JPH0529371B2 - - Google Patents

Info

Publication number
JPH0529371B2
JPH0529371B2 JP63216289A JP21628988A JPH0529371B2 JP H0529371 B2 JPH0529371 B2 JP H0529371B2 JP 63216289 A JP63216289 A JP 63216289A JP 21628988 A JP21628988 A JP 21628988A JP H0529371 B2 JPH0529371 B2 JP H0529371B2
Authority
JP
Japan
Prior art keywords
hydride
oxygen
organometallic compound
trace amount
containing component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63216289A
Other languages
Japanese (ja)
Other versions
JPH0267230A (en
Inventor
Tatsuo Sakagoshi
Takashi Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSOO AKUZO KK
Original Assignee
TOSOO AKUZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSOO AKUZO KK filed Critical TOSOO AKUZO KK
Priority to JP63216289A priority Critical patent/JPH0267230A/en
Publication of JPH0267230A publication Critical patent/JPH0267230A/en
Publication of JPH0529371B2 publication Critical patent/JPH0529371B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は有機金属化合物の精製法に関する。 さらに詳細には有機金属化合物中の微量の含酸
素成分、あるいは含酸素成分と含ハロゲン成分を
除去する方法に関する。 〔従来の技術〕 有機金属化合物は、重合触媒、オレフイン製造
原料、高級アルコール用原料、あるいは電子工業
用製造用原料として有用な物質である。 しかし通常の有機金属化合物中には、酸素また
は水が単独であるいはまたこれらが有機金属化合
物類と反応したような含酸素成分、あるいはこれ
らの含酸素成分の他にハロゲン分子が単独あるい
はまたそれが有機金属化合物類と反応したような
含ハロゲン成分(以下これらを不純物と称す。)
が存在している。 この有機金属化合物中の微量の不純物は有機金
属化合物の原料から、または製造、移送あるいは
貯蔵時に混入すると考えられる。 有機金属化合物中の不純物の存在は前記用途の
うち電子工業用原料に用いる場合に特に大きな不
都合を生じる。 例えば微量の酸素成分を含有した有機アルミニ
ウム化合物を用いてアルミニウム薄膜半導体を製
作すると、混入した酸素成分が存在する部分で非
常に高抵抗となり断線等になると言われており、
歩留の低下や目的とする性能を保持した製品が得
られない等の不利益を生じる。 有機金属化合物中の不純物を除く方法として精
密蒸留等の方法が用意に考えられるが、この場合
99.9%またはそれ以上の純度に精製、回収するこ
とは本質的に困難である。 〔発明が解決しようとする課題〕 かかる状況下にあつて本発明者らは有機金属化
合物中の微量の不純物を高度に効率よく除去する
ための工業的方法を見出すべく鋭意研究を行なつ
た結果、不純物を含有する有機金属化合物を還元
剤と反応せしめた後、蒸留または昇華分離するこ
とにより、精製できることを見出し本発明を完成
するに至つた。 〔課題を解決するための手段〕 すなわち、本発明は、一般式 R1−M1,R1−M2−R2
[Industrial Field of Application] The present invention relates to a method for purifying organometallic compounds. More specifically, the present invention relates to a method for removing trace amounts of oxygen-containing components or oxygen-containing components and halogen-containing components from organometallic compounds. [Prior Art] Organometallic compounds are useful substances as polymerization catalysts, raw materials for producing olefins, raw materials for higher alcohols, or raw materials for producing electronics. However, ordinary organometallic compounds contain oxygen-containing components such as oxygen or water alone or in combination with organometallic compounds, or halogen molecules alone or in addition to these oxygen-containing components. Halogen-containing components that have reacted with organometallic compounds (hereinafter referred to as impurities)
exists. It is thought that trace amounts of impurities in this organometallic compound are mixed in from the raw material of the organometallic compound or during production, transportation, or storage. The presence of impurities in the organometallic compound causes particular problems when it is used as a raw material for the electronic industry among the above-mentioned applications. For example, it is said that if an aluminum thin film semiconductor is manufactured using an organic aluminum compound containing a trace amount of oxygen, the resistance will be extremely high in the areas where the mixed oxygen is present, resulting in wire breakage, etc.
This results in disadvantages such as a decrease in yield and an inability to obtain a product that maintains the desired performance. Methods such as precision distillation can easily be considered as a method for removing impurities in organometallic compounds, but in this case
Purification and recovery to a purity of 99.9% or higher is inherently difficult. [Problems to be Solved by the Invention] Under such circumstances, the present inventors have conducted intensive research to find an industrial method for highly efficiently removing trace amounts of impurities in organometallic compounds. The present inventors have discovered that it is possible to purify an organometallic compound containing impurities by reacting it with a reducing agent and then separating it by distillation or sublimation, leading to the completion of the present invention. [Means for Solving the Problems] That is, the present invention provides general formulas R 1 −M 1 , R 1 −M 2 −R 2 ,

【式】【formula】

〔作用〕[Effect]

以下本発明を詳細に説明すると、一般式()
においてM1はLi,M2はMg,Zn,CdまたはTe,
M3はB,Al,GaまたはIn,M4はSi,Ti,Ge,
ZrまたはSn等の金属であり、好ましくは、Li,
Mg,Zn,Cd,Al,Ga,In等の金属元素の炭素
数1〜12個のアルキル基、アリール基、シクロア
ルカジエニル基または水素原子を有する有機金属
化合物が処理の対象とされる。 該有機化合物のいくつかを例示すればエチルリ
チウム、ノルマルプロピルリチウム、イソプロピ
ルリチウム、ノルマルブチルリチウム、ターシヤ
リーブチルリチウム、ネオペンチルリチウム、シ
クロペンタジエニルリチウム、ジエチルマグネシ
ウム、ジノルマルブチルマグネシウム、ジイソブ
チルマグネシウム、ジターシヤリーブチルマグネ
シウム、ジシクロペンタジエニルマグネシウム、
ビスメチルシクロペンタジエニルマグネシウム、
ジメチル亜鉛、ジエチル亜鉛、ジメチルカドミウ
ム、ジエチルカドミウム、ビスシクロペンタジエ
ニルカドミウム、トリメチルアルミニウム、トリ
エチルアルミニウム、トリノルマルブチルアルミ
ニウム、トリイソブチルアルミニウム、トリター
シヤリーブチルアルミニウム、ジメチルアルミニ
ウムハイドライド、ジエチルアルミニウムハイド
ライド、ジノルマルブチルアルミニウムハイドラ
イド、ジイソブチルアルミニウムハイドライド、
ジターシヤリーブチルアルミニウムハイドライ
ド、トリメチルガリウム、トリエチルガリウム、
ジエチルシクロペンタジエニルガリウム、トリメ
チルインジウム、トリエチルインジウム、ジメチ
ルエチルインジウム、メチルジエチルインジウ
ム、トリシクロペンタジエニルインジウム等があ
げられる。 本発明方法の精製処理にあたつて、上記微量不
純物含有有機金属化合物は単独で精製処理に供す
ることもできるが、有機溶媒との混合物として精
製処理に供することも可能である。 かかる有機溶媒としては、ペンタン、ヘキサ
ン、オクタン、デカン、ドデカン、ヘプタデカ
ン、パラフイン油、灯油等の飽和脂肪族炭化水
素、シクロヘキサン、シクロペンタン等脂環式炭
化水素類が使用できる。 本発明方法で有機金属化合物を処理する場合
は、攪拌下に還元剤と不純物を含有する有機金属
化合物とを接触的に反応させれば良い。 還元剤として、固体状水素化金属化合物を単
独、混合物あるいは複塩として用いる場合は微粉
であるほど効果が良く発揮されるため、予め粉砕
等を行ない使用に供するのが良い。 反応は一般に発熱反応であるが0℃〜200℃、
好ましくは10〜150℃の範囲で実施するのが良い。 反応時間は1分間〜24時間の範囲で実施できる
が、好ましくは10分間〜10時間の範囲で実施する
のが良い。 還元剤の添加量は、該有機金属化合物に対し
0.1〜50%(wt)の量を反応に供することができ
るが、好ましくは1〜20%(wt)の範囲で実施
するのが良い。 反応後の有機金属化合物は、そのまま、または
必要に応じ、静置、濾過、遠心分離、デカンテー
シヨン等により、未反応有機金属化合物と反応生
成物とを分離し、次いで蒸留または昇華精製に付
される。 蒸留精製としては、単蒸留、精密蒸留、減圧蒸
留等、目的とする有機金属化合物の純度や物性等
によつて適宜選択すれば良い。 昇華精製としては、常圧昇華、減圧昇華、キヤ
リヤーガスによる昇華、擬昇華等、目的とする有
機金属化合物の純度や物性等によつて適宜選択す
ればよい。 〔実施例〕 以下、実施例によつて本発明方法をさらに詳細
に説明するが本発明はその要旨を越えない限り以
下の実施例によつて制限されるものではない。 実施例 1 攪拌機、還流冷却器を備えた300mlのフラスコ
を窒素置換後、粉砕した水素化ナトリウム12.0g、
トリメチルガリウム114.8gを仕込んた。攪拌下
に50℃に昇温した後、1時間保持した。 次に、これを常圧、56℃で精製蒸溜し精製トリ
メチルガリウム83gを得た。 このようにして得られた精製トリメチルガリウ
ム中の酸素成分濃度を第1表に示す。
To explain the present invention in detail below, the general formula ()
, M 1 is Li, M 2 is Mg, Zn, Cd or Te,
M3 is B, Al, Ga or In, M4 is Si, Ti, Ge,
Metal such as Zr or Sn, preferably Li,
Organometallic compounds having C1-12 alkyl groups, aryl groups, cycloalkadienyl groups, or hydrogen atoms of metal elements such as Mg, Zn, Cd, Al, Ga, and In are treated. Some examples of the organic compounds include ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, tert-butyllithium, neopentyllithium, cyclopentadienyllithium, diethylmagnesium, di-n-butylmagnesium, diisobutylmagnesium, ditertiarybutylmagnesium, dicyclopentadienylmagnesium,
bismethylcyclopentadienylmagnesium,
Dimethylzinc, diethylzinc, dimethylcadmium, diethylcadmium, biscyclopentadienylcadmium, trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tri-isobutylaluminum, tri-tert-butylaluminum, dimethylaluminum hydride, diethylaluminum hydride, di-normal Butyl aluminum hydride, diisobutyl aluminum hydride,
Ditertiary butyl aluminum hydride, trimethyl gallium, triethyl gallium,
Examples include diethylcyclopentadienyl gallium, trimethylindium, triethyl indium, dimethylethyl indium, methyl diethyl indium, tricyclopentadienyl indium, and the like. In the purification process of the method of the present invention, the organometallic compound containing trace impurities can be subjected to the purification process alone or as a mixture with an organic solvent. As such organic solvents, saturated aliphatic hydrocarbons such as pentane, hexane, octane, decane, dodecane, heptadecane, paraffin oil, and kerosene, and alicyclic hydrocarbons such as cyclohexane and cyclopentane can be used. When treating an organometallic compound by the method of the present invention, the reducing agent and the organometallic compound containing impurities may be reacted catalytically with stirring. When a solid metal hydride compound is used alone, as a mixture, or as a double salt as a reducing agent, the finer the powder, the better the effect, so it is preferable to pulverize the compound before use. The reaction is generally exothermic, but at temperatures between 0°C and 200°C,
Preferably, it is carried out at a temperature in the range of 10 to 150°C. The reaction time can range from 1 minute to 24 hours, preferably from 10 minutes to 10 hours. The amount of reducing agent added is based on the organometallic compound.
The reaction can be carried out in an amount of 0.1 to 50% (wt), preferably in a range of 1 to 20% (wt). The organometallic compound after the reaction can be used as it is, or if necessary, the unreacted organometallic compound and the reaction product can be separated by standing, filtration, centrifugation, decantation, etc., and then subjected to distillation or sublimation purification. be done. The distillation purification may be appropriately selected from simple distillation, precision distillation, vacuum distillation, etc. depending on the purity, physical properties, etc. of the target organometallic compound. Sublimation purification may be appropriately selected from normal pressure sublimation, reduced pressure sublimation, sublimation using a carrier gas, pseudo-sublimation, etc. depending on the purity and physical properties of the target organometallic compound. [Examples] Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 After purging a 300 ml flask equipped with a stirrer and a reflux condenser with nitrogen, 12.0 g of pulverized sodium hydride,
114.8g of trimethyl gallium was charged. The temperature was raised to 50°C while stirring and maintained for 1 hour. Next, this was distilled under normal pressure at 56°C to obtain 83 g of purified trimethyl gallium. Table 1 shows the concentration of oxygen components in the purified trimethyl gallium thus obtained.

【表】 実施例 2 攪拌機、還流冷却器を備えた300mlフラスコを
窒素置換後、水素化リチウムアルミニウム3.6g、
トリメチルアルミニウム72.1gを仕込んだ。攪拌
下に100℃に昇温し1時間保持した。次にこれを
200mmHg下、86℃で減圧蒸溜し、精製トリメチル
アルミニウムを50.4g得た。このようにして得た
精製トリメチルアルミニウム中の酸素成分の濃度
は<2ppmであつた。 実施例 3 攪拌機、還流冷却器を備えた300mlフラスコを
窒素置換後、水素化リチウム9.6g、ジメチル亜
鉛96gを仕込んだ。室温で攪拌し、2時間保持し
た。次にこれを常圧下、46℃で蒸留を行ない、精
製ジメチル亜鉛69gを得た。このようにして得ら
れた精製ジメチル亜鉛中の酸素成分濃度は<
2ppmであつた。 実施例 4 攪拌機、還流冷却器を備えた300mlフラスコを
窒素置換後、水素化リチウムアルミニウム3.2g、
ターシヤリーブチルリチウム64g、ノルマルヘキ
サン100mlを仕込んだ。 攪拌下に60℃に昇温し1時間保持した。これを
常圧、68℃でノルマルヘキサンを留去した。次い
で0.1mmHg下、50℃で減圧昇華を行ない、精製タ
ーシヤリーブチルリチウム51.2gを得た。このよ
うにして得られたターシヤリーブチルリチウム中
の酸素成分は<2ppm、ハロゲン成分は<0.5ppm
であつた。 実施例 5 攪拌機、還流冷却器を備えた300mlフラスコを
窒素置換後、水素化アルミニウムナトリウム5.7
g、トリエチルアルミニウム114gを仕込んだ。 攪拌下に80℃に昇温し、1時間保持した。次に
10mmHgに減圧し97℃で減圧蒸溜を行ない精製ト
リエチルアルミニウム91gを得た。このようにし
て得られた精製トリエチルアルミニウム中の酸素
成分濃度は<2ppmであつた。 実施例 6 処理時の温度を室温に変えたほかは実施例2と
同様に行なつた。結果は第2表に示す。 実施例 7 処理時の温度を70℃に変えたほかは実施例2と
同様に行なつた。結果は第2表に示す。 実施例 8 処理時の温度を120℃に変えたほかは、実施例
2と同様に行なつた。結果は第2表に示す。
[Table] Example 2 After purging a 300 ml flask equipped with a stirrer and reflux condenser with nitrogen, 3.6 g of lithium aluminum hydride,
72.1 g of trimethylaluminum was charged. The temperature was raised to 100°C while stirring and maintained for 1 hour. then this
Distillation was carried out under reduced pressure at 86° C. under 200 mmHg to obtain 50.4 g of purified trimethylaluminum. The concentration of oxygen component in the purified trimethylaluminum thus obtained was <2 ppm. Example 3 A 300 ml flask equipped with a stirrer and a reflux condenser was purged with nitrogen, and 9.6 g of lithium hydride and 96 g of dimethyl zinc were charged therein. Stir and hold at room temperature for 2 hours. Next, this was distilled at 46° C. under normal pressure to obtain 69 g of purified dimethyl zinc. The oxygen component concentration in the purified dimethyl zinc thus obtained is <
It was 2ppm. Example 4 After purging a 300 ml flask equipped with a stirrer and a reflux condenser with nitrogen, 3.2 g of lithium aluminum hydride,
64 g of tertiary butyl lithium and 100 ml of n-hexane were charged. The temperature was raised to 60°C while stirring and maintained for 1 hour. Normal hexane was distilled off from this at normal pressure and 68°C. Next, sublimation was carried out under reduced pressure at 50° C. under 0.1 mmHg to obtain 51.2 g of purified tert-butyllithium. The oxygen component in the tertiary butyl lithium thus obtained is <2 ppm, and the halogen component is <0.5 ppm.
It was hot. Example 5 After purging a 300 ml flask equipped with a stirrer and a reflux condenser with nitrogen, sodium aluminum hydride was added at 5.7 mL.
g, and 114 g of triethylaluminum were charged. The temperature was raised to 80°C while stirring and maintained for 1 hour. next
The pressure was reduced to 10 mmHg and vacuum distillation was performed at 97°C to obtain 91 g of purified triethylaluminum. The oxygen component concentration in the purified triethylaluminum thus obtained was <2 ppm. Example 6 The same procedure as in Example 2 was carried out except that the temperature during treatment was changed to room temperature. The results are shown in Table 2. Example 7 The same procedure as Example 2 was carried out except that the temperature during treatment was changed to 70°C. The results are shown in Table 2. Example 8 The same procedure as in Example 2 was carried out except that the temperature during treatment was changed to 120°C. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微量の含酸素成分あるいは微
量の含酸素成分と微量の含ハロゲン成分を含む有
機金属化合物から実質的ないし完全に不純物を含
まない有機金属化合物を製造することができ、か
くして精製された有機金属化合物は特に電子工業
用を初め精密化学品分野おいて好適に使用するこ
とができ、その工業的価値は頗る大である。
According to the present invention, an organometallic compound substantially or completely free of impurities can be produced from an organometallic compound containing a trace amount of an oxygen-containing component or a trace amount of an oxygen-containing component and a trace amount of a halogen-containing component, and thus purified. The resulting organometallic compounds can be suitably used in the electronic industry and other fine chemical fields, and their industrial value is enormous.

Claims (1)

【特許請求の範囲】 1 一般式() R1−M1,R1−M2−R2,【式】 【式】 (式中M1は1価元素、M2は2価元素、M3
3価元素、M4は4価元素、R1,R2,R3及びR4
同一かまたは異なるアルキル基、アリール基、シ
クロアルカジエニル基または水素原子を表わす。
但しM1の場合R1が水素原子の場合を除く。) で示され、かつ微量の含酸素成分を含む、あるい
は微量の含酸素成分および微量の含ハロゲン成分
を含む有機金属化合物を攪拌条件下に、該有機金
属化合物の0.1〜50%(wt)に相当する水素化金
属化合物の水素化ナトリウム、水素化カリウム、
水素化リチウム、水素化カルシウム、水素化アル
ミニウム、水素化チタニウム、水素化ジルコニウ
ムまたはこれらの複塩である水素化リチウムアル
ミニウム、水素化ナトリウムアルミニウム、水素
化ホウ素ナトリウム、水素化ホウ素リチウムある
いはナトリウムジエチルアルミニウムジハイドラ
イドの少なくとも1種、またはこれらの混合物か
ら選ばれた還元剤を添加し、次いで該還元剤と有
機金属化合物とを蒸留または昇華分離することに
より上記の微量の含酸素成分、あるいは微量の含
酸素成分と微量の含ハロゲン成分を除去すること
を特徴とする有機金属化合物の精製法。 2 有機金属化合物は有機溶媒との混合物として
精製処理に供する請求項1記載の有機金属化合物
の精製法。
[Claims] 1 General formula () R 1 −M 1 , R 1 −M 2 −R 2 , [Formula] [Formula] (In the formula, M 1 is a monovalent element, M 2 is a divalent element, M 3 represents a trivalent element, M 4 represents a tetravalent element, and R 1 , R 2 , R 3 and R 4 represent the same or different alkyl group, aryl group, cycloalkadienyl group, or hydrogen atom.
However, in the case of M 1 , the case where R 1 is a hydrogen atom is excluded. ) and containing a trace amount of an oxygen-containing component, or a trace amount of an oxygen-containing component and a trace amount of a halogen-containing component, is added to 0.1 to 50% (wt) of the organometallic compound under stirring conditions. Corresponding metal hydride compounds such as sodium hydride, potassium hydride,
Lithium hydride, calcium hydride, aluminum hydride, titanium hydride, zirconium hydride or their double salts such as lithium aluminum hydride, sodium aluminum hydride, sodium borohydride, lithium borohydride or sodium diethylaluminum dihydride. By adding a reducing agent selected from at least one type of hydride or a mixture thereof, and then separating the reducing agent and the organometallic compound by distillation or sublimation, the above-mentioned trace amount of oxygen-containing component or trace amount of oxygen-containing component is removed. A method for purifying organometallic compounds characterized by removing components and trace amounts of halogen-containing components. 2. The method for purifying an organometallic compound according to claim 1, wherein the organometallic compound is subjected to the purification treatment as a mixture with an organic solvent.
JP63216289A 1988-09-02 1988-09-02 Purification of organometallic compound Granted JPH0267230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216289A JPH0267230A (en) 1988-09-02 1988-09-02 Purification of organometallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216289A JPH0267230A (en) 1988-09-02 1988-09-02 Purification of organometallic compound

Publications (2)

Publication Number Publication Date
JPH0267230A JPH0267230A (en) 1990-03-07
JPH0529371B2 true JPH0529371B2 (en) 1993-04-30

Family

ID=16686201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216289A Granted JPH0267230A (en) 1988-09-02 1988-09-02 Purification of organometallic compound

Country Status (1)

Country Link
JP (1) JPH0267230A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658560B1 (en) * 1993-12-14 1999-10-20 Sumitomo Chemical Company Limited Process for removing oxygen-containing impurities in organo-gallium or -indium compounds
JP3525371B2 (en) * 1996-06-25 2004-05-10 信越化学工業株式会社 Purification method of organometallic compounds
JP2002070200A (en) * 2000-08-30 2002-03-08 Toyo Constr Co Ltd Vibration control structure for building and construction method therefor
TW200619222A (en) * 2004-09-02 2006-06-16 Rohm & Haas Elect Mat Method for making organometallic compounds
JP2007254408A (en) * 2006-03-24 2007-10-04 Ube Ind Ltd High-purity bis(cyclopentadienyl)magnesium and method for producing the same
JP5168919B2 (en) * 2007-01-30 2013-03-27 宇部興産株式会社 High purity trialkylindium and process for producing the same
JP5489155B2 (en) * 2009-10-15 2014-05-14 気相成長株式会社 Method for purifying trialkylaluminum
JP5522670B2 (en) * 2010-03-02 2014-06-18 気相成長株式会社 (R1R2R3R4R5Cp) 2M Manufacturing Method and Manufacturing Apparatus
WO2011107966A1 (en) * 2010-03-05 2011-09-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbent for removing metal compounds and method for same
JP5747613B2 (en) * 2011-03-30 2015-07-15 宇部興産株式会社 High purity bis (methylcyclopentadienyl) magnesium and method for producing the same
JP5348202B2 (en) * 2011-08-19 2013-11-20 宇部興産株式会社 High purity bis (cyclopentadienyl) magnesium and process for producing the same
JP5397641B2 (en) * 2011-12-27 2014-01-22 宇部興産株式会社 High purity trialkylindium and process for producing the same
JP2018150246A (en) * 2017-03-10 2018-09-27 国立大学法人東北大学 Organic compound deposition method
CN109879900A (en) * 2018-12-18 2019-06-14 安徽亚格盛电子新材料有限公司 A method of trimethyl aluminium is effectively purified using inorganic salts
CN114773372A (en) * 2022-05-23 2022-07-22 江苏南大光电材料股份有限公司 MO source deoxidization purification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132888A (en) * 1985-12-03 1987-06-16 Sumitomo Chem Co Ltd Purification of organometallic compound
JPS6339884A (en) * 1986-08-01 1988-02-20 Sumitomo Chem Co Ltd Purification of organoaluminum compound
JPS6377887A (en) * 1986-09-19 1988-04-08 Shin Etsu Chem Co Ltd Purifying method for organosilicon compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132888A (en) * 1985-12-03 1987-06-16 Sumitomo Chem Co Ltd Purification of organometallic compound
JPS6339884A (en) * 1986-08-01 1988-02-20 Sumitomo Chem Co Ltd Purification of organoaluminum compound
JPS6377887A (en) * 1986-09-19 1988-04-08 Shin Etsu Chem Co Ltd Purifying method for organosilicon compound

Also Published As

Publication number Publication date
JPH0267230A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US4544762A (en) Process for the preparation of oligomeric aluminoxanes
JPH0529371B2 (en)
EP0694548B1 (en) Organometallic derivatives of group IIIA and process for their preparation
US6228794B1 (en) Cationic group 13 complexes incorporating bidentate ligands as polymerization catalysts
US4650895A (en) Process for producing high purity metallic compound
JPS60221301A (en) Novel manufacture of germanium hydride
Uhl et al. Formation of the Digallium Compound [(C5C6) 2N3](R) Ga–Ga (R)[N3 (C6H5) 2] with Two Bis (Trimethylsilyl) Methyl Groups and Two Terminal Chelating Diphenyltriazenido Ligands
US4944894A (en) Ether free organometallic amide compositions
AU620106B2 (en) Non-aqueous process for the preparation of alumoxanes
EP0282419B1 (en) Ether free organometallic amide compositions
US3946056A (en) Method for producing stannic tertiary alkoxide
JPH02502464A (en) Method for producing metal alkyl compounds
TWI537283B (en) Method for purifying a crude pnpnh compound
JP2561482B2 (en) Method for producing trialkylarsenic compound
US2969382A (en) Process for the manufacture of cyclopentadienyl group iii-a metal compounds
US3524870A (en) Preparation of aluminum monohydride diethoxide
JPS59148790A (en) Purification of organometallic compound
JP2777252B2 (en) Method for producing aluminoxane
JP2863323B2 (en) New production method of alkyl zinc
EP0068471A1 (en) Methods or preparing magnesium disiloxide compounds
JPH03123792A (en) Method of highly purifying monoalkyl arsine and dialkyl arsine and purified mono and dialkyl arsine
JPH0730091B2 (en) Method for producing aluminoxanes
CA1242573A (en) Hydrocarbon-soluble dialkylmagnesium composition
JPS6168492A (en) Treatment of hydrocarbon solution of dialkylmagnesium compound for reducing content of solublechloride-containing complex
GB1582141A (en) Production of transition metal composition useful as an olefine polymerisation catalyst or component thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees