Aを胴型に通電し発熱させ加熱した。上、下の
金型及び胴型の温度は、設定温度に対して±1℃以内で
安定させることができた。
The same PID control as in Experimental Example 1 was controlled so that the current was constant, the voltage was MAX 30 V, and the current was MA.
The X200A was heated by heating the cylinder mold by energizing it. The temperatures of the upper and lower molds and the barrel mold could be stabilized within ± 1 ° C with respect to the set temperature.

【0022】なお、胴型を高純度SIC等の導電性セラ
ミックスや耐熱性の金属等で構成しても同様の効果が得
られる。
The same effect can be obtained even if the body is made of conductive ceramics such as high-purity SIC or heat-resistant metal.

【0023】実験例3 次に、実験例3について図面を用いて説明する。図1に
おいて、胴型3、4の材料に高純度SiCを用いて実験
例1と同様の実験を行った。高純度SiC(体積抵抗
率:6.2×10-2Ωm)を用いたため、電極間の抵抗
値が常温で12.4Ω程度になった。したがって、上述
のPID制御で電力が一定になるように制御して、電圧
はMAX100V、電流はMAX8Aを胴型に通電し、
発熱させ加熱した。金型1、2及び胴型3、4の温度
は、設定温度に対して±1℃以内で安定させることがで
きた。
Experimental Example 3 Next, Experimental Example 3 will be described with reference to the drawings. In FIG. 1, the same experiment as in Experimental Example 1 was performed using high-purity SiC as the material of the barrel molds 3 and 4. Since high-purity SiC (volume resistivity: 6.2 × 10 −2 Ωm) was used, the resistance value between the electrodes was about 12.4 Ω at room temperature. Therefore, the power is controlled to be constant by the above-mentioned PID control, the voltage is MAX100V, and the current is MAX8A, which is energized in a barrel shape.
Heated and heated. The temperatures of the molds 1 and 2 and the body molds 3 and 4 could be stabilized within ± 1 ° C with respect to the set temperature.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、成
形用金型を保持する胴型を導電性セラミックスあるいは
炭素系複合材料で構成し、胴型自体に電流を通電し発熱
させるため、実施例で示したように胴型の形状及び電極
の取り付け方法を工夫することにより金型及び硝材をよ
り効率良く均一に加熱することができ、大口径化やマル
チキャビティ化を積極的に実施することが可能となり、
また電気を直接熱に変換するため消費電力が少なく変換
効率が高い。しかも、発熱させる胴型の温度を直接モニ
ターし、胴型に通電する電気量をコントロールするた
め、胴型あるいは金型の温度をコントロールし易く、装
置的にも小型化が可能になる。
As described above, according to the present invention, since the body for holding the molding die is made of conductive ceramics or carbon-based composite material and a current is passed through the body itself to generate heat. As shown in the examples, the mold and glass material can be heated more efficiently and uniformly by devising the shape of the barrel and the method of attaching the electrodes, and a large diameter and a multi-cavity are positively implemented. Is possible,
Moreover, since electricity is directly converted into heat, power consumption is low and conversion efficiency is high. Moreover, since the temperature of the barrel die to be heated is directly monitored and the amount of electricity supplied to the barrel die is controlled, it is easy to control the temperature of the barrel die or the die, and the apparatus can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実験例1に於ける、金型、胴型及び電
極の概略構成図である。
FIG. 1 is a schematic configuration diagram of a mold, a body, and electrodes in Experimental Example 1 of the present invention.

【図2】本発明の実験例1に於ける、温度コントロール
のシステム図である。
FIG. 2 is a system diagram of temperature control in Experimental Example 1 of the present invention.

【図3】本発明の実験例2に於ける、金型、胴型及び電
極の概略構成図である。
FIG. 3 is a schematic configuration diagram of a mold, a body, and electrodes in Experimental Example 2 of the present invention.

【図4】本発明の実験例2に於ける、温度コントロール
のシステム図である。
FIG. 4 is a system diagram of temperature control in Experimental Example 2 of the present invention.

【図5】従来のガラス成形用金型の概略構成図である。FIG. 5 is a schematic configuration diagram of a conventional glass molding die.

【符号の説明】[Explanation of symbols]

1、2、21、22 金型 3、4、23、24 胴型 5、6、25、26、上型用電極 7、8、27、28、下型用電極 9 ガラス素材(硝材) 10、11 熱電対 12、13 自動温度調整器(ATC) 14、15 サイリスタ 16、17 変圧器 1, 2, 21, 22 Mold 3, 4, 23, 24 Body 5, 6, 25, 26, Upper mold electrode 7, 8, 27, 28, Lower mold electrode 9 Glass material (glass material) 10, 11 Thermocouple 12, 13 Automatic Temperature Controller (ATC) 14, 15 Thyristor 16, 17 Transformer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス光学素子のプレス成形装置におい
て、成形用金型と、該金型を保持する胴型とを具備し、
該胴型を導電性材料で形成して、該胴型自体を通電によ
り発熱させることを特徴とするガラス光学素子成形装
置。
1. A press molding apparatus for a glass optical element, comprising a molding die and a barrel die for holding the die,
A glass optical element molding apparatus, characterized in that the barrel die is made of a conductive material and the barrel die itself is heated by energization.
【請求項2】該胴型の材料が、導電性セラミックスまた
は炭素系複合材料であることを特徴とする請求項1記載
のガラス光学素子成形装置。
2. The glass optical element molding apparatus according to claim 1, wherein the body material is a conductive ceramic or a carbon-based composite material.
JP9532892A 1992-04-15 1992-04-15 Device for molding optical element of glass Pending JPH05294641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9532892A JPH05294641A (en) 1992-04-15 1992-04-15 Device for molding optical element of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9532892A JPH05294641A (en) 1992-04-15 1992-04-15 Device for molding optical element of glass

Publications (1)

Publication Number Publication Date
JPH05294641A true JPH05294641A (en) 1993-11-09

Family

ID=14134663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9532892A Pending JPH05294641A (en) 1992-04-15 1992-04-15 Device for molding optical element of glass

Country Status (1)

Country Link
JP (1) JPH05294641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920523A (en) * 1995-06-30 1997-01-21 Toshiba Glass Co Ltd Metallic mold for forming glass
US8834239B2 (en) 2004-05-10 2014-09-16 Behr Gmbh & Co. Kg Air outlet in particular for a motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920523A (en) * 1995-06-30 1997-01-21 Toshiba Glass Co Ltd Metallic mold for forming glass
US8834239B2 (en) 2004-05-10 2014-09-16 Behr Gmbh & Co. Kg Air outlet in particular for a motor vehicle

Similar Documents

Publication Publication Date Title
CN110577399B (en) Multi-field coupling flash sintering system based on induction heating
US5117482A (en) Porous ceramic body electrical resistance fluid heater
US5169572A (en) Densification of powder compacts by fast pulse heating under pressure
WO2002089530A1 (en) Ceramic heater with heater element and method for use thereof
CN102260802A (en) Target preparation device and target processing method thereof
Katz et al. Microwave sintering of boron carbide
JPH05294641A (en) Device for molding optical element of glass
US7743628B2 (en) Method and device for non-contact moulding of fused glass gobs
CN202207799U (en) Target manufacture device
JPH05294643A (en) Molding device for glass optical element
Davenport et al. Design and performance of electric furnaces with oxide resistors
JPH051304A (en) Production of gradient function material
JPH10330804A (en) Sintering device
JPS59149385A (en) Heat fixing device
JP3012101B2 (en) Glass optical element molding equipment
JPH05294647A (en) Molding apparatus for optical element
JPH06239630A (en) Apparatus for forming glass optical element
JPS6363506B2 (en)
GB2099670A (en) Furnace elements and furnaces
JP3835008B2 (en) Electric heating type pressure sintering equipment
JPH0692659A (en) Mold for molding glass optical element
JPH02158123A (en) Heater
JPS63222427A (en) High temperature treating furnace
JP2002363614A (en) Sintering die of electric pressure sintering apparatus
JP2000226603A (en) Hybrid sintering device and method therefor